Разрешение (компьютерная графика). Разрешение изображений и качество печати

Многие из нас любят фотографировать. Разнообразие и доступность цифровых фотокамер делают фотографию популярным удовольствием, позволяющим запечатлеть яркие, колоритные моменты нашей жизни. При этом высокое качество полученных фотографий, отнюдь не гарантирует такого же качества при распечатке цифровых снимков на стандартной рулонной фотобумаге. В данном материале я расскажу, какие есть размеры фотографий для печати, подам таблицы имеющихся форматов, а также приведу ряд примеров, позволяющих наглядно уяснить особенности различных размеров фотографий.

Разбираемся с размерами фотографий для печати

Чтобы уяснить, какие есть размеры фотографий для печати и какова их специфика, нам необходимо, прежде всего, разобраться в базовых понятиях, необходимых для понимания процесса цифровой печати.

Линейный размер фотографии – размеры фотографии в миллиметрах (ширина-высота).

Параметры фото в пикселях – размеры вашей фотографии, выраженные в количестве пикселей (ширина-высота).

Пиксель – наименьший элемент изображения, обычно точка прямоугольной или круглой формы, и определённого цвета. Изображение состоит из сотен и тысяч таких пикселей, которое подсчитываются как горизонтально (ширина), так и вертикально (высота). К примеру, размер изображения 1181×1772 (обычно отвечающего стандартному размеру фото 10х15), имеет 1181 пикселей в ширину, и 1772 в высоту.

При этом чем больше таких точек-пикселей в вашем изображении, тем обычно оно качественнее, с лучшей детализацией и прорисовкой объектов.

Пропорции сторон – соотношение величин сторон фотографии (к примеру, 1:1, 2:3, 3:4 и так далее). Параметр показывает, насколько одна сторона короче или длиннее другой.

Растровое изображение (растр) – изображение, состоящее из таких пикселей.

DPI – (аббревиатура от «dots per inch» — точек на дюйм) – параметр, употребляемый для характеристики разрешения печати фотографий, то есть количества точек на дюйм (дюйм составляет 2,54 см). Базовый стандарт печати – это 150 dpi, оптимальный – 300 dpi. Соответственно, чем выше DPI, тем выше качество печати имеющегося цифрового фото.

Стандарт (формат) фото – это шаблонное соотношение размеров сторон фотографии, которого важно придерживаться для получения конечного изображения на бумаге.


Почему важно учитывать стандартные размеры фотографий

В абсолютном большинстве случаев полученные вами цифровые снимки будут печататься на фотобумаге, имеющей стандартные размеры. При несовпадении пропорций цифровых снимков и выбранных размеров фотобумаги фотографии могут выйти растянутыми, не чёткими, потерять в качестве изображения, иметь другие нежелательные для вас последствия.

Следовательно, важно соизмерять стандартные размеры фотографий при печати, и размеры имеющихся у вас цифровых фото в пикселях, чтобы выбрать оптимальный печатный формат.

Популярные размеры фото для печати с таблицей форматов

Общепризнанным стандартом фото является размер 10 на 15 см. При этом размер соразмерного цифрового фото обычно чуть больше (к примеру, 10,2 на 15,2 см), а размер в пикселях данного фото будет составлять 1205 на 1795 пикселей.

Другие форматы приведены в нижеприведённой таблице:


Если же вы планируете работать с широкоформатной печатью, то она имеет достаточно широкие требования к цифровому изображению:

Если вы знаете параметр dpi и количество пикселей вашего фото, то используя нижеприведённую формулу, вы можете рассчитать необходимые размеры сторон вашей фотографии:

В данной формуле:

х – необходимый нам размер одной стороны фотографии в сантиметрах;
r – разрешение стороны фото в пикселях;
d — 2.54 см (величина стандартного дюйма);
dpi – обычно 300 (реже – 150).
Например, пусть ширина снимка 1772 пикселя, а dpi=300.
Тогда 1772*2.54/300=15,00 см по ширине печати.

Популярные форматы фотографий

Кроме уже упомянутого мной классического размера 10 на 15 (формат A6) существуют другие популярные размеры фотографий для печати. Среди них я бы выделил следующие:


Заключение

В данной статье были приведены стандартные размеры фотографий для печати, популярные форматы фото, а также удобная формула для подсчёта оптимальных размеров сторон фотографии. Рекомендую придерживаться приведённых мной форматов, это гарантирует качество напечатанных фотографий, а значит и визуальное удовольствие от их просмотра.

Разрешение (компьютерная графика)

Разреше́ние - величина, определяющая количество точек (элементов растрового изображения) на единицу площади (или единицу длины). Термин обычно применяется к изображениям в цифровой форме, хотя его можно применить, например, для описания уровня грануляции фотопленки, фотобумаги или иного физического носителя. Более высокое разрешение (больше элементов) типично обеспечивает более точные представления оригинала. Другой важной характеристикой изображения является разрядность цветовой палитры.

Как правило, разрешение в разных направлениях одинаково, что даёт пиксель квадратной формы. Но это не обязательно - например, горизонтальное разрешение может отличаться от вертикального, при этом элемент изображения (пиксель) будет не квадратным, а прямоугольным.

Разрешение изображения

Растровая графика

Ошибочно под разрешением понимают размеры фотографии, экрана монитора или изображения в пикселях . Размеры растровых изображений выражают в виде количества пикселов по горизонтали и вертикали, например: 1600×1200. В данном случае это означает, что ширина изображения составляет 1600, а высота - 1200 точек (такое изображение состоит из 1 920 000 точек, то есть примерно 2 мегапикселя). Количество точек по горизонтали и вертикали может быть разным для разных изображений. Изображения, как правило, хранятся в виде, максимально пригодном для отображения экранами мониторов - они хранят цвет пикселов в виде требуемой яркости свечения излучающих элементов экрана (RGB), и рассчитаны на то, что пикселы изображения будут отображаться пикселами экрана один к одному. Это обеспечивает простоту вывода изображения на экран.

При выводе изображения на поверхность экрана или бумаги, оно занимает прямоугольник определённого размера. Для оптимального размещения изображения на экране необходимо согласовывать количество точек в изображении, пропорции сторон изображения с соответствующими параметрами устройства отображения. Если пикселы изображения выводятся пикселами устройства вывода один к одному, размер будет определяться только разрешением устройства вывода. Соответственно, чем выше разрешение экрана, тем больше точек отображается на той же площади и тем менее зернистой и более качественной будет ваша картинка . При большом количестве точек, размещённом на маленькой площади, глаз не замечает мозаичности рисунка. Справедливо и обратное: малое разрешение позволит глазу заметить растр изображения («ступеньки»). Высокое разрешение изображения при малом размере плоскости отображающего устройства не позволит вывести на него всё изображение, либо при выводе изображение будет «подгоняться», например для каждого отображаемого пиксела будут усредняться цвета попадающей в него части исходного изображения. При необходимости крупно отобразить изображение небольшого размера на устройстве с высоким разрешением приходится вычислять цвета промежуточных пикселей. Изменение фактического количества пикселей изображения называется передискретизация , и для неё существуют целый ряд алгоритмов разной сложности.

При выводе на бумагу такие изображения преобразуются под физические возможности принтера: проводится цветоделение , масштабирование и растеризация для вывода изображения красками фиксированного цвета и яркости, доступными принтеру. Принтеру для отображения цвета разной яркости и оттенка приходится группировать несколько меньшего размера точек доступного ему цвета, например один серый пиксел такого исходного изображения, как правило, на печати представляется несколькими маленькими чёрными точками на белом фоне бумаги. В случаях, не касающихся профессиональной допечатной подготовки , этот процесс производится с минимальным вмешательством пользователя, в соответствии с настройками принтера и желаемым размером отпечатка. Изображения в форматах, получаемых при допечатной подготовке и рассчитанные на непосредственный вывод печатающим устройством, для полноценного отображения на экране нуждаются в обратном преобразовании.

Большинство форматов графических файлов позволяют хранить данные о желаемом масштабе при выводе на печать, то есть о желаемом разрешении в dpi (англ. dots per inch - эта величина говорит о каком-то количестве точек на единицу длины, например 300 dpi означает 300 точек на один дюйм). Это исключительно справочная величина. Как правило, для получения распечатка фотографии, который предназначен для рассматривания с расстояния порядка 20-30 сантиметров, достаточно разрешения 300 dpi. Исходя из этого можно прикинуть, какого размера отпечаток можно получить из имеющегося изображения или какого размера изображение надо получить, чтоб затем сделать отпечаток нужного размера.

Например, надо напечатать с разрешением в 300 dpi изображение на бумаге размером 10×10 см. Переведя размер в дюймы получим 3,9×3,9 дюймов. Теперь, умножив 3,9 на 300 и получаем размер фотографии в пикселях: 1170×1170. Таким образом, для печати изображения приемлемого качества размером 10×10 см, размер исходного изображения должен быть не менее 1170×1170 пикселей.

Для обозначения разрешающей способности различных процессов преобразования изображений (сканирование, печать, растеризация и т. п.) используют следующие термины:

  • dpi (англ. dots per inch ) - количество точек на дюйм.
  • ppi (англ. pixels per inch ) - количество пикселей на дюйм.
  • lpi (англ. lines per inch ) - количество линий на дюйм, разрешающая способность графических планшетов (дигитайзеров).
  • spi (англ. samples per inch ) - количество сэмплов на дюйм; плотность дискретизации (sampling density ), в том числе разрешение сканеров изображений (en:Samples per inch англ. )

По историческим причинам величины стараются приводить к dpi , хотя с практической точки зрения ppi более однозначно характеризует для потребителя процессы печати или сканирования. Измерение в lpi широко используется в полиграфии . Измерение в spi используется для описания внутренних процессов устройств или алгоритмов.

Значение разрядности цвета

Для создания реалистичного изображения средствами компьютерной графики цвет иногда оказывается важнее (высокого) разрешения, поскольку человеческий глаз воспринимает картинку с большим количеством цветовых оттенков как более правдоподобную. Вид изображения на экране напрямую зависит от выбранного видеорежима, основу которого составляют три характеристики: кроме собственно разрешения (кол-ва точек по горизонтали и вертикали), отличаются частота обновления изображения (Гц) и количество отображаемых цветов (цветорежим или разрядность цвета)). Последний параметр (характеристику) часто также называют разрешение цвета , или частота разрешения (частотность или разрядность гаммы ) цвета .

Разница между 24- и 32-разрядным цветом на глаз отсутствует, потому как в 32-разрядном представлении 8 разрядов просто не используются, облегчая адресацию пикселов, но увеличивая занимаемую изображением память, а 16-разрядный цвет заметно «грубее». У профессиональных цифровых фотокамер у сканеров (например, 48 или 51 бит на пиксел) более высокая разрядность оказывается полезна при последующей обработке фотографий: цветокоррекции , ретушировании и т. п.

Векторная графика

Для векторных изображений, в силу принципа построения изображения, понятие разрешения неприменимо.

Разрешение устройства

Разрешение устройства (inherent resolution ) описывает максимальное разрешение изображения, получаемого с помощью устройства ввода или вывода.

  • Разрешение принтера , обычно указывают в dpi.
  • Разрешение сканера изображений указывается в ppi (количество пикселей на один дюйм), а не в dpi.
  • Разрешением экрана монитора обычно называют размеры получаемого на экране изображения в пикселах: 800×600, 1024×768, 1280×1024, подразумевая разрешение относительно физических размеров экрана, а не эталонной единицы измерения длины, такой как 1 дюйм. Для получения разрешения в единицах ppi данное количество пикселов необходимо поделить на физические размеры экрана, выраженные в дюймах. Двумя другими важными геометрическими характеристиками экрана являются размер его диагонали и соотношение сторон.
  • Разрешение матрицы цифровой фотокамеры , так же как экрана монитора, характеризуется размером (в пикселах) получаемых изображений, но в отличие от экранов, популярным стало использование не двух чисел, а округлённого суммарного количества пикселов, выражаемое в мегапикселях . Говорить о фактическом разрешении матрицы можно лишь учитывая её размеры. Говорить о фактическом разрешении получаемых изображений можно либо в отношении устройство вывода - экранов и принтеров, либо в отношении сфотографированных предметов, с учётом их перспективных искажений при съёмке и характеристик объектива.

Разрешение экрана монитора

Для типичных разрешений мониторов, индикаторных панелей и экранов устройств (inherent resolution ) существуют устоявшиеся буквенные обозначения:

Компьютерный стандарт / название устройства Разрешение Соотношение сторон экрана Пиксели, суммарно
VIC-II multicolor, IBM PCjr 16-color 160×200 0,80 (4:5) 32 000
TMS9918 , ZX Spectrum 256×192 1,33 (4:3) 49 152
CGA 4-color (1981), Atari ST 16 color, VIC-II HiRes, Amiga OCS NTSC LowRes 320×200 1,60 (8:5) 64 000
QVGA 320×240 1,33 (4:3) 76 800
Acorn BBC в 40-строчном режиме, Amiga OCS PAL LowRes 320×256 1,25 (5:4) 81 920
WQVGA 400×240 1.67 (15:9) 96 000
КГД (контроллер графического дисплея) ДВК 400×288 1.39 (25:18) 115 200
Atari ST 4 color, CGA mono, Amiga OCS NTSC HiRes 640×200 3,20 (16:5) 128 000
WQVGA Sony PSP Go 480×270 1,78 (16:9) 129 600
Вектор-06Ц , Электроника БК 512×256 2,00 (2:1) 131 072
466×288 1,62 (≈ 8:5) 134 208
HVGA 480×320 1,50 (15:10) 153 600
Acorn BBC в 80-строчном режиме 640×256 2,50 (5:2) 163 840
Amiga OCS PAL HiRes 640×256 2,50 (5:2) 163 840
Контейнер AVI (MPEG-4 / MP3), профиль Advanced Simple Profile Level 5 640×272 2,35 (127:54) (≈ 2,35:1) 174 080
Black & white Macintosh (9") 512×342 1,50 (≈ 8:5) 175 104
Электроника МС 0511 640×288 2,22 (20:9) 184 320
Macintosh LC (12")/Color Classic 512×384 1,33 (4:3) 196 608
EGA (в 1984) 640×350 1,83 (64:35) 224 000
HGC 720×348 2,07 (60:29) 250 560
MDA (в 1981) 720×350 2,06 (72:35) 252 000
Atari ST mono, Toshiba T3100/T3200, Amiga OCS , NTSC чересстрочный 640×400 1,60 (8:5) 256 000
Apple Lisa 720×360 2,00 (2:1) 259 200
VGA (в 1987) и MCGA 640×480 1,33 (4:3) 307 200
Amiga OCS , PAL чересстрочный 640×512 1,25 (5:4) 327 680
WGA, WVGA 800×480 1,67 (5:3) 384 000
TouchScreen в нетбуках Sharp Mebius 854×466 1,83 (11:6) 397 964
FWVGA 854×480 1,78 (≈ 16:9) 409 920
SVGA 800×600 1,33 (4:3) 480 000
Apple Lisa + 784×640 1,23 (49:40) 501 760
800×640 1,25 (5:4) 512 000
SONY XEL-1 960×540 1,78 (16:9) 518 400
Dell Latitude 2100 1024×576 1,78 (16:9) 589 824
Apple iPhone 4 960×640 1,50 (3:2) 614 400
WSVGA 1024×600 1,71 (128:75) 614 400
1152×648 1,78 (16:9) 746 496
XGA (в 1990) 1024×768 1,33 (4:3) 786 432
1152×720 1,60 (8:5) 829 440
1200×720 1,67 (5:3) 864 000
1152×768 1,50 (3:2) 884 736
WXGA (HD Ready) 1280×720 1,78 (16:9) 921 600
NeXTcube 1120×832 1,35 (35:26) 931 840
wXGA+ 1280×768 1,67 (5:3) 983 040
XGA+ 1152×864 1,33 (4:3) 995 328
WXGA 1280×800 1,60 (8:5) 1 024 000
Sun 1152×900 1,28 (32:25) 1 036 800
WXGA (HD Ready) 1366×768 1,78 (≈ 16:9) 1 048 576
wXGA++ 1280×854 1,50 (≈ 3:2) 1 093 120
SXGA 1280×960 1,33 (4:3) 1 228 800
UWXGA 1600×768 (750) 2,08 (25:12) 1 228 800
WSXGA, WXGA+ 1440×900 1,60 (8:5) 1 296 000
SXGA 1280×1024 1,25 (5:4) 1 310 720
1536×864 1,78 (16:9) 1 327 104
1440×960 1,50 (3:2) 1 382 400
wXGA++ 1600×900 1,78 (16:9) 1 440 000
SXGA+ 1400×1050 1,33 (4:3) 1 470 000
AVCHD/«HDV 1080i» (anamorphic widescreen HD) 1440×1080 1,33 (4:3) 1 555 200
WSXGA 1600×1024 1,56 (25:16) 1 638 400
WSXGA+ 1680×1050 1,60 (8:5) 1 764 000
UXGA 1600×1200 1,33 (4:3) 1 920 000
Full HD (1080p) 1920×1080 1,77 (16:9) 2 073 600
2048×1080 1,90 (256:135) 2 211 840
WUXGA 1920×1200 1,60 (8:5) 2 304 000
QWXGA 2048×1152 1,78 (16:9) 2 359 296
1920×1280 1,50 (3:2) 2 457 600
1920×1440 1,33 (4:3) 2 764 800
QXGA 2048×1536 1,33 (4:3) 3 145 728
WQXGA 2560×1440 1,78 (16:9) 3 686 400
WQXGA 2560×1600 1,60 (8:5) 4 096 000
Apple MacBook Pro with Retina 2880×1800 1,60 (8:5) 5 148 000
QSXGA 2560×2048 1,25 (5:4) 5 242 880
WQSXGA 3200×2048 1,56 (25:16) 6 553 600
WQSXGA 3280×2048 1,60 (205:128) ≈ 8:5 6 717 440
QUXGA 3200×2400 1,33 (4:3) 7 680 000
QuadHD/UHD 3840×2160 1,78 (16:9) 8 294 400
WQUXGA (QSXGA-W) 3840×2400 1,60 (8:5) 9 216 000
HSXGA 5120×4096 1,25 (5:4) 20 971 520
WHSXGA 6400×4096 1,56 (25:16) 26 214 400
HUXGA 6400×4800 1,33 (4:3) 30 720 000
Super Hi-Vision (UHDTV) 7680×4320 1,78 (16:9) 33 177 600
WHUXGA 7680×4800 1,60 (8:5) 36 864 000

См. также

Примечания

Представляем вашему вниманию нашу подборку самых больших фотографий в мире. Для их просмотра вам будет необходим FlashPlayer. Его можно скачать отдельно или использовать браузер Google Chrome.

Фотопанорама Луны - 681 Гпк.

Абсолютным чемпионом по размеру составных фотографий является NASA. В 2014 году агентство опубликовало 681-гигапиксельную панораму Луны. 18 июня 2009 года NASA запустила орбитальный зонд Lunar Reconnaissance Orbiter (LRO), чтобы отобразить поверхность Луны и собрать измерения потенциальных мест посадки в будущем, а также с научной целью.

Посмотреть панораму можно на сайте .

Фотопанорама горы Монблан - 365 Гпк.

В конце 2014 года международная команда профессиональных фотографов во главе с Филиппо Бленьини составила круговую панораму горного массива между Францией и Италией - Монблана, второй после Эльбруса самой высокой горы Европы.

Она состоит из 70 тысяч фотографий! Фото сделаны камерой Canon EOS 70D с телеобъективом Canon EF 400 мм f/2,8 II IS и экстендером Canon Extender 2X III. Создатели гигантской панорамы утверждают, что если распечатать ее на бумаге, размером она будет с футбольное поле. На сегодня это самая большая гигапиксельная фотография, сделанная на земле.

Посмотреть панораму можно на сайте проекта .

Фотопанорама Лондона - 320 Гпк.

Панорама была собрана из 48 640 отдельных снимков, сделанных четырьмя фотоаппаратами Canon 7D, и выложена в Сеть в феврале 2013 года. Подготовка к эксперименту заняла несколько месяцев, а съемки проходили на протяжении четырех дней. Снимки сделаны компанией British Telecom с вершины телебашни BT Tower, расположенной в центре Лондона на северном берегу Темзы. Фотографировали эксперты панорамной съемки с сайта 360cities.net Джеффри Мартин (Jeffrey Martin), Хольгер Шульце (Holger Schulze) и Том Милз (Tom Mills).

Посмотреть панораму можно на сайте .

Фотопанорама Рио-де-Жанейро - 152,4 Гпк.

Панорама была снята 20 июля 2010 года и состоит из 12 238 фотографий. Загрузка итогового изображения на сайт gigapan.org заняла у автора почти три месяца!

Посмотреть панораму можно на сайте .

Фотопанорама Токио - 150Гпк. Фо

Автор панорамы - Джеффри Мартин (Jeffrey Martin), основатель сайта 360cities.net. Панорама создана из 10 тысяч разных снимков, полученных со смотровой площадки телевизионной башни Tokyo Tower. При ее создании фотограф использовал Canon EOS 7D DSLR и роботизированную машину Clauss Rodeon. Для получения 10 тысяч кадров понадобилось два дня,а для сведения их в одну панораму - три месяца.

Посмотреть панораму можно на сайте .

Фотопанорама национального парка «Арки» - 77,9 Гпк.

Автор панорамы - Альфред Жао (Alfred Zhao). «Арки» - национальный парк, который находится в США, штат Юта. Здесь существует более двух тысяч арок, образованных природой из песчаника. Для создания панорамы потребовалось 10 дней обработки, 6 ТБ свободного места на жестком диске и двое суток загрузки конечного изображения на сайт. Фотография была сделана в сентябре 2010 года.

Посмотреть панораму можно на сайте .

Фотопанорама Будапешта - 70 Гпк.

В 2010 году команда энтузиастов, спонсируемая Epson, Microsoft и Sony, создала самую большую на тот момент 360-градусную панорамную фотографию в мире. Проект получил название «70 миллиардов пикселей Будапешта». 70-гигапиксельную фотографию делали четыре дня со 100-летней наблюдательной башни города. Панорама составила более 590 тысяч пикселей в ширину и 121 тысячу пикселей в высоту, а общее количество снимков - порядка 20 тысяч. К сожалению, сейчас ссылка на нее не работает.

Фотопанорама на горе Корковадо - 67 Гпк.

Эта фотография была сделана на горе Корковадо в Рио-де-Жанейро (Бразилия), где находится статуя Христа Искупителя. Фотопанорама сделана в июле 2010 года и была создана из 6223 кадров.

Посмотреть панораму можно на сайте .

Фотопанорама Вены - 50 Гпк.

Гигапиксельная фотопанорама столицы Австрии Вены была создана летом 2010 года. Для ее изготовления потребовалось 3600 снимков, но результат этого стоил.

Посмотреть панораму можно на сайте .

Фотопанорама Марбурга - 47 Гпк.

Марбург - это университетский городок, население которого составляет около 78 тысяч человек. Для панорамы понадобилось 5 тысяч снимков, которые были сделаны фотоаппаратом D300 Nikon с объективом Sigma 50–500 мм с башни высотой 36 метров. Каждая из фотографий имеет размер 12,3 Мпк. На съемку у автора ушло 3 часа 27 минут, а общий объем полученной им информации занял 53,8 Гб на жестком диске.

Посмотреть панораму можно на сайте .

Млечный Путь - 46 Гпк.

В течение пяти лет группа астрономов из Рурского университета при помощи обсерватории, находящейся в чилийской пустыне Атакама, следила за нашей галактикой и создала из снимков Млечного Пути гигантскую фотографию в 46 миллиардов пикселей.Изображение весит 194 Гб.

Посмотреть панораму можно на сайте .

Фотопанорама Дубая- 44,8 Гпк.

Автор панорамы - Джеральд Донован (Gerald Donovan). Дубай - крупнейший город Объединенных Арабских Эмиратов. Для создания панорамы использовался фотоаппарат Canon 7D с объективом 100–400 mm. Автор работал более трех часов на 37-градусной жаре и сделал 4250 фотографий.

Посмотреть панораму можно на сайте .

Фотопанорама заднего двора - 43,9 Гпк.

4048 фотографий для панорамы были сделаны 22 августа 2010 года в деревне Раунд-Лейк в штате Иллинойс, США. Автор, Альфред Жао, использовал фотоаппарат Canon 7D с объективом 400 mm. На съемки ушло два часа, а вот на обработку фотографий - около недели.

Посмотреть панораму можно на сайте .

Фотопанорама Парижа - 26 Гпк.

Автор панорамы - Мартин Лойер (Martin Loyer). В конце 2009 года в Интернете появился интерактивный сайт www.paris-26-gigapixels.com, на котором есть огромная гигапиксельная фотопанорама Парижа с очень четким разрешением, состоящая из 2346 фотографий.Она позволит вам погрузиться в образ этого города и увидеть его достопримечательности, не выходя из дома.

12:36 pm - FAQ | Какое надо ставить разрешение у фотографии?

Итак, сегодняшний вопрос, который мне задают регулярно, как только речь заходит о сохранении обработанных фотографий на диск:

#16 Какое надо ставить разрешение у фотографии?

Речь идёт о загадочных dpi , про которых часто к месту и не к месту упоминают заказчики в технических требованиях к фотографиям. А ведь и не везде ещё найдёшь такое - чаще в интерфейсах программ попадается ppi и никакого dpi . А заказчики всё пишут и пишут "пришлите нам фотографию не менее 300dpi !" Что же это всё такое и зачем оно фотографам?

Краткий вариант:

Если кратко, то это плотность расположения:


И, что самое интересное, все эти вещи не имеют никакого отношения к растровой цифровой фотографии до тех пор, пока вы не собираетесь её напечатать! То есть, если вы не печатаете свои снимки (а сейчас таких фотографов стало больше чем тех, кто печатает), то можно вообще не забивать себе голову этими параметрами, они вам не понадобятся.

Но, на всякий случай, в окошке разрешения можете поставить значение 300. В Lr, например, это можно сделать при экспорте изображений, здесь:

Для всех остальных есть развёрнутый вариант ответа. =:)

Развёрнутый вариант ответа:

Цифровая фотография в компьютере имеет только одну характеристику размера - количество пикселей по вертикали и горизонтали (или их произведение, исчисляемое сейчас в мегапикселях). Вот эта карточка, например:

Имеет размер 900 х 600 пикселей (или 540 000 пикселей, что равно 0.54 мегапикселя). Исходный кадр, с которого была сделана эта уменьшенная копия, был размером 3600 х 2400 пикселей (или 8.64 мегапикселя). И эти значения в пикселях - и есть единственный параметр, отвечающий за размер фотографий в цифровом виде.

Проблемы могут возникнуть тогда, когда появится желание напечатать фотографию. Разные печатные машины и принтеры, в зависимости от их устройства и предназначения резульата печати, позволяют делать изображения с разным размером пикселей. То есть, можно пиксели печатать крупными и тогда на одном дюйме (около 2.5 см) их поместится немного:

А можно воспроизводить пиксели чуть меньшего размера и тогда их уже на одном дюйме уместится больше:

А можно их сделать крохотными и тогда на том же линейном дюйме их будет уже много:

В результате, если одно и то же изображение взять и напечатать с разной плотностью пикселей на дюйм (ppi ), то оно будет иметь на бумаге разный размер:

Считается, что когда на одном линейном дюйме умещается более 300 пикселей, то человеческий глаз уже не способен разделить их, и это даёт качественную, "гладкую" печать, без заметной пикселизации. Подавляющее большинство глянцевых журналов использует именно такую (или около того) плотность печати и результат вы сами можете увидеть, купив "глянцевую" полиграфию в любом киоске.

Фактически, сейчас плотность 300 ppi считается неким негласным стандартом, на который ориентирутся большинство издателей. Хотя нигде, насколько мне известно, именно эта цифра в официальных стандартах не фигурирует. Ну, пусть меня поправят, если я ошибаюсь.

При этом, если речь идёт о печати, например, наружных рекламных плакатов (билбордов) большого размера (3 х 6 метра, к примеру), то нет такой необходимости делать пикселы микроскопическими и печатать их плотно друг к дуруг - всё равно на плакат зрители будут смотреть с изрядного расстояния, не так, как на журнал. Поэтому, очень часто при печати материалов для таких билбордов используют разрешение около 50 ppi (на одном дюйме распечатанного плаката насчитывается 50 пикселей изображения).

В идеале, вы должны сами знать какая вам понадобится плотность печати и соответственно подготавливать свои фотографии. Если говорить о Ps, то там это можно сделать в пункте меню Image -> Image Size:

В верхней части этой палетки мы можем видеть размер фото в пикселях (3600 х 2400):

А в нижней - размер в сантиметрах (127 х 85 см) при плотности в 72 пикселя на дюйм.

Эти 72 пикселя на дюйм сейчас, в общем-то, выглядят как некий сферический конь в вакууме, потому что это чисто раритетный показатель, который сейчас традиционно присваивается всем цифровым изображениям по умолчанию. И он не имеет никакого реального воплощения, потому что кто-то сейчас смотрит на изображение на мониторе с диагональю 15" и разрешением 1024 х 768 пикселей и у него плотность изображения будет одна, а кто-то может смотреть на 25" с 2560 х 1600 и у него плотность будет другая. Но уж так традиционно принято, что цифровым фото присваивается именно такая цифра - 72 ppi. "Ответ на главный вопрос жизни, вселенной и всего такого - 42!"

Кстати, инженеры Apple не зря так подробно расписывали достоинства экранов у iPhone4, когда они только появились на рынке. При диагонали в 3.5 дюйма размеры изображения составляют 960 х 640 пикселей, что даёт разрешение 326 ppi. Что, как вы понимаете, вполне сопоставимо с качеством хорошей печатной полиграфии. И в будущем, уверен, количество устройств с высоким ppi будет неуклонно расти.

Если снять вот эту галочку:

То можно посмотреть как меняется размер изображения в зависимости от плотности ppi (и при неизменном размере изображения в пикселах - 3600 х 2400). При плотности 5 ppi (каждый пиксель будет печататься квадратом 5 х 5 мм) размер картинки будет составлять 1829 х 1219 см:

При "журнальной" плотности 300 ppi размер будет уже 30 х 20 см (почти формат А4, то есть - обложка, например):

При 600 ppi фотография займёт на бумаге 15 x 10 ("фотография, 10 на 15 с наивной подписью..."):

А при 10.000 ppi размер этого фото будет уже меньше одного сантиметра по большей его стороне:

Понятно, что печатать с разрешением 10.000 ppi в общем нет смысла, особенно, если учесть, что порогом, при котором видны пикселы, считается разрешение в 300 ppi.

Если всё же захочется непременно выводить картинку с разрешением 300 ppi, но на большем носителе, то тогда надо будет включить обратно галочки и менять размер картинки в сантиметрах:

Одновременно с этим, обратите внимание, будет расти и размер изображения в пикселях. Это неизбежно, потому что плотность печати вы хотите оставить высокую и размер хочется больше, значит - пикселей в изображении станет больше. Ps добавит недостающие пиксели, рассчитав их из соседних. Качество изображения при этом может заметно пострадать.

Ну, а что же тогда такое dpi , про которые так любят писать заказчики в требованиях к качеству изображений? Это плотность печати точек выводным устройством. И этот параметр сугубо технический, он может рассказать специалисту сколько точек способен напечатать, например, тот или иной принтер на одном дюйме изображения.

Строго говоря, dpi не всегда равно ppi . Ведь один пиксель изображения нужно передавать несколькими точками печатного устройства:

Здесь мы можем видеть, что каждый квадратик (пиксель цифрового изображения) отображается при помощи нескольких кружков разного диаметра. За счёт их разного размера получается сделать разную плотность цвета, и, как следствие, - получать на печати полноцветные изображения с полутонами. Но печатная машина не умеет делать точки разного размера, она может создавать только пятна определённого диаметра, заложенного в конструкции. Поэтому, видимые нами кружки на самом деле состоят из множества мелких точек:

Плотность этих точек на дюйм и есть параметр, который обозначается как dpi . И если посчитать, то ppi этого примера окажется, допустим, равным 25, то dpi будет во много раз больше.

Но в современной практике так уже сложилось, что в требованиях к качеству фотографи очень часто ставят знак равества между ppi и dpi . И приходят в результате требования, типа "финальное изображение должно быть размером 6 х 3 метра при 50 dpi" , что в переводе на язык цифровых изображений означает, что картинка должна быть размером 11811 х 5905 пикселей. Равно как и попадаются требования, типа "картинка должна быть не мнее 3600 х 2400 при 300 dpi" , что, как вы теперь понимаете, выглядит даже не как "масло маслянное", а как "масло квадратное". =:)

Размер, разрешение и форматы... Что происходит с пикселями? Вы покупаете камеру из-за количества мегапикселей? У вас есть проблемы с размещением фотографий в Интернете? Отличается ли печать ваших фотографий низким качеством, даже если они выглядит великолепно на экране? Кажется, есть некая путаница между пикселями и байтами (размер изображения и размер файла), качеством и количеством, размером и разрешением. В этом уроке мы разберем эту крайне важную для любого фотографа информацию

Итак, давайте рассмотрим некоторые базовые понятия, чтобы сделать вашу жизнь проще, а ваш рабочий процесс стал более эффективным, и ваши изображения будут иметь нужный размер для предполагаемого использования.

Это изображение размером 750 × 500 пикселей с разрешением 72 dpi, сохраненное формат сжатый JPG, который составляет 174kb. Давайте разберемся, что все это значит.

Разрешение и размер – это одно и то же?

Одно из самых больших недопониманий исходит из концепции разрешения. Если это ваш случай, поверьте мне, что вы не одиноки.

Проблема в том, что разрешение может относиться ко многим вещам, две из которых могут стать проблемой. Далее я объясню эти две концепции разрешения, однако у них есть одна общая черта, которую мне нужно прояснить в первую очередь. Обе они имеют отношение к пикселям.

Вы, наверное, много слышали о пикселях, по крайней мере, когда покупали свою камеру. Это одна из самых понятных и «существенных» спецификаций на рынке, поэтому я начну с этого.

Что такое пиксель?

Цифровая фотография не является одной неразделимой вещью. Если вы достаточно сильно приблизите ее, вы увидите, что изображение похоже на мозаику, образованную из маленьких плиточек, которые в фотографии называются пикселями.

Количество этих пикселей и способ их распределения являются двумя факторами, которые необходимо учитывать, чтобы понять, что такое разрешение.

Количество пикселей

Первый вид разрешения относится к количеству пикселей, которые формируют вашу фотографию. Чтобы рассчитать это разрешение, вы просто используете ту же формулу, которую вы бы использовали для площади любого прямоугольника; умножьте длину на высоту. Например, если у вас есть фотография с 4500 пикселями на горизонтальной стороне и 3000 по вертикальной стороне, она дает вам 13 500 000. Поскольку это число очень непрактично, вы можете просто разделить его на миллион, чтобы преобразовать его в мегапиксели. Таким образом, 13 500 000/1 000 000 = 13,5 мегапикселей.

Плотность пикселей

Другое разрешение - это то, как вы распределяете имеющееся общее количество пикселей, что обычно называют плотностью пикселей.

Теперь разрешение выражается в dpi (или ppi), которое является аббревиатурой для точек (или пикселей) на дюйм, да именно на дюйм, так уж сложилось, что в метрическую систему это не перевели. Итак, если вы видите 72 dpi, это означает, что изображение будет иметь плотность 72 пикселя на дюйм; если вы видите 300 dpi – это 300 пикселей на дюйм и т. д.

Конечный размер вашего изображения зависит от выбранного вами разрешения. Если изображение имеет 4500 x 3000 пикселей, это означает, что он будет напечатан в размере 15 x 10 дюймов, если вы установите разрешение 300 dpi, но при 72 dpi оно будет 62,5 x 41,6 дюйма. Хотя размер печатного снимка меняется, вы не изменяете размер своей фотографии (файл изображения), вы просто меняете организацию существующих пикселей.

Представьте себе резиновую ленту, вы можете растянуть ее или сжать, но вы не меняете количество ленты, вы не добавляете и не разрезаете ее.

Таким образом, разрешение и размер – это не одно и то же, но они связаны между собой.

Так количество означает качество?

Из-за вышеупомянутой взаимосвязи между размером и разрешением многие думают, что мегапиксели означают качество. И в некотором смысле это происходит потому, что чем больше пикселей вы имеете, тем выше их плотность.

Однако, помимо количества, вы также должны учитывать глубину пикселей, это то, что определяет количество тональных значений, которое содержит ваше изображение. Другими словами, это количество цветов на пиксель. Например, 2-битная глубина может хранить только черный, белый и два оттенка серого, но более распространенное значение - 8 бит. Значения растут экспоненциально, например, с 8-битной фотографией (2 до 8 = 256), у вас будет 256 оттенков зеленого, 256 тонов синего и 256 тонов красного, что означает около 16 миллионов цветов.

Это уже больше того, что глаз может отличить, что означает, что 16-бит или 32-бит будут выглядеть для нас относительно одинаково. Конечно, это означает, что ваше изображение будет тяжелее, даже если размер одинаков, потому что в каждом пикселе содержится больше информации. Именно поэтому качество и количество не обязательно идентичны.

Поэтому количество имеет значение, но и размер и глубина каждого пикселя определяют качество. Вот почему вы должны смотреть все характеристики камеры и ее сенсора, а не только количество мегапикселей. В конце концов, существует ограничение на размер, который вы можете распечатать или просмотреть, более того, это приведет только к дополнительному размеру файла (мегабайт) и не повлияет на размер изображения (мегапиксели) или качество.

Как выбрать и контролировать размер изображения и размер файла?

Прежде всего, вам нужно определиться, какая максимальная плотность вам нужна. Если вы разместите свое изображение онлайн, вы сможете отлично справиться с разрешением всего 72 dpi, но это слишком мало для печати фотографии. Если вы собираетесь печатать, вам нужно от 300 до 350 dpi.

Конечно, мы говорим обобщенно, потому что каждый монитор и каждый принтер будут иметь немного другие разрешения. Например, если вы хотите распечатать фотографию до 8 × 10 дюймов, вам нужно, чтобы изображение имело 300 точек на дюйм x 8 "= 2400 пикселей и 300 точек на дюйм x 10" = 3000 пикселей (поэтому 2400 × 3000 для печати 8 × 10 при 300 dpi). Все, что больше, будет лишь занимать место на жестком диске.

Как изменить размер в Photoshop

Откройте меню Размера изображения и во всплывающем окне вам нужно пометить поле «resample». Если вы не активируете «resample», вы будете перераспределять пиксели, как я объяснила в начале статьи.

Вы также можете выбрать галочку «Пропорция», если вы хотите, чтобы параметры регулировались в соответствии с вашими изменениями. Таким образом, ширина изменяется при изменении высоты и наоборот.

8×10 дюймов при 300 ppi , это размер, необходимый для печати 8 × 10. Обратите внимание на размер пикселей 3000 x 2400.

750×500 пикселей при 72 ppi . Это веб-разрешение, и это точный размер всех изображений в этой статье. Размер в дюймах не имеет значения при публикации в Интернете - имеет значение только размер в пикселях.

В верхней части окна вы также увидите, как изменяется размер файла. Это несжатая версия вашего изображения, это прямая связь, о которой я говорила в первой части статьи: меньшее количество пикселей означает меньше информации.

Теперь, если вы все еще хотите изменить размер файла без изменения размера, то вы можете сделать это, когда сохраняете изображение. Перед сохранением фотографии вы можете выбрать нужный формат:

Если вы не хотите потерять какую-либо информацию, вам необходимо сохранить несжатый формат. Наиболее распространенным является TIFF.

Если вы не возражаете потерять небольшую информацию и иметь более легкий файл, перейдите в JPEG и выберите, насколько маленьким он должен быть. Очевидно, чем меньше значение вы устанавливаете, тем больше информации вы потеряете. К счастью, у него есть кнопка предварительного просмотра, чтобы вы могли видеть влияние вашего сжатия.

JPG высокое качество.

JPG низкое качество. Обратите внимание, как он пикселизирован и разбит? Если вы выберете очень низкое качество, вы рискуете ухудшить изображение слишком сильно.

Заключение

Итак, вот что означают качество, количество, размер и разрешение, и все они связаны с пикселями, поскольку те являются основными единицами, которые составляют изображение. Теперь, когда вы знаете, как сделать лучший выбор для печати, отправки и хранения ваших фотографий. Вся эта информация более подробна разложена в видеокурсе: "Секреты творческой обработки фотографий для новичка", чтобы ознакомится с описанием курса, кликните по картинке ниже.