Что такое транспортная модель города и зачем получать исходные данные путем опроса населения. Методы решения транспортных задач

Основная задача транспортной модели – заглянуть в будущее, но это невозможно без точного отражения современной ситуации. Первым шагом в нашей работе является создание существующей транспортной модели. В соответствии с техническим заданием заказчика модель существующего состояния должна быть подготовлена в трех вариантах: модель утреннего часа пика, модель вечернего часа пика, суточная модель. Разработка модели осуществляется в программном продукте PTV Vision VISUM, что также являлось обязательным требованием заказчика.

Создание транспортного предложения

1. Узлы определяют положение перекрестков и являются начальными и конечными точками перегонов. При создании узлов задается тип регулирования. В транспортной модели г. Тюмени были использованы следующие типы регулирования: помеха справа, светофорное регулирование, уступи дорогу, неизвестный тип регулирования. Также в окне редактирования узла задается геометрия узла, приоритеты движения, а также параметры для всех возможных маневров на данном перекрестке. В данной транспортной модели было создано 7744 узла.

2. Перегоны или отрезки – это объекты транспортного предложения, которые формируют УДС. При формировании перегонов в каждый из них заносятся собственные характеристики. Каждый участок УДС, моделируемый отрезком, имеет два направления движения, на каждом из которых можно разрешить или запретить движение одного или нескольких способов передвижения (легковой, общественный транспорт, пешком, на велосипеде).

Общее количество отрезков УДС в модели г. Тюмени 17274 ед. Суммарная длина УДС при этом 2424 км.

3. Транспортные районы. Примыкания.

Транспортные районы являются начальными и конечными пунктами движения. В моделях граница транспортного района носит лишь декоративный характер, весь транспортный район сведен к центру тяжести, который с помощью примыканий связан с УДС. Территория г. Тюмени и прилегающая территория Тюменского района были разбиты на 400 транспортных районов. В каждый транспортный район, исключая районы кордоны, были внесены данные о населении. В транспортной модели г. Тюмени было создано 2422 примыканий. Каждый объект содержит информацию о затратах времени на доступ от центра тяжести до УДС и обратно для различных систем транспорта. Затраты времени на примыкании для индивидуального транспорта учитывают пешеходный подход к автомобилю, начало движения и время поездки. Для пассажиров общественного транспорта затраты времени на примыкании учитывают пешеходный путь.


4. Общественный транспорт.

Первым этапом введения общественного транспорта в модель является создание остановок. В программном продукте PTV VISUM остановки создаются иерархической системой Остановка - Зона остановки - Пункт остановки.

«Пункт остановки» – занимает низшие место в этой иерархии и обозначает непосредственно площадку для посадки/высадки пассажиров.

«Зона остановки» может объединять несколько пунктов остановки для различных видов транспорта. Но в модели современного состояния г. Тюмени не встречаются различные виды транспорта в пределах одной остановки. «Остановка» же объединяет в себе зоны и пункты остановок.

В процессе работы было создано 617 остановок, 996 зон и пунктов остановок.

Следующим этапом является создание маршрутной сети. Каждый маршрут, созданный в транспортной сети, содержит минимум два варианта маршрута: прямое и обратное направления. Для каждого варианта маршрута заносятся данные о количестве подвижного состава и интервалах движения между транспортными средствами в утреннее и вечернее время. В транспортной модели были отражены маршруты общественного транспорта, осуществляющие пассажирские перевозки в зимнее время (88 маршрутов).


Создание модели транспортного спроса

Модель транспортного спроса транспортной модели современной транспортной инфраструктуры г. Тюмени имеет три составляющих:

  • модель оценки спроса на городские передвижения (исключая грузовое движение);
  • модель оценки спроса на передвижения из внешних районов-кордонов в сторону города и наоборот – со стороны города в сторону внешних районов-кордонов;
  • модель оценки спроса на городские грузовые передвижения.

Основой модели спроса на городские передвижения является 4-х ступенчатая модель:

  1. Генерация спроса
  2. Распределение спроса
  3. Выбор режима
  4. Перераспределение

Модель включает:

– оценку суммарных объемов корреспонденций, зарождающихся и поглощающихся в транспортном районе (1-ая ступень);

– распределение корреспонденций между расчетными районами (2-ая ступень);

– распределение корреспонденций между способами передвижения (3-ая ступень);

– распределение корреспонденций по вариантам маршрутов движения (4-ая ступень).

Выполнение расчетов на ступенях 2 – 4 повторяется на нескольких итерациях.

На 1-й ступени оцениваются количество передвижений, начинающихся из каждого транспортного района и заканчивающихся в другом транспортном районе с различными целями поездки. Каждая цель поездки описывается слоем спроса. В настоящей работе было выделено 19 слоев спроса:


Настройка параметров процедуры оценки суммарных объемов корреспонденций выполнялась с учетом коэффициентов создания корреспонденций по каждому слою спроса, которые были получены по результатам анкетирования жителей путем деления количества зафиксированных передвижений данного слоя спроса на общее количество опрошенных респондентов.

Важным является выбор условия, по которому будет выполнятся нормирование сумм зарождающихся и поглощающихся корреспонденций. Например, для слоя спроса Дом-Работа определяющим будет количество трудящихся в расчетном транспортном районе и количество передвижений Дом-Работа, приходящихся на одного трудящегося в утренний час пик. В связи с этим, независимо от того, какое суммарное количество мест приложения труда во всех расчетных районах города, нормирование суммы всех передвижений будет выполнено по зарождающимся корреспонденциям (сумма объема транспортного потока из источника).

Реализация 2-ой ступени модели спроса требует предварительного расчета матриц затрат с последующим вычислением вероятностей передвижений между отдельными парами расчетных транспортных районов по каждому способу передвижения (режиму). В настоящей работе для моделирования городских передвижений используется четыре способа передвижения:

  • на индивидуальном транспорте;
  • на общественном транспорте;
  • пешком;
  • на велосипеде.

Расчет матриц затрат для всех способов передвижений выполняется по маршрутам, обладающим наименьшей обобщенной стоимостью передвижения (обобщенная стоимость передвижения в модели выражается временем).

Расчет матрицы затрат для передвижений на велосипеде выполняется с учетом закладываемых изначально некомфортных условий движения (за исключением участков, где уже имеются обустроенные велодорожки) с тем, чтобы обеспечить низкую привлекательность велосипеда, соответствующую реальному распределению передвижений по способам (по исходным данным, полученным в результате анкетных обследований).

Расчет матрицы затрат для передвижений на индивидуальном транспорте реализован следующими способами в программе VISUM:

Расчет дополнительных затрат времени на отрезках на основе значений пропускной способности и CR-функции, учитывающей рост транспортных задержек с ростом уровня загрузки перегона (отрезка);

Расчет дополнительных затрат времени был детализирован с учетом загрузки всех элементов УДС в модели (отрезки, повороты, примыкания);

Расчет дополнительных затрат времени с учетом специальной расчетной процедуры, учитывающей современные методики расчета транспортных задержек на перекрестках. На нерегулируемых перекрестках все транспортные потоки были разделены на 4 ранга в зависимости от главного направления на данном пересечении. Далее были рассчитаны дополнительные затраты каждого направления в зависимости от ранга и интенсивности движения направления. Для регулируемых перекрестков была использована стандартная CR-функция (функция ограничения пропускной способности).

Расчет матрицы затрат для передвижений на общественном транспорте выполняется на основе корректировки профиля времени движения на маршруте, по значениям рассчитанных затрат времени на отрезках и поворотах для индивидуального транспорта (кроме участков с организацией приоритетного движения общественного транспорта, когда затраты времени принимаются из расчета установленной скорости движения общественного транспорта для данного типа отрезка).

Расчет вероятностей передвижений между отдельными парами расчетных транспортных районов по каждому способу передвижения (режиму) выполняется на основе функции EVA (Erzeugung-Verteilung-Aufteilung – зарождение-разделение-распределение транспортных потоков), которая обладает лучшими свойствами эластичности в сравнении с экспоненциальной и другими функциями.

Реализация 3-ой ступени модели спроса осуществляется на основе стандартной процедуры VISUM выбор режима. Матрицы корреспонденций по каждому слою спроса разделяются по режимам движения (легковой транспорт, общественный транспорт, велосипед, пешком).

Реализация 4-ой ступени модели спроса осуществляется на основе стандартных процедур программы VISUM:

Перераспределение ИТ (равновесное перераспределение);

Перераспределение ОТ (перераспределение по интервалам движения транспортных средств на маршруте общественного транспорта).

Структура модели оценки спроса на передвижения из внешних районов-кордонов в сторону города и наоборот – со стороны города в сторону внешних районов-кордонов

Модель оценки спроса передвижений из внешних районов (и в сторону внешних районов) отличается от вышеописанной модели внутригородских передвижений, т.к. в ней отсутствует третья ступень (разделение по способам передвижения). Эта особенность объясняется тем, что в основу исходных данных закладываются значения интенсивностей движения на выездах из города, которые в модели относятся к способу передвижения на индивидуальном транспорте. Реализация 2-ой и 4-ой ступеней для рассматриваемой модели спроса осуществляется аналогично модели спроса для внутригородских передвижений.

Структура модели оценки спроса на городские грузовые передвижения

Модель оценки спроса на городские грузовые передвижения основана на подходе прогнозирования суммарных объемов корреспонденций (1-ая ступень), используя регрессионные модели (линейная зависимость). Параметры данных моделей (для въезжающих и выезжающих грузопотоков) получены по результатам наблюдений за грузопотоками на границах укрупненных транспортных районов города, количество и границы которых специально определялись с учетом возможности отслеживания грузопотоков, исключая при этом вероятность ошибки замеров, связанных с наложением транзитных (проходящих мимо рассматриваемых специальных укрупненных транспортных районов) грузопотоков в рассмотренных сечениях.

Реализация 2-ой ступни для рассматриваемой модели спроса осуществляется без учета влияния дальности передвижения на вероятность передвижения между расчетными транспортными районами. Такой подход объясняется предположением отсутствия влияния удаленности грузополучателя от грузоотправителя на вероятность грузовой корреспонденции в масштабах города.

Реализация 3-ей и 4-ой ступней для рассматриваемой модели спроса осуществляется аналогично модели спроса для передвижений из внешних районов.

Суточная модель буднего дня

Оценка транспортного спроса для всех передвижений за сутки определяется на основе оценки суточных объемов передвижений между расчетными транспортными районами.

Основными особенностями модели суток являются следующие:

Отмена коэффициентов часовой неравномерности в отличие от оценок спроса для пиковых периодов;

Изменение в процедуре оценки суммарных объемов корреспонденций по данным для утреннего и вечернего часов пик в модели оценки спроса на передвижения из внешних районов-кордонов в сторону города и наоборот – со стороны города в сторону внешних районов-кордонов (создаются дополнительные слои спроса и рассматриваются возвратные передвижения для утренних пар источник-цель) с учетом коэффициентов перевода утренних и вечерних потоков (11,5/2 и 10,5/2 соответственно для утра и вечера) до уровня половины суточных потоков;

Применение коэффициента увеличения матрицы грузовых корреспонденций на основе половины суммы коэффициентов суточной неравномерности грузовых потоков для утреннего и вечернего часов «пик»;

Калибровка транспортной модели

Калибровка модели оценки спроса для утреннего и вечернего часа пик выполняется в следующей последовательности:

Начальное распределение грузовых потоков;

Калибровка распределения грузовых потоков с учетом замеров в контрольных точках;

Начальное распределение городских и внегородских транспортных потоков между способами передвижения, включая калибровку значений затрат времени для поворотных потоков на регулируемых и нерегулируемых пересечениях;

Калибровка распределения транспортных потоков по сети с учетом замеров в контрольных точках;

Калибровка распределения пассажирских потоков по сети с учетом замеров количества пассажиров, перевезенных на маршрутах общественного транспорта;

Повторное общее распределение грузовых и пассажирских потоков.


В результате калибровки транспортной модели был достигнут коэффициент корреляции оцениваемых и измеренных значений интенсивностей движения транспорта более 0,85.

Разработанная транспортная модель полностью соответствует требованиям технического задания:

– в части размера модели (количество узлов, отрезков, транспортных районов, остановочных пунктов. маршрутов),

– в части детализации модели транспортного спроса (количество систем транспорта, количество слоев спроса),

– в части показателей качества модели (количество мест подсчета интенсивности движения индивидуального транспорта, количество мест подсчета пассажиропотока, коэффициент корреляции).

Возможны и несколько иные модели транспортной задачи, когда, например,  

Наиболее распространенной частичной моделью принятия решения о местоположении частного бизнеса является модель транспортных издержек Вебера, в которой затраты на перевозку принимаются пропорционально удаленности предприятия от пунктов заготовок и поставок.  

Стандартная модель транспортной задачи (ТЗ)  

Цель игры может быть достигнута при оптимизации маршрутов, т. е. за счет рациональной организации работ . В данном случае следует применить модель транспортной задачи линейного программирования . Используя.данные табл. 4.2-4.4, получаем оптимальный план перевозки с минимумом транспортной работы 14 361 тыс. т-км, отсюда плановая потребность в бензине  

Очевидно, задачу (25.34) - (25.36) можно решить симплексным методом как задачу линейного программирования . Однако если привести определенными приемами коэффициент ау к единице, то данная модель не будет отличаться от модели транспортной задачи, и ее можно будет решить, в частности, методом потенциалов.  

При приеме товара на комиссию к нему прикрепляется товарный ярлык , а на мелкие изделия (часы, бусы, броши и другие аналогичные изделия) - ценники с указанием номера документа , оформляемого при приеме товара, и цены. В перечне товаров, принятых на комиссию, и товарном ярлыке указываются сведения, характеризующие состояние товара (новый, бывший в употреблении, степень износа , основные товарные признаки, недостатки товара). В отношении транспортных средств в эти сведения включаются идентификационный номер, марка, модель транспортного средства, наименование (тип), год выпуска, номера двигателя, шасси (рамы), кузова (прицепа), регистрационного знака транзит, цвет кузова (кабины), пробег по данным спидометра, серия и номер паспорта транспортного средства , а в отношении транспортного средства , ввезенного на , также указываются номер и дата документа, подтверждающего его таможенное оформление в соответствии с законодательством Российской Федерации . Перечень товаров, принятых на комиссию, и товарный ярлык подписываются комиссионером и комитентом.  

Модель транспортной задачи в сетевой постановке будет выглядеть следующим образом.  

Способ сведения такой модели транспортной задачи к закрытой прост и.включается в ведении нового фиктивного потребителя с потребностью, равной разнице между совокупным спросом и предложением. Затраты на доставку груза фиктивному потребителю должны быть постоянными для всех поставщиков.  

КОМПЕНСАЦИЯ ЗА ИСПОЛЬЗОВАНИЕ ЛИЧНОГО АВТОТРАНСПОРТА - возмещение затрат , понесенных работником за использование личного легкового автомобиля или мотоцикла для служебных поездок. Предельные нормы компенсации варьируются в зависимости от модели транспортного средства.  

Задачами открытого типа называют нахождение оптимального варианта размещения производства с учетом транспортного фактора. Открытая модель транспортной задачи может быть приведена к закрытой (см. стр. 140, 141).  

При определении оптимального варианта развития и размещения производства применяют экономико-математические методы и электронно-вычислительные машины , причем могут быть использованы различные модели транспортная задача задача по определению оптимального варианта размещения отрасли и др. Бесспорно, что наиболее целесообразно проводить расчеты второй задачи. Но следует учитывать, что нефтеперерабатывающая и нефтехимическая промышленность - многопродуктовая отрасль, поэтому такие задачи получаются чрезвычайно сложными, и еще не разработаны окончательные методы их решения.  

Более подробной должна быть характеристика транспортных средств . Она должна включать идентификационный номер, марку, модель транспортного средства, наименование (тип), год выпуска, номер двигателя, шасси (рамы) и кузова (прицепа), регистрационного знака транзит, цвет кузова (кабины), данные о пробеге, серию и номер паспорта транспортного средства , а в отношении транспортного средства , ввезенного на территорию Российской Федерации , также указывается номер и дата документа, подтверждающего его таможенное оформление в соответствии с законодательством Российской Федерации.  

Объединенную логистическую цепочку поставок. Объединенная логистическая цепочка поставок за счет использования компетенций TNT позволила усилить увеличить результативность и эффективность инфраструктуры WFP. На практике это означало оптимизацию расположения, управления и оснащения сети складов, обеспечение лучших связей внутри системы таким образом, чтобы помогающая организация могла более быстро реагировать на чрезвычайные потребности. Инициатива позволила осуществить различные проекты помощи WFP в оптимизации его складских мощностей , выбора новых информационных систем управления складами и улучшения управления средствами доставки. Одним из успешных мероприятий инициативы стало внедрение модели транспортных мощностей, которая позволила усовершенствовать маршруты и места расположения перевалочных баз, что улучшило помощь беженцам, возвращавшимся в южный Судан. Проект разрабатывался двумя специалистами по логистике компании TNT свыше шести месяцев, а в результате его осуществления ежемесячная экономия на транспортных затратах составила 300 тыс.  

К задаче транспортировки грузов тесно примыкают и задачи оптимальной маршрутизации. Краткая характеристика их такова. Пусть речь идет о перевозке различных грузов между несколькими пунктами погрузки и разгрузки, причем адреса перевозок указаны заранее. Тогда дело сводится к определению того, куда нужно перебрасывать высвободившиеся вагоны или автомашины, чтобы суммарные затраты на перевозки были минимальны, т. е. чтобы минимизировалось количество холостых рейсов (о решении этих проблем на основе модели транспортной задачи см. стр. 55).  

На основе модели транспортной задачи произведено большое число расчетов плана развития отраслей как по стране в целом, так и по отдельным крупным экономическим районам (Сибири, Казахстану и др.) В частности, такие расчеты по размещению и развитию отраслей проведены по производству цемента, ряда других строительных материалов, многим химическим производствам и т д Большое значение имеет ряд расчетов по топливно-энергетическому балансу , т е. по определению рациональной структуры потребления и производства разных видов топлива, а также районов их распределения. Здесь специального упоминания заслуживает работа по исчислению замыкающих затрат на электроэнергию и топливо, которая была проведена в Энергетическом институте СО АН СССР  

Центр разработки I Avan ue предназначен для перспективного проектирования будущих моделей транспортных средств. В нем объединены подразделения, выполняющие стадии прогнозирования, концептуального проектирования и разработки предварительные наброски, разработку концепций и компоновки будущих автомобилей. Именно здесь автомобиль приобретает свою форму. Архитектура самого здания способствует тесному сотрудничеству и взаимодействию проектных групп друг с другом. Постоянная взаимосвязь инженеров и дизайнеров способствует развитию симбиоза их творчества.  

Для использования в автомобилестроении разработаны специальные химические волокна и текстильные отделочные материалы на их основе. По эксплуатационным показателям они удовлетворяют требованиям не только современных, но и перспективных моделей транспортных средств. В качестве отделочных материалов современных моделей автомобилей наибольшее применение находят полиэфирные велюровые ткани и полиэфирный основовязаный трикотаж, полиамидные ткани, а также полиамидные тафтинговые и полипропиленовые иглопробивные ковровые изделия. Большим спросом пользуются и текстильные материалы (в основном полиамидные и полиэфирные) с полимерными покрытиями.  

Формаль ю-математич. особенности модели транспортной задачи, позволяющие применить к ее решению Р. м. л. п. (более простой, чем, напр., симплексный метод), относятся к характеру ограничений, наложенных на значения переменных. Эти особенности заключаются в следующем а) ограничения носят двухсторонний характер, напр., в транспортной задаче - по наличию грузов в пунктах отправления и по потребности в них в пунктах назначения в

Среди задач линейной оптимизации могут быть выделены два класса задач со специальной структурой:

транспортная задача

задача о назначениях.

Эти задачи используются для моделирования оптимизации экономических проблем, связанных с формированием оптимального плана перевозок, оптимального распределения индивидуальных контрактов на транспортировки, составления оптимального штатного расписания, определения оптимальной специализации предприятий, рабочих участков и станков, оптимального назначения кандидатов на работы, оптимального использования торговых агентов. Критерием эффективности в данных задачах является линейная функция, ограничения также линейны, поэтому для их решения могут применяться методы линейной оптимизации, например симплекс-метод. Однако специальная структура таких задач позволяет разработать более удобные методы их решения. Некоторые из таких методов приведены этой книге. Даны общая формулировка задач, основные термины и определения, этапы построения математических моделей, этапы получения оптимальных решений. Также приведены числовые примеры экономических задач, которые могут быть решены этими методами.

Построим транспортную модель для конкретной задачи.

Четыре предприятия данного экономического района для производства продукции используют некоторое сырье. Спрос на сырье каждого из предприятий соответственно составляет: 120, 50, 190 и 110 усл. ед. Сырье сосредоточено в трех местах.

Предложения поставщиков сырья равны: 160, 140 и 170 усл. ед. На каждое предприятие сырье может завозиться от любого поставщика. Тарифы перевозок известны и задаются матрицей

В i -й строке j -м столбце матрицы С стоит тариф на перевозку сырья от i -гo поставщика j -му потребителю, i=1, 2, 3; j =1, 2, 3, 4. Под тарифом понимается стоимость перевозки единицы сырья.

Требуется составить план перевозок, при котором общая стоимость перевозок минимальна.

Построение математической модели

Цель задачи состоит в минимизации суммарной стоимости на перевозки. Эта цель может быть достигнута с помощью оптимальной организации перевозок сырья. Следовательно, за неизвестные можно принять количество сырья, перевозимого от каждого поставщика каждому потребителю.

Пусть хij - количество сырья, перевозимого от i -го поставщика j-му потребителю. Параметры задачи - число поставщиков и потребителей, предложение и спрос сырья в каждом пункте, тарифы на перевозки.

Ограничения задачи - это ограничения на предложение и спрос сырья. Предложения сырья всех поставщиков не должны быть меньше суммарного спроса на него во всех пунктах потребления. В данной задаче имеет место точное равенство между предложением и спросом. 120+50+190+110=160+140+170=470.

Количество сырья, вывозимого от каждого поставщика, должно быть равно наличному количеству сырья. Количество сырья, доставленное каждому потребителю, должно равняться его спросу. Последнее ограничение - условие неотрицательности хij.

Критерием эффективности (целевой функцией) являются суммарные затраты S на перевозку, равные сумме произведений тарифов на перевозку на количество перевозимого сырья от каждого поставщика каждому потребителю.

Окончательно математическая модель задачи имеет вид

Целевая функция и ограничения линейны, т.е. данная задача относится к задачам линейного программирования, однако, благодаря особой структуре, эта задача получила специальное название: транспортная задача или транспортная модель.

Определение начального плана транспортировок. Метод "северо-западного" угла

Рассмотрим метод "северо-западного" угла.

Метод "северо-западного" угла

Шаг 1. Составляют транспортную таблицу.

Шаг 2. Транспортную таблицу начинают заполнять с левого верхнего (северо-западного) угла. При заполнении двигаются по строке вправо и по столбцу вниз. В клетку, находящуюся на пересечении первой строки и первого столбца, помещается максимально возможное число единиц продукции, разрешенное ограничениями на предложение и спрос:

Если а1 < b2, то х11 = a1 и предложение первого поставщика полностью исчерпано. Первая строка вычеркивается, и двигаются по столбцу вниз. В клетку, находящуюся на пересечении первого столбца и второй строки, помещается максимально возможное число единиц продукции, разрешенное ограничениями на предложение и спрос: х21 == min(a2,b1-a1). Если b1-a1

Определить начальное решение по методу "северо-западного" угла для транспортной задачи из примера 1.

Транспортная таблица имеет следующий вид (табл. 3.1):

Таблица 3.1

В первую клетку помещают: х11 = min(160,120) = 120. Спрос первого потребителя полностью удовлетворен, первый столбец вычеркивают. Остаток сырья в первом пункте составляет: 160 - 120=40 усл. ед. Двигаемся по первой строке вправо х21 =min(160 -120,50) = 40. Предложение поставщика исчерпано, первая строка вычеркивается. Второму потребителю не хватает 50-40=10 усл. ед. Двигаемся по второму столбцу вниз х22 =min(140,50 - 40) = 10; Второй столбец вычеркивается. Двигаемся по второй строке вправо х23 = min(140 -10,90) = 130. Вторая строка вычеркивается. Двигаемся по третьему столбцу вниз x33 = min(170,190 -130) = 60. Спрос третьего потребителя удовлетворен. Двигаемся по третьей строке вправо х34 = min(170 -160, 10) = 110. Таблица заполнена. Число ненулевых значений xij,

транспортная математическая модель метод угол

равно 6. Число базисных переменных задачи 3+4 -1=6. Остальные 3*4-6=6 переменных являются свободными, их значения равны нулю.

Начальный план перевозок имеет вид

Стоимость перевозок по этому плану составляет

S1= 120*7+40*8+10*5+130*9+60*3+110*6=3220.

Метод "северо-западного" угла -- наиболее простой метод нахождения начального решения. План перевозок, полученный по этому методу, обычно бывает достаточно далек от оптимального.

РЕФЕРАТ

Микро- и мезо-моделирование транспортных потоков, примеры применения

Выполнил: студент группы 1бОД1

Пашкова Анастасия

Проверил: Жанказиев Султан

Владимирович

Москва, 2015


Введение


Введение

Моделирование движения является важным инструментом для моделирования операций динамических систем дорожного движения. В то время как микроскопические имитационные модели обеспечивают детальное представление о процессе движения, макроскопические и мезоскопические модели захватывают динамику движения крупных сетей, менее подробно, но без проблем применения и калибровки микроскопических моделей. В данном реферате я представляю мезо- и микро-модели. Микро-моделирование применяется в районах, представляющих особый интерес, в то время как имитации большой прилегающей сети менее подробно с помощью мезоскопической модели.

Моделирование движения стало очень популярным для моделирования операций динамических систем дорожного движения. Имитационные модели бывают макроскопическими, мезоскопический или микроскопические. Макроскопические модели (макро) -, как правило, модели трафика в непрерывном потоке. Мезоскопические (мезо) модели - модели отдельных транспортных средств. Микроскопические (микро) модели – модели, которые захватывают поведение транспортных средств и водителей в деталях, в том числе взаимодействие среди автомобилей, смене полосы движения, реагирования на инциденты и поведения при слиянии пунктов. Микроскопические модели подходят для оценки ИТС на оперативный уровень, так как представление многих динамических систем управления дорожным движением требует такого мелкозернистого моделирования процесса движения.

Тем не менее, применение микро моделирования происходит не без проблем. Подготовка исходных данных может занять очень много времени. Кроме того, микро-модели очень чувствительны к ошибкам или изменениям в данных по требованию ввода. И из-за сложной структуры участвующих моделей калибровка не является тривиальной.



С другой стороны, макро и мезо модели обычно имеют меньшие параметры для калибровки и менее чувствительны к ошибкам в сети кодирования или вариаций спроса. Однако из-за их более совокупного характера, такие модели ограничены в своих возможностях, чтобы захватить подробную поведение, необходимое для изучения транспортные сети с функциями управления динамическим движением.

Основы транспортного моделирования

Цель транспортного планирования – оптимизация использования ресурсов с целью организации эффективного функционирования транспортной системы.

Задачи транспортного планирования:

1.Прогноз – получение информации о будущих транспортных процессах.

2. Организационно-управленческая задача.

3. Оценка последствий. Оценка применимости проектных решений.

4. Координационная задача – реализация плановых мероприятий.

Этапы планирования:

1. Этап анализа проблем: сначала ставятся перед собой цели и выявляются проблемы, затем анализируется существующее положение;

2. Этап анализа альтернатив: идет так называемый цикл – разрабатываются мероприятия и сценарии, рассчитываются последствия, оценивается полученный результат;

3. Этап принятия решения.

Модель – это упрощенное представление реальности и/или протекающих в ней процессов.

Моделирование является по существу построением рабочей аналогии. Оно представляет собой построение рабочей модели, отражающей подобие свойств или соотношений с рассматриваемой реальной задачей. Моделирование позволяет изучать сложные задачи движения транспорта не в реальных условиях, а в лаборатории. В более общем смысле моделирование можно определить как динамическое отображение некоторой части реального мира путем построения модели на компьютере и продвижении ее во времени.

Транспортная модель – наглядное отображение комплексных транспортных процессов, с возможностью их прогнозирования в зависимости от различных условий.

Этапы исследования системы с помощью модели:

· формулирование целей и задач;

· создание транспортной модели;

· анализ полученной модели;

· проверка полученных итогов и результатов;

· внедрение результатов моделирования.

Транспортная модель – это:

· моделирование существующих и прогнозируемых пассажиропотоков и интенсивностей;

· инструмент для оптимизации работы пассажирского транспорта, включая расчет рентабельности маршрутов;

· анализ транспортных пассажиропотоков;

· подготовка транспортных прогнозов.

Классификация транспортного моделирования:

1. Микроскопическое моделирование. При этом виде моделирования детально моделируется каждый участок движения отдельного перекрестка или двух, трех. Моделирование нескольких пересечений на уровне транспортного средства.

2. Мезоскопическое моделирование. Анализируются макропоказатели на микромодели. Моделируется район города. Моделирование сети на уровне транспортного средства.

3. Макроскопическое моделирование. Моделирование целого города, региона, страны. Моделирование сети на уровне транспортных потоков.

Микромоделирование

Имитационное моделирование (микромоделирование) – это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе.

Микромоделирование – моделирование транспортных и пешеходных потоков на уровне отдельных объектов, отдельных транспортных средств, пешеходов.

В данном виде моделирования все участники движения рассматриваются в виде отдельных частей.

С помощью имитационного моделирования можно решать различные задачи, а именно:

· оценивается транспортная ситуация конкретного проекта, оценка основывается на количественных показателях, которые характеризуют условия движения;

· оценивается пропускная способность для каждого варианта движения и выбирается оптимальная схема организации движения на перекрестке;

· анализируется пропускная способность и движение в зоне остановок общественного транспорта;

· прогнозируются транспортные заторы;

· моделируется и анализируется пешеходное движение;

· моделирование помогает применить какие-то новые введения на транспортном участке;

· можно понять, где в данной транспортной сети возникают различные заторы.

Этапы выполнения микромодели:

· построение улично-дорожной сети;

· введение транспортных потоков;

· регулирование дорожного движения;

· ввод пешеходных потоков;

· анализ полученной модели.

Для того чтобы создать модель интересующего нас участка улично-дорожной сети, необходимо собрать данные:

· данные о геометрии улично-дорожной сети;

· технические и геометрические особенности различных типов транспортных средств;

· состав транспортного потока, т.е. какое количество видов транспортных средств присутствует на данном участке;

· интенсивность движения транспортных средств;

· расположение светофорных объектов и их циклы;

· данные о движении общественного транспорта (маршруты, расположение остановок, расписание, вместимость подвижного состава и т.д.);

· данные о пешеходном движении (интенсивность, направление движения, параметры пешеходных зон и т.д.).

После сбора полученных данных, можно приступать к созданию имитационной модели по этапам, оговоренных ранее.

Построение улично-дорожной сети:

· определяем на основе, какой подложки мы будем создавать модель (чертеж, выполненный в AutoCAD, спутниковый снимок, онлайн-карты и т.д.);

· на полученную подоснову наносим улично-дорожную сеть, представленную отрезками и соединения между этими отрезками;

· для каждой дороги определяем количество и ширину полос движения;

· определяем разрешенные маневры (повороты, обгоны, перестроения).

Введение транспортного потока:

· определяем, какие типы и классы транспортных потоков мы будем использовать;

· определяем динамические характеристики транспортной сети;

· определяем состав данного потока (количество легкого, грузового транспорта и т.д.);

· определяем параметры манеры поведения водителя;

· вводим интенсивность движения на входящих отрезках;

· вводим данные по общественному транспорту (расписание, остановки, вместимость подвижного состава и т.д.);

· указываем маршруты движения транспортных средств.

Регулирование дорожного движения:

· определяем конфликтные зоны, вводим правила приоритета;

· устанавливаем различные ограничения (например, скорость, знаки «стоп» и т.д.);

· вводим светофорное регулирование:

o определяем длительность цикла;

o указываем время для красного/зеленого сигналов;

o определяем фазовые переходы;

Ввод пешеходных потоков:

· определяем типы пешеходов и их динамических характеристик;

· настраиваем параметры модели поведения;

· вводим интенсивность движения пешеходных потоков;

· указываем маршруты движения.

Основные результаты и виды анализа:

o время задержки;

o время в пути;

o пройденное расстояние;

o количество ТС в сети.

· перекрестки:

o время задержки ТС, людей;

o длина заторов;

o количество остановок.

· отрезок:

o плотность;

o интенсивность;

o скорость;

o анализ отрезков в реальном времени.

· общественный транспорт:

o время в пути;

o стандартное отклонение;

o время в пути для пассажиров.

· светофоры:

o средняя продолжительность цикла;

o среднее время зеленого сигнала.

· маршруты:

o время в пути и скорость;

Мезомоделирование

Мезомоделирование – моделирование пассажирских перемещений на уровне города и агломерации.

Данный вид моделирования транспортных потоков решает важные задачи, а именно:

· анализ транспортного и пассажирского потоков;

· оптимизация маршрутов городского пассажирского транспорта;

· разработка и внедрение транспортных развязок.

Отличия мезомоделирования от микромоделирования:

· небольшое время вычислений, необходимых для создания модели;

· использование упрощенной модели следования за впереди идущим транспортным средством;

· менее точное отображение поведения транспортного средства;

· более низкий уровень детализации, что допускает имитацию крупных сетей.

При мезомоделировании данные транспортного средства обновляются не как в микроскопической имитации в каждый временной шаг, а только в определенные моменты времени, в которые что-то меняется в сети и/или в поведении ТС. Эти так называемые события могут возникать в силу различных ситуаций (при переключении ССУ, выезду транспортного средства на перекресток (узел) и т.д.).

Мезомоделирование используется исключительно в рамках динамического распределения. Это означает, что имитация транспортных средств в сети выполняется мезоскопически, а поиск маршрутов и выбор маршрутов выполняются привычным способом с помощью алгоритмов динамического распределения.

Применение

На сегодняшний день транспортные модели широко применяются для помощи органам государственной власти и местного самоуправления для обоснования принятых решений в области транспортного и градостроительного планирования. Задачи, решаемые на транспортных моделях множество, например:

· прогноз транспортных и пассажирских потоков по улично-дорожной сети города, региона, области или страны в целом;

· детальный анализ изменения транспортных/пассажирских потоков при реализации решений по изменению транспортной или градостроительной инфраструктуры;

· формирование предложений по оптимальным режимам светофорного регулирования на объектах улично-дорожной сети;

· формирование предложений по очередности строительства объектов транспортной и градостроительной инфраструктуры;

· оптимизация работы общественного транспорта;

· экономическое обоснование принятых решений и многое другое.

Так же, в последнее время очень актуальным становится вопрос использования транспортных моделей, как основного ядра для интеллектуальных транспортных систем.

Под названием транспортная задача объединяется широкий круг задач с единой матетической моделью. Данные задачи относятся к задачам линейного программирования и могут быть решены известным симплексным методом. Однако, обычная транспортная задача имеет большое число переменных и решение ее симплексным методом громозко. С другой стороны матрица системы ограничений транспортной задачи весьма своеобразна, поэтому для ее решения разработаны специальные методы. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его, получить последовательность опорных решений, которая завершается оптимальным решением.

Общая характеристика транспортной задачи

Условие:
Однородный груз сосредоточен у m поставщиков в объемах a 1 , a 2 , ... a m .
Данный груз необходимо доставить n потребителям в объемах b 1, b 2 ... b n .
Известны C ij , i=1,2,...m; j=1,2,...n — стоимости перевозки единиц груза от каждого i-го поставщика каждому j-му потребителю.
Требуется составить такой план перевозок, при котором запасы всех поставщиков вывозятся полностью, запросы всех потребителей удовлетворяются полностью, и суммарные затраты на перевозку всех грузов являются минимальными.

Исходные данные транспортной задачи записываются в виде таблицы:

Исходные данные задачи могут быть представлены в виде:

  • вектора А=(a 1 ,a 2 ,...,a m) запасов поставщиков
  • вектора B=(b 1 ,b 2 ,...,b n) запросов потребителей
  • матрицы стоимостей:

Математическая модель транспортной задачи

Переменными (неизвестными) транспортной задачи являются x ij , i=1,2,...,m j=1,2,...,n — объемы перевозок от i-го поставщика каждому j-му потребителю.
Эти переменные могут быть записаны в виде матрицы перевозок:

Так как произведение C ij *X ij определяет затраты на перевозку груза от i-го поставщика j-му потребителю, то суммарные затраты на перевозку всех грузов равны:

По условию задачи требуется обеспечить минимум суммарных затрат.
Следовательно, целевая функция задачи имеет вид:

Система ограничений задачи состоит из двух групп уравнений.
Первая группа из m уравнений описывает тот факт, что запасы всех m поставщиков вывозятся полностью и имеет вид:

Вторая группа из n уравнений выражает требование удовлетворить запросы всех n потребителей полностью и имеет вид:

Учитывая условие неотрицательности объемов перевозок математическая модель выглядит следующим образом:

В рассмотренной модели транспортной задачи предполагается, что суммарные запасы поставщиков равны суммарынм запросам потребителей, т.е.:

Такая задача называется задачей с правильным балансом , а модель задачи закрытой . Если же это равенство не выполняется, то задача называется задачей с неправильным балансом , а модель задачи — открытой .

Математическая формулировка транспортной задачи такова: найти переменные задачи X=(x ij), i=1,2,...,m; j=1,2,...,n, удовлетворяющие системе ограничений (цифра 2 на математической модели) , (3), условиям неотрицательности (4) и обеспечивающие минимум целевой функции (1)

Пример 34.1

Составить математическую модель транспортной задачи, исходные данные которой приведены в таблице 34.2

Решение:
1. Вводим переменные задачи (матрицу перевозок):

2. Записываем матрицу стоимостей:

3. Целевая функция задачи равняется сумме произведений всех соответствующих элементов матриц C и X.

Данная функция, определяющая суммарные затраты на все перевозки, должна достигать минимального значения.

4. Составим систему ограничений задачи.
Сумма всех перевозок, стоящих в первой строке матрицы X, должна равняться запасам первого поставщика, а сумма перевозок во второй строке матрицы X равняться запасам второго поставщика:

Это означает, что запасы поставщиков вывозятся полностью.

Суммы перевозок, стоящих в каждом столбце матрицы X, должны быть равны запросам соответствующих потребителей:

Это означает, что запросы потребителей удовлетворяются полностью.

Необходимо также учитывать, что перевозки не могут быть отрицательными:

Ответ : Таким образом, математическая модель рассматриваемой задачи записывается следующим образом:
Найти переменные задачи, обеспечивающие минимум целевой функции (1) и удовлетворяющие системе ограничений (2) и условиям неотрицательности (3).