Промышленность минеральных удобрений. Минеральные удобрения, произведенные в россии

Общие сведения о минеральных удобрениях (классификация, производство, свойства химические и агрономические)

Минеральные удобрения делят на простые и комплексные. Простые удобрения содержат один питательный элемент. Это определение несколько условно, так как в простых удобрениях, кроме одного из основных элементов питания, могут содержаться сера, магний, кальций, микроэлементы. Простые удобрения в зависимости от того, какой элемент питания в них содержится, подразделяются на азотные, фосфорные и калийные.

Комплексные удобрения имеют в своем составе два и более элемента питания и подразделяются на сложные, получаемые при химическом взаимодействии исходных компонентов, сложно-смешанные, вырабатываемые из простых или сложных удобрений, но с добавлением в процессе изготовления фосфорной или серной кислот с последующей нейтрализацией, и смешанные, или тукосмеси- продукт механического смешивания готовых простых и сложных удобрений.

Азотные удобрения. Основными исходными продуктами при производстве этих удобрений являются аммиак (NH3) и азотная кислота (HN03). Аммиак получают в процессе взаимодействия газообразного азота воздуха и водорода (обычно из природного газа) при температуре 400-500° С и давления в несколько сот атмосфер в присутствии катализаторов. Азотная кислота получается при окислении аммиака. Около 70% всех азотных удобрений в нашей стране выпускается в виде аммиачной селитры, мочевины, или карбамида - CO(NH2)2 (46% N).

Это гранулированные или мелкокристаллические соли белого цвета, легко растворимые в воде. Благодаря сравнительно высокому содержанию азота, неплохим при правильном хранении свойствам и высокой эффективности практически во всех почвенных зонах и на всех культурах аммиачная селитра и мочевина являются универсальными азотными удобрениями. Следует, однако, учитывать ряд их специфических особенностей.

Аммиачная селитра (NH4NO3) требовательнее к условиям хранения, чем мочевина. Она не только более гигроскопична, но также и взрывоопасна. В то же время наличие в аммиачной селитре двух форм азота - аммиачной, способной поглощаться почвой, и нитратной, обладающей большой подвижностью, допускает более широкую дифференциацию способов, доз и сроков применения в различных почвенных условиях.

Преимущество мочевины перед аммиачной селитрой установлено в условиях орошения, при некорневых подкормках овощных, плодовых, а также и зерновых культур для увеличения содержания белка.

Около 10% выпуска азотных удобрений составляют аммиачная вода- NH4OH (20,5 и 16% N) и безводный аммиак- NH3 (82,3% N). При транспортировке, хранении и внесении этих удобрений следует принимать меры к устранению потерь аммиака. Емкости для безводного аммиака должны быть рассчитаны на давление не менее 20 атм. Потерь азота во время внесения жидких аммиачных удобрений можно избежать путем заделки на глубину 10-18 см водного и 16-20 см безводного аммиака. На легких песчаных почвах глубина размещения удобрений должна быть больше, чем па глинистых.

Аммиачный азот фиксируется почвой, и поэтому жидкие азотные удобрения вносят не только весной под посев яровых культур и под пропашные культуры в подкормку, но и осенью под озимые и при зяблевой вспашке.

Достаточно широко применяется в сельском хозяйстве сульфат аммония - (NH4)2SO4 (20% N), побочный продукт промышленности. Это эффективное удобрение с хорошими физическими свойствами, одна из лучших форм азотных удобрений в условиях орошения. При систематическом применении сульфата аммония на дерново-подзолистых почвах возможно подкисление их.

Практическое значение из азотных удобрений имеют также аммиакаты-растворы азотсодержащих солей (аммиачной селитры, мочевины, карбоната аммония) в концентрированном водном аммиаке. Обычно это полупродукты химического производства, имеющие высокую концентрацию азота (35-50%). Эти удобрения по эффективности не уступают твердым удобрениям, но требуют для перевозки емкостей с антикоррозионным покрытием. При внесении аммиакатов в почву необходимо принимать меры, исключающие потери аммиака.

В качестве азотного удобрения в сельском хозяйстве применяется также некоторое количество натриевой селитры - NaNO3 (15% N), кальциевой селитры-Ca(NO3)2 (15% N) и цианамида кальция-Ca(CN)2 (21% N). Это в основном отходы других отраслей промышленности. Будучи физиологически щелочными, указанные формы эффективны на кислых почвах.

Нитратные формы азотных удобрений имеют преимущество как наиболее быстродействующие туки. Поэтому они с большие успехом могут применяться при подкормках.

Фосфорные удобрения. Простой суперфосфат- Са(Н2РО4)2 Н2О+2СаSO4 (14-20% Р2О5) получают путем обработки обогащенных природных фосфатов серной кислотой. Состав и качество конечного продукта во многом зависят от исходного сырья. Суперфосфат из апатитового концентрата выпускают в основном в гранулированном виде. Для улучшения физических свойств суперфосфата продукт подвергают обработке аммиаком с целью нейтрализации кислотности, получая аммонизированный суперфосфат (2,5% N).

Ускоренными темпами развивается производство более концентрированного фосфорного удобрения - двойного суперфосфата [Са(Н2РО4)2 H2O] (46% Р2О5). В условиях нашей страны курс на производство концентрированных удобрений экономически обоснован. При использовании таких удобрений значительно снижаются расходы на перевозку, хранение и внесение туков.

Получают двойной суперфосфат из того же сырья, что и простой, но путем обработки его фосфорной кислотой Удобрение выпускается в гранулированном виде и имеет хорошие физические свойства. И тот, и другой суперфосфат по эффективности равноценны. Он может применяться на всех почвах и под все культуры.

В кислой почве растворимые фосфорные удобрения переходят в труднодоступные формы фосфатов алюминия и железа, а в почвах, богатых известью, -в трёхкальциевые фосфаты также трудно доступные растениям. Эти процессы снижают коэффициент использования фосфорных удобрений. При низкой обеспеченности почв фосфором и внесении малых доз, особенно при смешивании их со всем пахотным горизонтом, можно не получить желаемого результата от фосфорных удобрений.

Фосфоритная мука представляет собой размолотые природные фосфориты. Это удобрение труднорастворимо в воде и малодоступно растениям. При внесении в почву под влиянием выделений корней растений, под действием кислотности почвы и почвенных микроорганизмов фосфоритная мука постепенно переходит в доступное для растений состояние и оказывает действие в течение ряда лет. Лучше всего фосфоритную муку вносить под вспашку или перекопку участка заблаговременно. Для внесения в рядки и гнезда фосфоритная мука непригодна.

Помимо непосредственного внесения фосфоритную муку используют как добавку к компостам, а также применяют в виде смеси с другими удобрениями (азотными и калийными). Фосфоритная мука используется в качестве добавок для нейтрализации кислых удобрений, например к суперфосфату.

Калийные удобрения. Калийные удобрения получают из калийных руд природных месторождений. В России наибольшие запасы калия имеет Верхне-Камское месторождение, на базе которого работают калийные комбинаты в Соликамске и Березниках. Сильвинит-это смесь солей хлористого калия и хлористого натрия. Технология его переработки в калийное удобрение заключается в освобождении от балласта-хлористого натрия и многочисленных примесей путем растворения и кристаллизации при соответствующих температурах и концентрациях, а также методом флотации.

Хлористый калий-КС1 (60% К2О)-соль, хорошо растворимая в воде. Это самое распространенное калийное удобрение. Хлористый калий составляет более 90% всех источников калия для растений в различных удобрениях, в том числе и сложных.

Разработка новых технологических процессов с получением крупнозернистого продукта, обработка специальными добавками позволили свести к минимуму слеживаемость хлористого калия при хранении и значительно упростить весь цикл транспортировки удобрения от завода до поля.

В небольшом количестве продолжается выпуск также смешанных калийных солей, главным образом 40%-ной калийной соли, которую приготовляют, смешивая хлористый калий с непереработанным молотым сильвинитом.

В незначительном количестве сельское хозяйство получает несколько видов бесхлорных удобрений-побочных продуктов различных производств. Это сульфат калия - отход алюминиевой промышленности Закавказья, порошковидное удобрение с хорошими физическими свойствами. Поташ-К2СО3 (57-64% К20) - щелочное, сильно гигроскопическое удобрение, отход переработки нефелина. Цементная пыль (10-14% К2О), конденсируемая на некоторых цементных заводах, универсальное удобрение для кислых почв с неплохими физическими свойствами.

Установлено, что при систематическом применении хлорсодержащих калийных удобрений снижается содержание крахмала в клубнях картофеля, ухудшаются свойства курительных сортов табака, в некоторых районах качество винограда, а также урожай некоторых крупяных культур, в частности гречихи. В этих случаях следует отдавать предпочтение сернокислым солям или чередовать их с хлористыми. Важно учитывать также, что хлор, внесенный в составе удобрений с осени, практически полностью вымывается из корнеобитаемого слоя почвы.

Одни калийные удобрения применяют лишь на некоторых разновидностях торфяных почв, богатых азотом и фосфором. Влияние калия усиливается с известкованием. В севообороте с культурами, выносящими много калия (картофель, сахарная свекла, клевер, люцерна, корнеплоды), потребность в нем и эффективность его выше, чем в севооборотах лишь с зерновыми культурами. На фоне навоза, особенно в год его внесения, эффективность калийных удобрений снижается.

Коэффициент использования калия из калийных удобрений колеблется от 40 до 80%, в среднем в год внесения может быть принят 50%. Последействие калийных удобрений проявляется 1-2 года, а после систематического применения более длительный срок.

Сложные (комплексные) удобрения. Основными видами сухих сложных удобрений, которые выпускает химическая промышленность, являются: аммофос, нитрофоски, нитрофос. нитроаммофоска, калийная селитра, а жидких-комплексные удобрения на основе ортофосфорной и суперфосфорной кислот. Все эти удобрения получены в процессе химического взаимодействия исходных компонентов.

Более половины сложных удобрений в нашей стране представлено аммофосом (NH4H2PO4) с соотношением N: P2O5: K2O как 12:50:0. Получают его в процессе нейтрализации аммиаком продукта взаимодействия апатита или фосфорита с фосфорной кислотой. Фосфор этого тука целиком растворим в воде.

Аммофос не только высокоэффективное концентрированное удобрение на всех почвах и для всех культур, но это также идеальный полупродукт для организации производства смешанных удобрений с заданным соотношением питательных веществ. Он обладает хорошими физическими свойствами как в гранулированном, так и в порошковидном состоянии, малогигроскопичен и поэтому не слеживается и хорошо высевается. Смеси на основе аммофоса со всеми простыми удобрениями выдерживают длительное хранение. Еще более концентрированным удобрением является диаммофос - (NH4)2HPO4 (21: 53: 0). В незначительных количествах он производится как кормовая добавка..

Наиболее распространенным продуктом азотнокислого разложения фосфатного сырья с добавлением хлористого калия является нитрофоска (12: 12: 12). Около 60% фосфора в нитрофоске содержится в виде водорастворимых форм. Это важно учитывать при применении ее на бедных фосфором почвах. В большинстве других случаев нитрофоска благодаря отличным физическим свойствам, удобству в обращении находит широкое применение во всех зонах страны. В районах с низкой потребностью в калии используют нитрофос (20: 20: 0), получающийся при том же технологическом процессе, но без добавления хлористого калия.

В процессе нейтрализации аммиаком фосфорной кислоты с добавлением аммиачной селитры получают нитроаммофос (23:: 23: 0), а при добавлении хлористого калия-нитроаммофоску (18: 18: 18). Фосфор в этих удобрениях полностью водорастворим. Эти перспективные удобрения практически без ограничений в географии применения. Следует учитывать только, что на почвах с повышенным содержанием фосфатов внесение высоких доз нитроаммофоски и нитрофоски может привести к нерациональному использованию фосфора.

Выпуск в гранулированном виде всех указанных выше форм сложных удобрений значительно упрощает применение их не только вразброс, но и в рядки с семенами или в борозды с клубнями.

Широкое применение в овощеводстве находит безбалластное удобрение калийная селитра (13: 0: 46). Это белый кристаллический порошок, обладающий малой гигроскопичностью и хорошо растворимый в воде, может применяться самостоятельно и в смеси с другими удобрениями.

Химической промышленностью освоено и постоянно наращивается производство нескольких марок растворина, комплексного, без осадка растворимого в воде-удобрения для- защищенного грунта. Выпускаются эти удобрения с соотношениями N: P2O5: K2O = 20: 16: 10; 10: 5: 20: 6 (MgO).

В последние годы все большее распространение в сельском хозяйстве находит применение жидких комплексных удобрений (ЖКУ), которые получают путем нейтрализации аммиаком фосфорной кислоты (ортофосфорной или полифосфорной). Они могут иметь различное количество и соотношение питательных веществ. Жидкие комплексные удобрения позволяют полностью механизировать трудоемкие процессы по погрузке, разгрузке и внесению в почву. Они не содержат свободного аммиака, поэтому их можно разбрызгивать по поверхности почвы с последующей заделкой, а также вносить местно в рядки.

Сложно-смешанные удобрения (ССУ). Их получают мокрым смешением готовых односторонних удобрений и полупродуктов, а также фосфорной и серной кислот с одновременной нейтрализацией смесей газообразным аммиаком или аммиакатами. В удобрениях с соотношением N: Р2О5: К2О = 1: 1: 1 на основе простого суперфосфата сумма питательных веществ составляет около 33%, на основе двойного суперфосфата-42-44%. На основе фосфата аммония аммиачной селитры и хлористого калия можно получить комплексные удобрения с любым соотношением азота, фосфора и калия при общей сумме питательных веществ до 58%. В настоящее время освоено производство семи марок ССУ -1: 1: 1; 0: 1: 1; 1: 1: 1,5; 0: 1: 1,5; 1: l, 5: l; l: l, 5: 0; 0,5: 1: 1.

Смешанные удобрения. Эти удобрения получают путем механического смешения готовых гранулированных или порошковидных туков. В результате можно с использованием относительно простого оборудования быстро получить тукосмесь с неограниченным диапазоном соотношения питательных веществ, что имеет большое значение в зонах интенсивного применения удобрений. Непрерывное улучшение качества выпускаемых удобрений значительно расширяет возможности сухого тукосмешения.

Так, гранулированный стандартный суперфосфат и неслеживающийся хлористый калий в нормальных складских условиях могут храниться до 10 месяцев. Добавление к такой смеси азотного компонента, в особенности аммиачной селитры, приводит к слеживанию и снижению сыпучести. При этом при добавлении мочевины удобрение с соотношением 1: 1: 1 может быть заготовлено за 5-6 дней до внесения. Наилучшим компонентом тукосмесей является аммофос. Смеси на его основе хранятся насыпью в складских условиях до 4 месяцев.

Удобрения, содержащие микроэлементы. Эти удобрения могут быть как простые, так и комплексные. Эффективность микроэлементов в значительной степени зависит от количества их в доступной форме в почве и от биологических особенностей сельскохозяйственных культур.

Чаще всего возникает необходимость в применении бора. Урожай корней сахарной и кормовой свеклы, овощных и плодово-ягодных культур, семян льна, клевера, овощей в значительной степени зависит от содержания этого элемента в почве. Количество бора возрастает при систематическом внесении навоза и падает при известковании почвы.

Универсальным источником бора является борная кислота (2,5% В). Ее используют для опрыскивания или опудривания семян, а также для корневой подкормки растений. Для внесения в почву промышленностью выпускается обогащенный бором простой (22% Р2О5, 0,2% В) и двойной (45% Р2О5, 0,4% В) суперфосфат. В отличие от обычных фосфорных удобрений его окрашивают в голубовато-синий цвет. Намечается производство борсодержащей нитроаммофоски. Широкое распространение получило бормагниевое удобрение (14% В, 19% Mg). Борные удобрения вносят в почву в дозе 0,5-1,0 кг бора на 1 га. При обработке семян или опрыскивании это количество в расчете на 1 га уменьшается в 5-7 раз.

Молибден применяют главным образом на неизвесткованных подзолистых почвах под бобовые: клевер, люцерну, бобы, горох, вику. На почвах с низким содержанием молибдена урожай этих культур повышается на 25-50%. Молибден улучшает развитие клубеньковых бактерий повышает содержание в растениях белка и сахара. Молибден оказывает также положительное влияние на урожай льна, сахарной свеклы, овощных растений. Основное молибденсодержащее удобрение - молибденовокислый аммоний (52% Мо). Применяют его в виде корневой подкормки или для обработки семян перед посевом. Для опудривания или опрыскивания семян перед посевом молибденовокислого аммония требуется примерно 50 г на гектарную норму семян. Семена обрабатывают молибденом перед посевом совместно с протравливанием или с нитрагинизацией. Выпускают также молибденизированный суперфосфат.

Марганец оказывает на черноземных почвах положительное действие на сахарную свеклу, картофель, кукурузу, зерновые культуры и плодовые насаждения.

Медь высокоэффективна на осушенных торфяниках, торфоболотных и некоторых песчаных почвах. В качестве медных удобрений вносят медный купорос или сернокислую медь (25 кг на 1 га). Применяют и колчеданные (пиритные) огарки-отходы сернокислотного производства или целлюлозно-бумажной промышленности. В этих отходах содержится 0,3-0,4% меди. Вносят их 6-8 ц на 1 га.

Цинк вносят в почву в виде сульфата цинка в дозе 2-4 кг на 1 га. Используют цинк и в растворах, содержащих 0,61-0,05% сульфата цинка, для намачивания семян. Наиболее устойчивое действие цинковые удобрения оказывают на сахарную свеклу, бобовые культуры, особенно на известкованных почвах. Выпускается специальное цинкосодержащее порошковидное полимикроудобрение ПМУ-7 (25% Zn), которое применяется для допосевного внесения в почву и предпосевной обработки семян.

Кобальт применяют на легких и торфяно-болотных почвах под бобовые, сахарную свеклу, злаковые травы. Его вносят в виде сульфата кобальта в почву или поверхностно в дозе 300-350 г в год или с запасом на 3-4 года по 1-1,5 кг на 1 га.

В большом количестве растения потребляют магний. Зерновые выносят 10-15 кг Mg0 с 1 га; картофель, свекла, клевер в 2-3 раза больше. При недостатке магния резко падают урожаи, особенно ржи, картофеля, клевера. Обычно растения удовлетворяют потребность в этом элементе из почвы. При этом в почвах, слабо насыщенных кальцием, мало и магния. Потребность в магниевых удобрениях можно удовлетворить применением доломитизированных известняков или доломитов с высоким содержанием MgCO3. Магний можно вносить в почву в виде магнезита (МgСОз), дунита, сульфата магния. Источником магния могут быть и другие удобрения, в частности калийные: калимагнезия, каинит, электролит.

Бактериальные удобрения - это препараты, содержащие культуру микроорганизмов, способствующих улучшению питания растений. Питательных веществ они не содержат.Микробиологами создан ряд уникальных бактериальных удобрений для сельскохозяйственных культур открытого и защищенного грунта: агрофил (для всех овощных культур, в том числе защищенного грунта), азоризин, ризоагрин, ризоэнтерин, флавобактерин (для овощей открытого грунта, сахарной свеклы, картофеля), лизорин (для картофеля, томатов) и др.

В России производство различных видов минеральных удобрений достаточно сбалансировано: в 2000 году на долю азотных приходится примерно 48% произведенных удобрений, на фосфорсодержащие -- 19%, на калийные -- 33%. Это обусловлено наличием крупных месторождений калийных солей, апатитов, фосфоритов и значительными запасами газа.

В 1999 году рост производства удобрений в России составил 20,9%. При этом азотных удобрений -- 25%, фосфорных -- 20% и калийных -- 16,5%. Тенденция роста в производстве сохранилась в отрасли азотных и фосфатных удобрений и на протяжении восьми месяцев нынешнего года. При этом в производстве калийных удобрений за период с января по август 2000-го был замечен спад по сравнению с аналогичным периодом 1999-го. Всего за восемь месяцев 2000 года в России произведено 8,338 млн тонн удобрений.

Особенностью украинской промышленности, производящей минеральные удобрения, является удаленность от сырьевой базы и близость к портам Черного моря.

В настоящий момент в структуре украинского производства минеральных удобрений доминируют азотные: карбамид, аммиачная селитра, сульфат аммония. Мощности по производству других видов удобрений незначительны или же не используются. В 2000 году из произведенных в Украине 1,554 млн тонн минеральных удобрений на долю азотных приходится 94%, фосфорных -- 5% и калийных -- 1%.

Как попасть на внешний рынок

С началом перехода к рыночной экономике и сокращением дотаций сельскому хозяйству со стороны государства внутреннее потребление удобрений как в России, так и в Украине сократилось до минимума. В результате вся промышленность минеральных удобрений стран бывшего Советского Союза переориентировалась на внешний рынок.

В начале 90-х годов благоприятная конъюнктура мирового рынка минеральных удобрений и сравнительно невысокая стоимость сырья и энергоресурсов позволяли предприятиям химической отрасли стран СНГ до некоторой степени компенсировать спад внутреннего потребления за счет роста экспортных поставок. При этом рост затрат на энергоносители и сырье при одновременном падении спроса на внешнем рынке (который был обусловлен вводом новых мощностей в ЮВА и на Ближнем Востоке), а также жесткая монетарная политика, проводимая в 1997--1998 годах, привели к тому, что российские и украинские производители стали испытывать серьезные проблемы на внешнем рынке.

В прошлом году ситуация несколько выровнялась: девальвация национальных валют и возобновившийся рост экономики азиатских и латиноамериканских стран благоприятно сказались на экспортных возможностях производителей удобрений из СНГ.

Таким образом, производители минеральных удобрений в России и Украине на данный момент решают различные проблемы. Для украинских предприятий основной проблемой стала высокая стоимость газа, который Украина покупает по цене, по-прежнему значительно превышающей внутрироссийскую цену. А многие российские предприятия вынуждены решать проблему своего географического положения, ограничивающего возможности их выхода на внешний рынок.

Так, например, ОАО «Тольяттиазот» разрабатывает план строительства своего терминала для перевалки жидких химических грузов на Черном море в районе мыса Железный Нос. Аммиак предполагается доставлять на терминал в железнодорожных цистернах.

А в Ленинградской области может быть построено сразу два терминала для перевалки калийных удобрений. В конце июля 2000 года городская администрация Петербурга одобрила проект строительства калийного терминала в морском порту. Сооружение терминала стоимостью 39 млн долларов частично финансирует один из двух крупнейших в стране производителей калийных удобрений -- «Уралкалий».

Проект предполагает строительство перегрузочного комплекса мощностью 5 млн тонн в год для перевалки удобрений (из них 2 млн тонн -- калийные) с железнодорожного транспорта на морской. В состав комплекса войдут: два причала, оснащенных судопогрузочными машинами и погрузочной галереей; железнодорожная станция и подъездные пути; крытые механизированные склады емкостью 10000 тонн и транспортная система. Весь этот комплекс должен окупиться через шесть лет.

Компания «Усть-Луга», ведущая строительство порта в Ленинградской области, намерена построить терминал аналогичного назначения и мощности. «Усть-Луга» рассчитывает на сотрудничество с другим производителем калийных удобрений -- компанией «Сильвинит». Компания «Усть-Луга» и «Сильвинит» уже подписали соглашение об участии в строительстве терминала по перегрузке минеральных удобрений с грузооборотом 6 млн тонн в год и проектной стоимостью 40 млн долларов.

Реализация этих проектов может сказаться на загрузке украинских портов, через которые идет значительная часть российского экспорта удобрений и аммиака.

Рост экспорта

В 1999 году доля экспорта азотных удобрений, произведенных в России, составила около 60%, фосфорных -- 88%, калийных -- около 90%. Доля российского экспорта на международном рынке удобрений составила 15%. Россия является самым крупным экспортером аммиака, карбамида и аммиачной селитры в мире.

На протяжении 2000 года наблюдается рост экспорта минеральных удобрений из России (за исключением калийных удобрений). Если в 1999 году в среднем российские компании экспортировали в месяц около 1,8 млн тонн минеральных удобрений и аммиака, то по итогам восьми месяцев 2000 года -- около 1,9 млн тонн ежемесячно.

Украинские компании в прошлом году отправили на экспорт более 6 млн 55 тыс. тонн минеральных удобрений и аммиака (ежемесячно -- около 504 тысяч тонн). Несмотря на резкое снижение производства в июле, по итогам семи месяцев 2000 года среднемесячный показатель экспорта украинских компаний составил 516 тысяч тонн.

Причем 50,5% из них приходится на карбамид, 20,7 % -- на аммиак, почти 15% -- на аммиачную селитру, немногим боле 5% -- на карбамидоаммиачные смеси и еще 4,5% -- на сульфат аммония. Самым экспортируемым из Украины не азотным удобрением являются ДАФ (около 2% от общей массы экспортных поставок) и суперфосфаты -- 1,2%.

Азотные удобрения и аммиак

Производство азотных удобрений в России в 1999 году составило 4,033 млн тонн в пересчете на 100% действующего вещества и продолжает расти. Рост обусловлен прежде всего востребованностью продукции на внешнем рынке. В настоящее время на долю карбамида приходится примерно 40% всего выпуска азотных удобрений (в 1990 году -- 29%), удельный вес аммиачной селитры составляет около 36%.

В Украине, как и в России, среди азотных удобрений наибольший объем производства приходится на карбамид, что объясняется его экспортной направленностью. В 1999 году на долю карбамида приходится более 61% всего выпуска азотных удобрений, удельный вес аммиачной селитры составляет почти 31%, сульфата аммония -- более 4,5% и карбамидоаммиачной смеси -- около 3%. 17 химических и коксохимических предприятий производят азотные удобрения в Украине. В 1999 году было произведено 3,015 млн тонн карбамида.

Азотные удобрения в России производятся более чем на 25 предприятиях. Кроме того, сульфат аммония производится некоторыми коксохимическими заводами. Крупнейшими производителями азотных удобрений в России являются ОАО «Акрон» (9,8% общего объема производства азотных удобрений по итогам 8 месяцев 2000 года), новомосковская АК «Азот» (9,2%), невинномысское ОАО «Азот» (8,8%), Кирово-Чепецкий химкомбинат (8%), березниковское АО «Азот» (7,3%), кемеровское ОАО «Азот» (6,8%), ОАО «Тольяттиазот» (5,2%), россошанское АО «Минудобрения» (4,9%). Перечисленные компании обеспечивают примерно 60% российского производства азотных удобрений.

В Украине лидерами по выпуску карбамида являются ОАО «Стирол» (Горловка) и ОАО «Днепроазот» (Днепродзержинск). В 1999 году эти два предприятия выпустили около 48% от общего производства карбамида.

Аммиачной селитры в 1999 году в целом по Украине было выпущено 1,516 млн тонн. Более 56% от общего производства этой продукции приходится на ОАО «Азот» (Черкассы) и ГПП объединение «Азот» (Северодонецк).

ОАО «Авдеевский КХЗ», ГГМК «Криворожсталь» и ОАО «Запорожкокс» обеспечили выпуск более чем 57% общеукраинского производства сульфата аммония. Всего же этой продукции в 1999 году было произведено 223,2 тыс. тонн.

Карбамидоаммиачную смесь в Украине выпускает лишь ОАО «Азот» (Черкассы), который произвел в 1999 году 146,3 тыс. тонн этой продукции.

Аммиак сегодня в России производится на 15 предприятиях. Еще два предприятия -- завод азотных удобрений, входящий в ОАО «АНХК», и чернореченский «Корунд», обладая мощностями по производству аммиака, в данный момент продукцию не производят. Безусловный лидер по производству аммиака в России -- ОАО «Тольяттиазот»: около 17% общего производства. Еще 11% приходится на мощности новомосковского «Азота». Примерно по 9% общероссийского производства обеспечивают новгородский «Акрон» и невинномысский «Азот». Почти по 8% -- Кирово-Чепецкий ХК и череповецкий «Азот».

В 1999 году около 90% произведенного в России карбамида, приблизительно половина выпущенной аммиачной селитры, треть произведенного сульфата аммония и 100% карбамидоаммиачной смеси было экспортировано. Экспорт аммиака насчитывал 28% выпущенной продукции. Всего экспортировано 2,6 млн тонн аммиака, 3,3 млн тонн карбамида, 2,6 млн тонн аммиачной селитры, 0,9 млн тонн сульфата аммония и приблизительно 0,8 млн тонн карбамидоаммиачной смеси.

За восемь месяцев 2000 года по сравнению с аналогичным периодом прошлого года экспорт аммиака вырос на 19,3%. Уровень экспортного предложения карбамида вырос на 16,8%, аммиачной селитры на 27%, сульфата аммония на 24% и карбамидоаммиачной смеси на 11%.

Среди российских экспортеров аммиака ведущим, благодаря доступу к аммиакопроводу «Тольятти -- Одесса», является «Тольяттиазот». Доля этого предприятия в российском экспорте составляет 45,5% от общего объема экспорта. Около 37% экспортного аммиака поставлялось в Северную Америку и 36% -- в Западную Европу.

Немногим менее половины украинского экспорта аммиака обеспечивает Одесский припортовый завод. Примерно по 16--17% приходится на «Стирол» и северодонецкий «Азот». Около 10 процентов экспорта аммиака приходится на черкасский «Азот» и почти 5% -- на «Днепроазот», ровенское предприятие экспортирует менее 2% украинского аммиака. Большая часть украинской продукции отправляется в Турцию и Испанию.

Основным регионом сбыта российского карбамида в 2000 году оставались страны Латинской Америки -- 62% общего объема экспорта карбамида, из которых Бразилия -- 46%. На азиатских потребителей приходится 15%, на ближневосточных -- 8,5%, из которых почти 98% -- на Турцию.

Наибольшие объемы карбамида из Украины экспортирует концерн «Стирол» -- более четверти общих объемов. Еще 20% обеспечивает Одесский припортовый завод. На долю «Днепроазота» приходится около 15%. Основной поток экспорта идет в Турцию, Италию и Бразилию.

Основными покупателями российской аммиачной селитры являются страны Ближнего Востока -- 25% общего объема экспорта (Турция и Сирия), Восточной Европы -- 15%, бывшие советские республики -- 13,6% и Азии --5,8%.

В Украине концерн «Стирол» является лидером по экспорту аммиачной селитры -- почти 40% экспортной продукции произведено на этом предприятии. На долю Северодонецка и Черкасс приходится соответственно 18,5% и 12%.

Основные потребители украинской продукции -- США, Испания, Турция, страны Западной Европы.

Экспорт карбамидоаммиачных смесей обеспечен за счет черкасского «Азота» и «Стирола». Экспорт этой продукции направлен, главным образом, в США.

Сульфат аммония из Украины экспортируют, кроме коксохимических заводов, черкасский «Азот» и «Сумыхимпром». Большая часть сульфата аммония адресована в Турцию и Египет.

В целом перспективы внешней торговли для российских и украинских производителей удобрений выглядят довольно неплохими. По оценкам российских производителей осенью 2000 года сложилась достаточно благоприятная конъюнктура на мировых рынках. Особенно это касается азотных удобрений и аммиака. Многие производители азотных удобрений надеются в 2001 году увеличить экспорт.

Для украинских предприятий перспективным выглядит межправительственное соглашение, которое заключено с Венгрией о специальных квотах на поставку аммиачной селитры украинскими предприятиями. Это может открыть для наших производителей рынок Центральной Европы при условии, что украинская сторона будет придерживаться оговоренного уровня цен и объемов поставок.

При этом осложняют ситуацию начинающиеся антидемпинговые процессы в Европе в отношении карбамида и аммиачной селитры из СНГ и ряда азиатских стран, что может закрыть надолго европейский рынок для наших предприятий.

К тому же некоторые российские производители опасаются, что с наступлением зимы станет ощущаться значительный дефицит газа и, как следствие, вырастут цены на энергоносители и производственные затраты. И российская продукция не сможет столь успешно конкурировать на внешнем рынке с продукцией из других стран.

Кроме того, вызывает обеспокоенность у наших предприятий положение с закупками удобрений Индией и агрессивная политика китайских компаний на азиатском рынке. Что касается традиционного для продукции из СНГ рынка Латинской Америки, то здесь нашим экспортерам придется, видимо, испытать достаточно жесткую конкуренцию со стороны ближневосточных и азиатских производителей.

Фосфорсодержащие удобрения

В украинском производстве доля фосфорных удобрений, как уже было сказано, составляет примерно 5%. Причем производство этих удобрений в Украине в этом году снизилось более чем в два раза.

Все основные украинские производители этой продукции снизили производство: «Ровноазот» -- на 52%, «Сумыхимпром» -- на 17%, Приднепровский химзавод -- на 73%.

Российская промышленность по производству фосфорных удобрений, базируясь на богатых месторождениях апатитов и фосфоритов, обеспечивает около 6,5% мирового производства и 14% мирового экспорта фосфорных удобрений.

В производстве фосфорных удобрений в России преобладают моноаммоний-фосфат и диаммоний-фосфат. Количество компаний, занимающихся выпуском фосфорных удобрений, значительно меньше (около 20), чем азотных предприятий, что объясняется тяготением этих производств к месторождениям основных видов сырья -- апатитов, фосфоритов.

В производстве фосфорных удобрений наиболее прочные позиции занимает АО «Аммофос», обеспечившее за восемь месяцев 2000 года более 31% российского выпуска фосфорных удобрений. Примерно равные доли производства приходятся на балаковские и воскресенские «Минеральные удобрения» -- соответственно 14% и 13%. Еще около 7% выпуска фосфорсодержащих удобрений приходится на новгородский «Акрон». Всего за восемь месяцев текущего года в России произведено 1,565 млн тонн фосфорных удобрений в пересчете на 100% питательного вещества. Этот показатель больше показателя за аналогичный период 1999 года на 15,4%.

В структуре российского экспорта на фосфорсодержащие удобрения приходится около 26%.

Около 90% российского диаммония-фосфата и моноаммония-фосфата поставляется на экспорт. Всего за восемь месяцев 2000 года из России экспортировано диаммония-фосфата 871 тыс. тонн, моноаммония-фосфата -- 1,292 млн тонн.

Основными российскими экспортерами диаммония-фосфата и моноаммония-фосфата являются ОАО «Аммофос», балаковские, мелеузские и воскресенские «Минудобрения».

Главными импортерами российского моноаммония-фосфата являются Западная Европа -- более 60% и страны Юго-Восточной Азии -- 26%.

Калийные удобрения

Украинское производство калийных удобрений в 2000 году полностью сосредоточено в Калуше. Роздольское и стебницкое предприятия выпуск продукции практически прекратили. Калушский калийный завод ОАО «Ориана» испытывает проблемы с обеспечением сырьем, поэтому не может в полном объеме удовлетворить потребности внутреннего рынка.

В России же находятся одни из самых богатых месторождений калийных солей в мире. Основной вид калийных удобрений -- хлорид калия. Почти 93% калийных удобрений в России выпускается двумя предприятиями -- ОАО «Уралкалий» и ОАО «Сильвинит». Среди российских производителей также стоит упомянуть россошанские «Минудобрения» и череповецкий «Аммофос». Всего за восемь месяцев в России произведено 2,739 млн тонн калийных удобрений в пересчете на 100% питательного вещества, что меньше, чем за тот же период 1999 года, на 3,74%.

За восемь месяцев 2000 года экспорт хлорида калия снизился до 2,9 млн тонн. Это ниже, чем за аналогичный период прошлого года, более чем на 11%. Что объясняется, на наш взгляд, не только конъюнктурой рынка, но и разногласиями между основными российскими экспортерами.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Санкт-Петербургский государственный
инженерно-экономический университет»

Кафедра экономики и менеджмента в нефтегазохимической комплексе

Контрольная работа по дисциплине

Выполнила Ерёмина Алёна

Санкт-Петербург 2016

  • Введение
  • 1. Производство минеральных удобрений
    • 1.1 Производство суперфосфата
    • 1.2 Производство аммиачной селитры
    • 1.3 Производство карбамида
  • 2. Проблемы, связанные с использованием минеральных удобрений
    • 2.1 Химическое загрязнение почв
    • 2.2 Загрязнение окружающей среды
    • 2.3 Накопление тяжелых металлов
  • 2.4 Выпадение кислотных дождей
  • 3. Пути достижения целей
  • 4. Охрана окружающей среды при производстве удобрений
  • 5. Мероприятия по достижению генеральной цели
  • Список литературы
  • Задание

Введение

Минеральными удобрениями называют соли, содержащие элементы, необходимые для питания растений и вносимые в почву для получения высоких и устойчивых урожаев. Минеральные удобрения являются одним из важнейших видов продукции химической промышленности. Рост численности населения выдвигает перед всеми странами мира одну и ту же проблему - умелое управление способностью природы воспроизводить жизненные ресурсы и прежде всего продовольственные. Задача расширенного воспроизводства продуктов питания уже давно решается применением в сельском хозяйстве минеральных удобрений. Научными прогнозами и перспективными планами предусматривается дальнейшее увеличение мирового выпуска минеральных и органоминеральных удобрений, удобрений с регулируемым сроком действия.

Производство минеральных удобрений - одна из важнейших подотраслей химической промышленности, его объем во всем мире составляет более 100млн. т в год. В наибольших количествах вырабатывают и потребляют соединения натрия, фосфора, калия, азота, алюминия, железа, меди, серы, хлора, фтора, хрома, бария и др.

1. Производство минеральных удобрений

1.1 Производство суперфосфата

Химическая промышленность выпускает простой и двойной суперфосфаты. Простой суперфосфат - самое распространенное фосфорное удобрение. Он представляет собой порошок (или гранулы) серого цвета, содержащий в основном монофосфат кальция Са(Н2РО4)2*Н2О и сульфат кальция СаSO4*0,5Н2О. В состав суперфосфата входят примеси: фосфаты железа и алюминия, кремнезем, а также фосфорная кислота. Сущность производства суперфосфата состоит в разложении природных фосфатов серной кислотой. Процесс получения суперфосфата при взаимодействии серной кислоты с кальцийфторапатитом является многофазным гетерогенным процессом, протекающим в основном в диффузионной области. Этот процесс можно условно разбить на два этапа. Первый этап - это диффузия серной кислоты к частицам апатита, сопровождаемая быстрой химической реакцией на поверхности частиц, которая идет до полного израсходования кислоты, и кристаллизация сульфата кальция:

Ca 5 F(PO 4) 3 + 5H 2 SO 4 +2,5H 2 O=5(CaSO 4 *0,5H 2 O)+H 3 PO 4 +HF+Q (а)

Второй этап - диффузия образовавшейся фосфорной кислоты в порах неразложившихся частиц апатита, сопровождаемая реакцией

Ca 5 F(PO 4) 3 +7H 3 PO 4 +5H 2 O=5Ca(H 3 PO 4) 2 *H 2 O+HF+Q (б)

Образующийся монокальцийфосфат находится сначала в растворе, при перенасыщении которого начинает кристаллизоваться. Реакция (а) начинается сразу же после смещения и заканчивается в реакционной суперфосфатной камере в течении 20-40 мин в период схватывания и затвердения суперфосфатной массы, которые происходят за счет сравнительно быстрой кристаллизации малорастворимого сульфата кальция и перекристаллизации полугидрата в ангидрит по уравнению реакции

2CaSO 4 *0,5H 2 O=2CaSO 4 +H 2 O

Последующая стадия процесса - созревание суперфосфата, т.е. образование и кристаллизация монокальцийфосфата, происходит медленно и заканчивается лишь на складе (дозревание) при вылеживание суперфосфата в течение 6-25сут. Малая скорость этой стадии объясняется замедленной диффузией фосфорной кислоты через образовавшуюся корку монокальцийфосфата, покрывающую зерна апатита, и крайне медленной кристаллизацией новой твердой фазы Са(Н 2 РО 4) 2 *Н 2 О.

Оптимальный режим в реакционной камере определяется не только кинетикой реакций и диффузией кислот, но и структурой образовавшихся кристаллов сульфата кальция, которая влияет на суммарную скорость процесса и качество суперфосфата. Ускорить диффузионные процессы и реакции (а) и (б) можно повышением начальной концентрации серной кислоты до оптимальной температуры.

Наиболее медленным процессом является дозревание. Ускорить дозревание можно охлаждением суперфосфатной массы и испарением из нее воды, что способствует кристаллизации монокальцийфосфата и повышает скорость реакции (б) вследствие увеличения концентрации Н 3 РО 4 в растворе. Для этого на складе перемешивают и распыляют суперфосфат. Содержание Р 2 О 5 в готовом суперфосфате примерно в два раза ниже, чем в исходном сырье, и составляет при переработке апатитов 19-20% Р 2 О 5.

Готовый суперфосфат содержит некоторое количество свободной фосфорной кислоты, увеличивающей его гигроскопичность. Для нейтрализации свободной кислоты суперфосфат смешивают нейтрализующими твердыми добавками или аммонизируют, т.е. обрабатывают газообразным аммиаком. Эти мероприятия улучшают физические свойства суперфосфата - уменьшают влажность, гигроскопичность, слеживаемость, а при аммонизации вводится еще один питательный элемент - азот.

Существуют периодические, полунепрерывные и непрерывные способы производства суперфосфата. В настоящее время большинство действующих заводов осуществлют непрерывный способ производства. Схема непрерывного способа производства суперфосфата приведена на рис. 1

Измельченный апатитовый концентрат (или фосфоритная мука) системой транспортеров, шнеков элеваторов передается со склада на автоматический весовой дозатор, из которого дозируется в смеситель непрерывного действия.

Серная кислота (75%-ная башенная H 2 SO 4) непрерывно разбавляется водой в дозаторе-смесителе до концентрации 68% H 2 SO 4 , контролируемой концентратомером, и подается в смеситель, в котором происходит механическое смешивание фосфатного сырья с серной кислотой. Образующаяся пульпа из смесителя передается в реакционную суперфосфатную камеру непрерывного действия, где происходит образование суперфосфата (схватывание и затвердевание пульпы в начальный период созревания суперфосфатной массы). Из суперфосфатной камеры измельченный суперфосфат подкамерным конвейером передается в отделение дообработки - склад суперфосфата, по которому равномерно распределяется разбрасывателем. Для ускорения дозревания суперфосфата его перемешивают на складе грейферным краном. Для улучшения физических свойств суперфосфата его гранулируют во вращающихся барабанах-грануляторах. В грануляторах порошкообразный суперфосфат увлажняется водой, подаваемой внутрь барабана форсунками, и «закатывается» в гранулы различных размеров, которые затем сушат, рассеивают на фракции и тарируют в бумажные мешки.

Основным аппаратом суперфосфатного производства служит суперфосфатная камера. Питание ее пульпой производится из смесителя, укрепленного непосредственно над крышкой камеры. Для непрерывного питания суперфосфатных камер применяются шнековые смесители и камерные смесители с механическим перемешиванием.

Недостатком простого суперфосфата является сравнительно небольшое содержание питательного элемента - не более 20% Р 2 О 5 из апатитового концентрата и не более 15% Р 2 О 5 из фосфоритов. Более концентрированные фосфорные удобрения можно получить при разложении фосфатной породы фосфорной кислоты.

1.2 Производство аммиачной селитры

Аммиачная селитра - безбалластное удобрение, содержащее 35% азота в аммиачной и нитратной форме, благодаря чему она применяется на любых почвах и для любых культур. Однако это удобрения обладает неблагоприятными для его хранения и применения физическими свойствами. Кристаллы и гранулы аммиачной селитры расплываются на воздухе или слеживаются в крупные агрегаты в результате их гигроскопичности и хорошей растворимости в воде. Кроме того при изменении температуры и влажности воздуха во время хранения аммиачной селитры могут происходить полиморфные превращения. Для подавления полиморфных превращений и повышения прочности гранул аммиачной селитры применяют добавки, вводимые в процессе ее изготовления, - фосфаты и сульфаты аммония, борную кислоту, нитрат магния и др. Взрывоопасность аммиачной селитры осложняет ее производство, хранение и транспортировку.

Аммиачную селитру производят на заводах, вырабатывающих синтетический аммиак и азотную кислоту. Производственный процесс складывается из стадий нейтрализации слабой азотной кислоты газообразным аммиаком, упарки полученного раствора и гранулирования аммиачной селитры. Стадия нейтрализации основана на реакции

NH 3 +HNO 3 =NH 4 NO 3 +148, 6 кДж

Этот хемосорбционный процесс, при котором поглощение газа жидкостью сопровождается быстрой химической реакцией, идет в диффузионной области и сильно экзотермичен. Теплота нейтрализации рационально используется для испарения воды из растворов нитрата аммония. Применяя азотную кислоту высокой концентрации и подогревая исходные реагенты, можно непосредственно получить плав аммиачной селитры (конценрацией выше 95-96% NH 4 NO 3) без применения выпаривания.

Наиболее распространены схемы с неполным упариванием раствора аммиачной селитры за счет теплоты нейтрализации (рис. 2).

Основная масса воды упаривается в химическом реакторе -нейтрализаторе ИТН (использование теплоты нейтрализации). Этот реактор - цилиндрический сосуд из нержавеющей стали, внутри которого находится другой цилиндр, куда непосредственно вводится аммиак и азотная кислота. Внутренний цилиндр служит нейтрализационной частью реактора (зона химической реакции), а кольцевое пространство между внутренним цилиндром и корпусом реактора - испарительной частью. Образовавшийся раствор аммиачной селитра поступает из внутреннего цилиндра в испарительную часть реактора, где испарение воды происходит за счет теплообмена между нейтрализационной и испарительной зонами через стенку внутреннего цилиндра. Образовавшийся соковый пар отводится из нейтрализатора ИТН и используется затем как греющий агент.

Сульфатно-фосфатная добавка дозируется в азотную кислоту в виде концентрированных серной и фосфорной кислот, которые нейтрализуются вместе с азотной аммиаком в нейтрализаторе ИТН. При нейтрализации исходной азотной кислоты 58%-ный раствор аммиачной селитры на выходе из ИТН содержит 92-93% NH 4 NO 3 ; этот раствор направляется в донейтрализатор, в который подается газообразный аммиак с таким расчетом, чтобы раствор содержал избыток аммиака (около 1 г/дм 3 своб. NH 3), что обеспечивает безопасность дальнейшей работы с плавом NH 4 NO 3 . Донейтрализованный раствор концентрируют в комбинированном тарельчатом трубчатом выпарном аппарате с получением плава, содержащего 99,7-99,8% NH 4 NO 3 . Для гранулирования высококонцентрированной аммиачной селитры плав погруженными насосами перекачивается наверх грануляционной башни высотой 50-55м. Гранулирование производится разбрызгиванием плава с помощью акустических виброгрануляторов ячеечного типа, обеспечивающих однородный гранулометрический состав продукта. Охлаждение гранул производится воздухом в холодильнике кипящего слоя, состоящем из нескольких последовательных ступеней охлаждения. Охлажденные гранулы опрыскиваются ПАВ в барабане с форсунками и передаются на упаковку.

Ввиду недостатков аммиачной селитры целесообразно изготовление на ее основе сложных и смешанных удобрений. Смешением аммиачной селитры с известняком, сульфатом аммония получают известково-аммиачную селитру, сульфатнитрат аммония и др. Нитрофоску можно получить сплавлением NH 4 NO 3 с солями фосфора и калия.

1.3 Производство карбамида

Карбамид (мочевина) среди азотных удобрений занимает второе место по объему производства после аммиачной селитры. Рост производства карбамида обусловлен широкой сферой его применения в сельском хозяйстве. Он обладает большой устойчивостью к выщелачиванию по сравнению с другими азотными удобрениями, т.е. менее подвержен вымыванию из почвы, менее гигроскопичен, может применяться не только как удобрения, но и в качестве добавки к корму крупного рогатого скота. Карбамид, кроме того, широко используется для получения сложных удобрений, удобрений с регулируемым сроком действия, а также для поучения пластмасс, клеев, лаков и покрытий.

Карбамид CO(NH 2) 2 - белое кристаллическое вещество, содержащее 46.6% азота. Его получение основано на реакции взаимодействия аммиака с диоксидом углерода

загрязнение почва удобрение металл

2NH 3 +CO 2 =CO(NH 2) 2 +H 2 O H=-110,1 кДж (1)

Таким образом, сырьем для производства карбамида служат аммиак т диоксид углерода, получаемый в качестве побочного продукта при производстве технологического газа для синтеза аммиака. Поэтому производство карбамида на химических заводах обычно комбинируют с производством аммиака.

Реакция (1) - суммарная; она протекает в две стадии. На первой стадии происходит синтез карбамата:

2NH 3 +CO 2 =NH 2 COONH 4 H=-125,6 кДж (2)

На второй стадии протекает эндотермический процесс отщепления воды от молекул карбамата, в результате которого и происходит образование карбамида:

NH 2 COONH 4 = CO(NH 2) 2 + Н 2 О Н=15.5 (3)

Реакция образования карбамата аммония - обратимая экзотермическмя, протекает с уменьшением объема. Для смещения равновесия в сторону продукта ее необходимо проводить при повышенном давлении. Для того, чтобы процесс протекал с достаточно высокой скоростью, необходимы и повешенные температуры. Увеличение давления компенсирует отрицательное влияние высоких температур на смещение равновесия реакции в обратную сторону. На практике синтез карбамида проводят при температурах 150-190 С и давление 15-20 МПа. В этих условиях реакция протекает с высокой скоростью и до конца.

Разложение карбомата аммония - обратимая эндотермическая реакция, интенсивно протекающая в жидкой фазе. Чтобы в реакторе не происходило кристаллизации твердых продуктов, процесс необходимо вести при температуре ниже 98С (эвтектическая точка для системы CO(NH 2) 2 - NH 2 COONH 4).

Более высокие температуры смещают равновесие реакции вправо и повышают ее скорость. Максимальная степень превращения карбамата в карбамид достигается при 220С. Для смещения равновесия этой реакции вводят также избыток аммиака, который связывая реакционную воду, удаляет ее из сферы реакции. Однако добиться полного превращения карбамата в карбамид все же не удается. Реакционная смесь по мимо продуктов реакции (карбамида и воды) содержит также карбамат аммония и продукты его разложения - аммиак и СО 2 .

2. Проблемы, связанные с использованием минеральных удобрений

2.1 Химическое загрязнение почв

Большой ущерб почвам наносит их загрязнение чужеродными химическими веществами. Для борьбы с вредителями сельскохозяйственных растений и сорняками широко применяют разнообразные ядохимикаты: пестициды, инсектициды, гербициды, дефолианты. Установлено, что устойчивые пестициды, широко применяемые для защиты растений от вредителей, болезней и сорняков и сохраняющие до 1/3 урожая, отрицательно влияют на численность и активность почвенной фауны и микроорганизмов. Пестициды и продукты их естественных превращений вредны для личинок полезных животных: насекомых - опылителей и энтомофагов, насекомоядных, хищных, промысловых птиц и млекопитающих.

Остатки пестицидов вместе с собранным урожаем и водой могут попадать в пищу и причинять вред здоровью человека. Решение проблемы применения пестицидов в сельском хозяйстве заключается в строгой дозировке и умелом их использовании. Важно создавать препараты с малым периодом жизни, которые сравнительно быстро разрушаются; продукты их естественной переработки должны быть неядовитыми. В последние годы для борьбы с сельскохозяйственными вредителями стали применять новые быстро разлагающиеся препараты, однако проблема получения безопасных для полезных животных и человека ядохимикатов требует дальнейших разработок.

Другая проблема - правильное использование химических удобрений. Неудачный подбор минеральных удобрений может вызывать избыточное подщелачивание или подкисление почвы. Для лесных кислых почв необходимы подщелачивающие удобрения (натриевая и аммонийная селитры), известкование почвы. На карбонатных почвах и в аридных районах нужны подкисляющие удобрения: суперфосфат, сульфат аммония. Особенно осторожно следует применять минеральные удобрения на почвах, испытывающих засоление.

Загрязнения охватывают огромные территории и проявляются даже в отдаленных районах земного шара. В наиболее населенных и промышленно развитых районах поступление многих химических элементов в почву превышает их естественное содержание в гумусовом слое в десятки тысяч раз. Попадают они в почву с золой и доменным дымом. Избыточное количество марганца, хрома, меди, кобальта, никеля, свинца и других элементов, содержащееся в почвах, окружающих заводы, снижает урожайность зерновых на 20-30%, бобовых - на 40, картофеля - на 47, кормовой и сахарной свеклы - на 35%. Загрязнение гумусового слоя пылью тяжелых металлов, их солей при попадании в почву соединений серной кислоты действует угнетающе на развитие растений, вызывает гибель их корневой системы, снижает урожай.

При загрязнении почвы промышленными радиоактивными отбросами, радиоактивными изотопами, поступающими из других источников, возможно значительное повышение радиоактивного фона. В этом случае радиоактивное загрязнение почвы передается, как указывалось выше, далее по так называемой пищевой цепочке через различные звенья биосферы и пищевые продукты - человеку. Наибольшую опасность представляют строниций и цезий, которые, попадая в организм коров, выделяются затем с молоком.

2.2 Загрязнение окружающей среды

В связи с ростом объема производства минеральных удобрений во всем мире все чаще ставится вопрос, не причиняют ли они ущерба плодородию почвы, окружающей природе. Как показывают многочисленные опыты, очень длительное применение минеральных удобрений не только не снижает плодородия почвы, но способствует накоплению остатков фосфора и калия, а также интенсивности микробиологической деятельности его росту. Физиологически кислые муки при длительном применении могут значительно повышать кислотность почв. Длительное использование минеральных удобрений приводит также к нежелательному накоплению в почве анионных (хлор, фтор, серная кислота) и катионных остатков.

Ущерб окружающей природе минеральные удобрения наносят только при несоблюдении научно обоснованных принципов и приемов работы с ними (производство, транспортировка, хранение и применение). В таких случаях происходит разложение химикатов, выделение нежелательных продуктов в атмосферу, вымывание их из почвы, минерализация подземных и поверхностных вод. Попадая в реки и озера, минеральные удобрения резко нарушают условия развития водных организмов.

При нерациональном применении удобрений окружающая среда загрязняется азотом, фосфором и калием.

При многолетнем применении больших доз фосфорных удобрений в почве могут накапливаться содержащиеся в них в небольших количествах тяжелые металлы: уран, торий и их дочерние продукты радиоактивного распада. Во избежание возможности вовлечения в биологический круговорот токсических и радиоактивных элементов применение фосфорных удобрений должно находиться под постоянным контролем агрохимиков.

После снятия урожая почва нуждается в восстановлении плодородия. Но чрезмерное использование удобрений приносит вред. Оказалось, что при увеличении дозы удобрений урожайность сначала быстро растет, но затем прирост становится всем меньше и наступает момент, когда дальнейшее увеличение дозы удобрений не дает никакого прироста урожайности, а в избыточной дозе минеральные вещества могут оказаться для растений токсичными. Этот так называемый закон предельной урожайности, как считает французский эколог Ф. Рамад, неизвестен большинству людей, занимающихся сельским хозяйством, а производители удобрений о нем умышленно умалчивают. Лишними оказываются питательные вещества не только сверх этой предельной дозы, но и значительная часть тех, которые вносятся сверх некоторой оптимальной дозы. Ведь тот факт, что прирост урожайности резко уменьшается, говорит о том, что растения не усваивают излишков питательных веществ. Приносит вред и несоблюдение правильного соотношения между азотными, фосфорными и калийными удобрениями. Например, оптимальная доза азотных удобрений не достигнет желаемого эффекта, и большое количество внесенного азота окажется лишним, если будет внесено фосфорных удобрений меньше, чем требуется.

Избыток удобрений выщелачивается и смывается с полей талыми и дождевыми водами (и оказывается в водоемах суши и в море). Излишние азотные удобрения, а они по массе преобладают по сравнению с калийными и фосфорными, в почве распадаются, и газообразный азот выделяется в атмосферу, а органическое вещество гумуса, составляющего основу плодородия почвы, разлагается на углекислый газ и воду. Поскольку органическое вещество не возвращается в почву, гумус истощается и почвы деградируют. Особенно сильно страдают крупные зерновые хозяйства, не имеющие отходов животноводства (например, на бывшей целине Казахстана, Предуралья и Западной Сибири).

Кроме нарушения структуры и обеднения почв, избыток нитратов и фосфатов приводит к серьезному ухудшению качества продуктов питания людей. Часть нитратов и фосфатов, особенно когда имеется их избыток, включается в ткани растений в виде свободных ионов нитратов и фосфатов. Некоторые растения (например, шпинат, салат) способны накапливать нитраты в больших количествах. Съев 250 граммов салата, выращенного на переудобренной грядке, можно получить дозу нитратов, эквивалентную 0,7 грамма аммиачной селитры. В кишечном тракте нитраты превращаются в ядовитые нитриты, которые в дальнейшем могут образовать нитрозамины - вещества, обладающие сильными канцерогенными свойствами. Кроме того, в крови нитриты окисляют гемоглобин и лишают его способности связывать кислород, необходимый для живой ткани. В результате возникает особый вид малокровия - метгемоглобинемия.

В действии химических удобрений хватает минусов. По большей части они возникают в силу поликристаллического характера многих минеральных удобрений, их ускоренного растворения и избирательного выщелачивания грунтовыми водами.

Начнет, пожалуй, с самого простого - огромной нагрузки, которая приходится на долю растений в момент внесения удобрений и отрицательно воздействует на корневую систему. Следующий пункт в отрицательном списке - загрязнение водоемов, которое возникает как следствие перекачивания части внесенных минеральных удобрений через грунтовые воды (а избежать этого при нынешний технологиях практически невозможно). Третий минус химудобрений в том, что в период вегетации растений используется лишь небольшая часть полезных компонентов этих пищевых добавок, из-за чего ежегодно приходится повышать вносимую в почву дозу, создавая избыток удобрений.

При этом нельзя забывать еще и о том, что технология производства практически любой разновидности минеральных удобрений связана с определенными проблемами, которые иногда решаются довольно сложно. В качестве примера приведем те трудности, с которыми приходится сталкиваться «средним» производителям фосфатов. Наиболее известны аммофоз, суперфосфат и некоторые другие разновидности удобрений, получаемые в результате переработки природных фосфатов. В качестве сырья для получения этих минеральных удобрений используются апатиты и фосфориты. И те, и другие имеют очень высокую температуру плавления -- 1700° С и обладают высокой химической устойчивостью. В результате перед производителями в полный рост встает «высокотемпературная» проблема: все сложности химической переработки по высокотемпературным технологиям, связанным с многоступенчатым получением сначала элементарного фосфора, затем его оксидов, фосфорной кислоты и, наконец, солей метафосфатов, которые являются быстрорастворимыми.

2.3 Накопление тяжелых металлов

В природе в результате антропогенного воздействия происходит накопление тяжелых металлов, поступающих из застывшей земной магмы, обычно закрытой безвредными поверхностными осадками. В результате рудных разработок (во многих странах мира) образовались области загрязнения площадью от нескольких квадратных метров до гектаров, где преобладают почвы с большим содержанием тяжелых металлов, которые токсичны для сельскохозяйственных культур. Их высокая концентрация в почвенном растворе полностью приостанавливает рост корней и вызывает гибель растений. Тяжелые металлы неподвижны в почве, уровни их в рудниковых пустырях составляют около 1 %. Поэтому в этих областях крайне неблагоприятные условия для возделывания сельскохозяйственных культур.

2.4 Выпадение кислотных дождей

Выпадение кислотных дождей, обычное в районах загрязнения среды тяжелыми металлами, повышает их подвижность и создает угрозу попадания в грунтовые воды, а также и увеличивает вероятность поступления избытка этих металлов в растения.

Многочисленные прогнозы свидетельствуют о дальнейшем увеличении в ближайшее время содержания в почвах таких металлов, как ртуть, мышьяк, кадмий, свинец, молибден, медь, ванадий, цинк. Это вызывает необходимость внимательного изучения действия избыточного содержания данных элементов в почве и растениях, а также разработки предупредительных мер.

С минеральным питанием растений в условиях недостатка или избытка химических элементов в почве связано много важных эколого-физиологических проблем. В частности, с ростом городов и развитием промышленности усиливается влияние на сельскохозяйственные культуры повышенных концентраций в почве тяжелых металлов, в результате чего увеличивается количество нарушенных экосистем и угнетается развитие зональной растительности. В условиях неблагоприятного минерального питания особенно четко прослеживаются присущие сельскохозяйственным культурам различия в аккумуляции химических элементов. Для изучения процесса химического круговорота металлов, а также оценки защитной роли растений необходимы объективные данные о накоплении в них металлов в условиях различных экосистем.

Степень поглощения элементов из загрязненных почв у разных растений неодинакова. Наибольшей способностью к накоплению тяжелых металлов обладают овощные, меньшей -- технические и зерновые культуры. Капустные, имеющие более мощную корневую систему, поглощают больше металлов, чем зерновые, а у двудольных в целом способность к накоплению выше, чем у однодольных. Такие элементы, как никель и кадмий, легко поступают в растения и концентрируются в вегетативной массе. Ртуть же в высших растениях обычно содержится в незначительных количествах, наибольшее содержание этого тяжелого металла отмечено в грибах, которые также способны накапливать и кадмий.

3. Пути достижения целей

Перед человечеством стоит задача значительного увеличения производства продовольствия, энергии, строительства жилья. Видимо, и в будущем главным средством повышения урожайности всех сельскохозяйственных культур останутся удобрения, поэтому с каждым годом доля их в круговороте питательных веществ будет увеличиваться.

За счет применения промышленных минеральных удобрений обеспечивается не менее 50 % прироста урожая, а по некоторым культурам (хлопчатник на орошаемых землях, чай) -- около 80 %.

Полный отказ от использования минеральных удобрений, который иногда предлагается в качестве одного из возможных путей развития сельского хозяйства, приведет к катастрофическому сокращению производства продовольствия. Поэтому единственно правильное решение данной проблемы -- это не отказ от применения, а коренное улучшение технологии использования минеральных удобрений, внесение их в оптимальных дозах и соотношениях, правильное хранение. При неравномерном их внесении одни растения получают избыточное, а другие -- недостаточное количество питательных веществ, что приводит к неодинаковым темпам развития и созревания растений, снижению урожая и качества продукции, причем чем концентрированнее удобрение, тем выше потери урожая.
Наряду с основными элементами питания в минеральных удобрениях часто присутствуют различные примеси в виде солей тяжелых металлов, органических соединений, радиоактивных веществ. Сырье для получения минеральных удобрений -- фосфориты, апатиты, сырые калийные соли, как правило, содержит значительное количество примесей -- от 10 в -5 степени до 5 % и более. Из токсичных примесей могут присутствовать мышьяк, кадмий, свинец, фтор, селен, стронций, которые должны рассматриваться как потенциальные источники загрязнения окружающей среды и строго учитываться при внесении в почву минеральных удобрений.
К критической группе веществ, накопление которых ведет к стрессу окружающей среды, относятся из тяжелых металлов ртуть, свинец, кадмий, мышьяк и др. Среди них наиболее токсичны первые три элемента и ряд их соединений.

4. Охрана окружающей среды при производстве удобрений

При производстве фосфорных удобрений велика опасность загрязнения атмосферы фтористыми газами. Улавливание соединений фтора важно не только с точки зрения охраны окружающей среды, но также и потому, что фтор является ценным сырьем для получения фреонов, фторопластов, фторкаучуков и т.д. Соединения фтора могут попасть в сточные воды на стадиях промывки удобрений, газоочистки. Целесообразно для уменьшения количества таких сточных вод создавать в процессах замкнутые водооборотные циклы. Для очистки сточных вод от фтористых соединений могут быть применены методы ионного обмена, осаждения с гидроксидами железа и алюминия, сорбции на оксиде алюминия и др.Сточные воды производства азотных удобрений, содержащие аммиачную селитру и карбамид, направляют на биологическую очистку, предварительно смешивая их с другими сточными водами в таких соотношениях, чтобы концентрация карбамида не превышала 700мг/л, а аммиака - 65-70мг/л.Важной задачей в производстве минеральных удобрений является очистка газов от пыли. Особенно велика возможность загрязнения атмосферы пылью удобрений на стадии грануляции. Поэтому газ, выходящий из грануляционных башен, обязательно подвергается пылеочистке сухими и мокрыми методами.

5. Мероприятия по достижению генеральной цели

Развитие производства, расширение ассортимента и широкое применение пестицидов повышает необходимость борьбы с загрязнением ими окружающей среды. Остатки пестицидов обнаруживаются в почве, воде, воздухе, в органах млекопитающих, птиц, рыб.

Наличие остатков пестицидов в сельскохозяйственных культурах контролируется Управлением по пищевым продуктам и лекарственным препаратам, Министерство сельского хозяйства следит за наличием остатков пестицидов в мясных продуктах. Повышение требований к применяемым препаратам отразилось на ассортименте используемых пестицидов. Например, исключены персистентные препараты, накапливающиеся в окружающей среде; прежде всего это относится к ДДТ. Опасность накопления пестицидов в окружающей среде вызывает необходимость разработки новых малотоксичных препаратов, быстро разрушающихся в ней и малотоксичных для теплокровных организмов и рыб. Поиски новых пестицидов направлены на выявление соединений, обладающих высокой активностью в очень небольших дозах и мало влияющих на окружающую среду. Усовершенствования технологии внесения минеральных удобрений в почву устраняет отдельные случаи нежелательного проникновения в грунтовые воды и в водоемы компонентов минеральных удобрений. Следует отмстить, что минеральные удобрения в ряде случаев служат косвенными факторами улучшения, очищения среды. Улучшая развитие растений, удобрения способствуют очищению атмосферы от ряда вредных соединений.

Список литературы

1. А.М. Кутепов и др.

Общая химическая технология: Учеб. для вузов/А.М. Кутепов,

Т.И. Бондарева, М.Г. Беренгартен.- 3-е изд., перераб. - М.: ИКЦ «Академкнига». 2003. - 528с.

2. И.П. Мухленов, А.Я. Авербух, Д.А Кузнецов, Е.С. Тумаркина,

И.Э. Фурмер.

Общая химическая технология: Учеб. для химико-техн. спец. вузов.

В 2х томах. Т.2. Важнейшие химические производства/ И.П. Мухленов, А.Я.

Кузнецов и др.; Под ред. И.П. Мухленова. - 4-е изд., перераб. и доп. - М.: «Высш. шк.», 1984.-263 с., ил.

3. Бесков В. С.

Общая химическая технология: Учебник для вузов. - М.: ИКЦ «Академкнига», 2005. -452с.: ил.

Задание

Предприятие “РОП” разработало новый товар. Существует определенная вероятность того, что для него существует рынок сбыта на ближайший год. Наличие в производственном процессе высокотемпературных реакций повышает его стоимость до 2,5 млн. рублей. Для организации производственного процесса требуется один год, однако существует лишь 55-процентная вероятность того, что будет обеспечена должная технологическая безопасность процесса. Таким образом возникает вопрос о разработке автоматической контролирующей системы (АКС), которая и будет обеспечивать безопасность высокотемпературных реакций. Исследования по АКС продолжатся 1 год и стоят 1 млн. рублей, но вероятность получения требуемой АКС - 0,75.

Разработку АКС можно начать немедленно, либо подождать год до выявления технологической безопасности процесса. Если разработку АКС начать немедленно, а производственный процесс окажется безопасным, то АКС окажется бесполезной и предприятие понесет убытки в размере 1 млн. рублей. Если процесс разработки АКС отложить на один год, а производственный процесс не будет соответствовать установленным стандартам технологической безопасности, то выпуск товара отодвигается на 1 год, до окончания исследований.

Если работа над АКС окажется безуспешной, то работы по проекту следует прекратить, так как альтернативные варианты выпуска товара отсутствуют.

Если же продажа нового товара начинается в течение года, то прибыль составит 10 млн. рублей (без амортизации, в т.ч. на АКС). Если выпуск отложить на 1 год, то прибыль составит 8,5 млн. рублей, т.к. могут появиться конкуренты.

Для выбора решения построить дерево решения.

Наиболее распространенный способ использования вероятностей при принятии решений - это вычисление математического ожидания. Оно рассчитывается для каждого решения (варианта) либо для доходов, либо для возможных потерь. Выбирается решение либо с наибольшим ожидаемым доходом, либо с наименьшими возможными потерями.

Разработка АКС сегодня:

М 1 = 0,75 * 10 = 7,5

Разработка АКС через год:

М 1 = 0,55 * 8,5 = 4,675

Итак, максимальное значение ожидаемого выигрыша 7,5 соответствует варианту разработка АКС сегодня.

Размещено на Allbest.ru

...

Подобные документы

    АО "ФосАгро-Череповец" как один из мировых лидеров по производству фосфорсодержащих удобрений. Знакомство с этапами проектирования ленточного конвейера производительностью 21т/ч склада готовой продукции участка №1 производства минеральных удобрений.

    дипломная работа , добавлен 19.02.2017

    Описания грануляторов для гранулирования и смешивания сыпучих материалов, увлажненных порошков и паст. Производство комплексных удобрений на основе аммиачной селитры и карбамида. Упрочнение связей между частицами сушкой, охлаждением и полимеризацией.

    курсовая работа , добавлен 11.03.2015

    Производство фосфорной кислоты, фосфорных и комплексных удобрений и технических фосфатов. Применение фосфорных удобрений, химический состав. Вынос питательных веществ урожаем основных культур. Внесение в почву удобрений для оптимизации питания растений.

    контрольная работа , добавлен 11.05.2009

    Виды и характеристика удобрений из отработанной серной кислоты. Эффективность азотных удобрений и пути ее повышения. Особенности фосфорных удобрений. Удобрение из осадков сточных вод. Процесс выделения алюминия и других металлов из зольной пыли.

    курсовая работа , добавлен 11.10.2010

    Строение и свойства топливных шлаков. Агломерированные шлаки и золы. Способы механизированного получения шлаковой пемзы. Производство удобрений из шлаков. Способы получение комплексных удобрений. Основные недостатки смесей из пористых материалов.

    реферат , добавлен 14.10.2011

    Физико-химические свойства аммиачной селитры. Основные стадии производства аммиачной селитры из аммиака и азотной кислоты. Установки нейтрализации, работающие при атмосферном давлении и работающие при разрежении. Утилизация и обезвреживание отходов.

    курсовая работа , добавлен 31.03.2014

    Изучение принципов стандартизации продукции, деятельности по установлению правил и характеристик в целях их добровольного многократного использования. Анализ защиты интересов потребителей и государства по вопросам качества продукции, процессов и услуг.

    реферат , добавлен 16.02.2012

    Использование угля в качестве технологического сырья для производства минеральных удобрений и пластмасс. Научные методы разработки месторождений с минимальными затратами живого и овеществленного труда при безусловной безопасности ведения горных работ.

    курсовая работа , добавлен 05.04.2009

    Автоматизация производства гранулированной аммиачной селитры. Контуры стабилизации давления в линии подачи сокового пара и регулирования температуры конденсата пара из барометрического конденсатора. Контроль давления в линии отвода к вакуум-насосу.

    курсовая работа , добавлен 09.01.2014

    Характеристика выпускаемой продукции, исходного сырья и материалов для производства. Технологический процесс получения аммиачной селитры. Нейтрализация азотной кислоты газообразным аммиаком и выпаривание до состояния высококонцентрированного плава.

Химики, выпускающие минеральные удобрения, вносят значительный вклад в решение глобальной проблемы обеспечения населения Земли продовольствием. Российские производители минеральных удобрений активно участвуют в мировом интеграционном процессе, ежегодно поставляя в различные страны мира миллионы тонн азотных, фосфорных и калийных туков.

В 2015 г. объем экспортных поставок минеральных удобрений составил 16 млн. т, при этом доля России была на уровне: на рынке азотных удобрений - 5,2%, фосфорных удобрений - 6,3%, калийных удобрений - 24,1%.

В данной статье представлены основные показатели развития мирового рынка минеральных удобрений в 2015/16 гг. и оценка международной организации IFA его сбалансированности в среднесрочной перспективе до 2020 г.

Мировое потребление удобрений в 2015/16 гг. составило 181 млн. т (п.в.), т.е. из-за общеэкономического спада и засухи в некоторых районах мира (в Южной и Юго-Восточной Азии, Латинской Америке и Африке) снизилось на 1%. Тем не менее оценка рынка специалистами международной организации IFA в 2016/17 гг. выглядит достаточно оптимистично: ожидается прирост спроса в 2,9% (табл. 1). Основанием для оптимизма являются некоторое выправление экономической ситуации и более благоприятные погодные условия.

Таблица 1. Потребление удобрений в мире, тыс. т (п.в.)

Всего

Темп прироста

Темп прироста

2016/17 (оценка)

Темп прироста

Источник: Fertilizer Outlook 2016- 2020 , IFA.

В среднесрочной перспективе, до 2020 г., рынок минеральных удобрений покажет умеренный прирост и при загрузке мощностей на 80% достигнет 199 млн. т (п.в.) (табл. 2), или 270 млн. т в физическом объеме. За период 2016-2020 гг. инвестиции в отрасль составят 130 млрд. долл., будет введено более 150 новых мощностей, т.е. мировая мощность возрастет более чем на 150 млн. т.

Таблица 2 . Среднесрочный прогноз развития производства минеральных удобрений

в мире, тыс. т (п.в.)

Всего

2020/21 (прогноз)

Темп прироста

Источник: Fertilizer Outlook 2015-2019, IFA.

Основной прирост спроса на удобрения произойдет в Африке (3,6%), Южной Азии (2,9%), Латинской Америке (2,8%), прежде всего - в Бразилии и Аргентине.

Мощности по производству аммиака к 2020 г. возрастут на 10% относительно 2010 г. - до 230 млн. т NH 3 . Основные мощности будут введены в Китае, Индонезии, США, Алжире, Египте и Нигерии. Прирост мощностей по производству аммиака определяется расширением производственной базы по выпуску карбамида, на который приходится 55% рынка азотных удобрений.

В течение последующих пяти лет 97% запланированных к вводу мощностей по выпуску аммиака будут работать на природном газе, хотя в Китае, несмотря на рационализацию производства, 78% мощностей по-прежнему будут использовать уголь (в настоящее время на этом сырье работает 82% аммиачных установок).

Глобальная мощность по впуску карбамида за период 2015- 2020 гг. возрастет на 10% - до 229 млн. т. Примерно 35% новых проектов будет реализовано в Восточной Азии, 18% - в Африке и 15% - в Северной Америке. Всего ожидается ввод 60 новых проектов по выпуску карбамида, из них 20 будут введены в Китае.

Спрос на карбамид в 2020 г. оценивается на уровне 208 млн. т, т.е. будет ежегодно возрастать на 2,5%, причем прирост спроса со стороны промышленности будет более чем в четыре раза превышать прирост спроса со стороны сектора удобрений. Основной спрос на карбамид промышленного назначения ожидается в Китае и Европе, на карбамид-удобрение - в Южно-Азиатском регионе.

При прогнозируемых параметрах развития мирового рынка карбамида загрузка мощностей в целом составит 90%, т.е. рынок будет сбалансированным.

На рынке фосфатного сырья ожидается прирост предложения на 11% - до 250 млн. т, при этом 80% прироста объемом 35 млн. т произойдет за счет расширения производственной базы в Марокко, Саудовской Аравии, Иордании и Китае.

Глобальная мощность по выпуску фосфорной кислоты за период 2015- 2020 гг. возрастет на 13% - до 65,3 млн. т за счет ввода 30 новых производств, причем ¾ из них - в Китае. Кроме того, новые проекты будут реализованы в Марокко, Саудовской Аравии и Бразилии. Спрос на фосфорную кислоту до 2020 г. будет расти на 2,5% в год.

В период 2015- 2020 гг. ожидается ввод 30 новых мощностей по выпуску фосфорных удобрений , в результате чего мировая мощность возрастет на 7 млн. т (п.в.) - до 52 млн. т (п.в.). Примерно половина новых мощностей будет введена в Китае и Марокко. Кроме того, новые проекты будут реализованы в Саудовской Аравии, Бразилии и Индии.

Рынок калийных удобрений , показавший в предыдущие годы наибольшую динамичность, в период 2015- 2020 гг. продолжит активно развиваться: ожидается реализация 25 проектов, из них четыре крупных greenfield - в Канаде, России и Беларуси. Мировая мощность по выпуску калийных удобрений в 2020 г. оценивается на уровне 64,5 млн. т (п.в.), т.е. возрастет относительно 2015 г. на 22%.

Спрос на калийные удобрения в 2020 г. ожидается на уровне 51,6 млн. т, т.е. будет возрастать на 2,1% в год, а загрузка мощностей будет на уровне 80%.

Производство серы в мире в 2020 г. ожидается на уровне 72 млн. т (п.в.), т.е. ежегодно будет увеличиваться на 4%. Крупные проекты будут реализованы в Катаре, России, Саудовской Аравии и Туркменистане. В США также ожидается прирост производства серы, что приведет к снижению ее импорта.

Предложение/спрос серы в 2020 г. составит 69 млн. т (п.в.), т.е. мощности будут загружены на 96%, что определяется ростом спроса со стороны производителей серной кислоты.

В табл. 3 представлены регионы - экспортеры основных видов минеральных удобрений в 2014 г. Из нее следует, что доля стран СНГ на мировом рынке аммиака находилась на уровне 24%, карбамида - на уровне 16%, аммиачной селитры - на уровне 63% (монопольное положение), ДАФ - на уровне 10% и калийных удобрений - на уровне 40%.

Таблица 3. Объемы экспорта основных видов минеральных удобрений по регионам

в 2014 г., тыс. т (п.в.)

Аммиак

Карбамид

Аммиачная селитра

Хлорид калия

Западная Европа

Центральная Европа

СНГ (с Украиной)

Северная Америка

Латинская Америка

Западная Азия

Южная Азия

Восточная Азия

Мир, всего

Истчник: IFA, 2015.

В табл. 4 представлены региональные рынки сбыта основных видов минеральных удобрений, которые по емкости имеют существенные различия. Так, наиболее емкими рынками сбыта являются:

  • для аммиака - страны Северной Америки (США) и ЕС;
  • для карбамида - страны Северной Америки (США), Латинской Америки (Бразилия), страны Южной Азии (Индия) и страны ЕС;
  • для аммиачной селитры - страны Латинской Америки;
  • для ДАФ - страны Южной Азии (Индия), страны ЕС;
  • для хлорида калия - страны Восточной Азии (Китай), Латинской Америки, Северной Америки (США) и страны ЕС.

Таблица 4. Объемы импорта основных видов минеральных удобрений по регионам в 2014 г., тыс. т (п.в.)

Аммиак

Карбамид

Аммиачная селитра

Хлорид калий

Западная Европа

Центральная Европа

СНГ (с Украиной)

Северная Америка

Латинская Америка

Западная Азия

Южная Азия

Восточная Азия

Мир, всего


Благодаря этому производить такие удобрения – очень , тем более, что организовать производство минеральных удобрений может каждый, ничего сложного в этом нет.

Любое помещение для химического производства должно быть оснащено качественной вентиляцией, водопроводом и канализацией.

Площадь помещения зависит от оборудования, которое будет использоваться, и, соответственно, от удобрений, которые будут изготавливаться. В большинстве случаев достаточно 100-200 квадратных метров .

Какие бывают удобрения

Удобрения традиционно классифицируются по форме, количеству питательных веществ и их видам, по растворимости в воде и множеству других критериев.

По форме удобрения подразделяются на порошковые и гранулированные . Удобрения, которые содержат питательные вещества, непосредственно усваиваемые растениями, называют прямыми, тогда как удобрения, применяющиеся для мобилизации имеющихся в почве питательных веществ – косвенными. Прямые удобрения могут содержать как одно, так и несколько питательных веществ.

Наиболее распространенными питательными веществами являются азот, калий и фосфор. Основные минеральные удобрения называют именно по содержанию в них этих веществ, при этом удобрения, которые содержат все три этих элемента, называются полными, а те, что содержат лишь одно – простыми или односторонними.

Что выгоднее

Поскольку гранулированные удобнее использовать, и они лучше хранятся, их производство является более рентабельным . При этом комплексные полные удобрения пользуются большим спросом, чем простые.

Одним из лучших вариантов является гранулированный карбамид. Именно его мы возьмем для дальнейших расчетов.


Оборудование

Для организации производства карбамида потребуются:

  • гранулятор;
  • грануляционная башня;
  • подающий насос;
  • вентилятор;
  • выпариватель;
  • погрузчик.

Приобретать оборудование можно как по отдельности, так и в виде комплексной технологической линии. Наилучшим выбором станет оборудование отечественного производства .

Его стоимость значительно ниже, чем у аналогов от европейских производителей, а запчасти в случае выхода агрегатов из строя достать намного легче, причем это займет намного меньше времени, что позволить снизить издержки.

Технология производства удобрений

Технология производства для каждого удобрения своя , отличная от других. Так, для производства карбамида необходимы диоксид углерода и аммиак, которые преобразуются в удобрение в две стадии.

Первая стадия представляет собой преобразование исходного сырья в карбамат, а вторая – дегидратацию карбамата для получения кристаллов карбамида. Кристаллы направляются в грануляционную башню, где происходит гранулирование.

Кому продать

Найти покупателя на минеральные удобрения несложно – достаточно провести переговоры с близлежащими фермами, аграрными хозяйствами, садовыми товариществами и прочими крупными потребителями.

Кроме того, можно приобрести оборудование для фасовки и наладить поставку своих удобрений в розничные магазины.

Затраты и прибыль

Стоимость в среднем составит от 15 до 20 миллионов рублей, закупка сырья (100 тонн) – 500 тысяч рублей. Средняя рентабельность производства – 60%. При производстве 50-ти тонн карбамида в месяц чистая прибыль составит 400-450 тыс. рублей в месяц .

Как видите, удобрений не сложно, но могут потребоваться достаточно крупные финансовые вложения. Кроме того, изготовление некоторых видов удобрений потребует получения разрешительных документов, поскольку в производстве могут использоваться ядовитые вещества.