Определить все коэффициенты полноты судна. Коэффициент общей полноты

Расчет водоизмещения производится с помощью уравнения масс следующего вида:

D – искомое водоизмещение судна.

- измеритель массы корпуса оборудованного;

- измеритель массы запаса водоизмещения;

- скорость хода судна в полном грузу на тихой, глубокой воде;

- адмиралтейский коэффициент;

- измеритель массы механизмов (энергетической установки);

- коэффициент, учитывающий дополнительное топливо, масло, питательную воду;

- коэффициент морского запаса;

- удельный расход топлива;

- автономность; час.

- грузоподъемность;

- масса экипажа;

DW дедвейт;

- масса переменных жидких грузов.

Измеритель массы корпуса оборудованного рассчитывается по прототипу: проект 17310.

,

.

Плотность морской воды -

;

Длина расчетная, L – 93.5 м;

Ширина, B – 13.4 м;

Осадка, T – 4.6 м;

Масса корпуса оборудованного прототипа равна:
т.

.

Измеритель массы запаса водоизмещения на данной стадии проектирования принимается равным в пределах от 0.01 до 0.025. Примем
.

Подсчитаем коэффициент А из уравнения масс:

Коэффициент В :

Адмиралтейский коэффициент Ca рассчитывается по прототипу формулой:

Скорость прототипа = 11 узлов. Данные по скорости прототипа приведены при осадкеТ = 4.6 м.

Мощность главного двигателя составляет Ne = 1740 кВт.

Измеритель массы механизмов равен (масса механизмов прототипа равна
т)

Коэффициенты дополнительного топлива и морского запаса принимаются равными:

Удельный расход топлива равен:

Автономность судна в часах t равна:

Коэффициент уравнения масс B равен:

Масса экипажа и запасов равна:

- масса экипажа;

- масса провизии;

- масса пресной воды;

- масса пищевых и твердых отходов.

Масса экипажа: т.

- число членов экипажа,

Масса запасов провизии: т.

А - автономность (сутки), А =15

Масса пресной воды: т.

Масса пищевых и твердых отходов: т.

Масса сточно-фановых и подсланевых вод равна:

Коэффициент уравнения масс С равен:

Уравнение масс проектируемого судна представлено в виде:

Решение уравнения находим итерационным способом по формуле:

D = 4350 т.

В качестве контроля найденного водоизмещения, водоизмещение проверяем по коэффициентам утилизации.

т.

Разница в определении водоизмещения двумя способами составляет 5%.

Для дальнейших расчетов принимается водоизмещение D = 4350 т.

2.2 Определение главных размерений в первом приближении

Главные размерения в первом приближении рассчитываются с помощью уравнения плавучести

, где


- плотность морской воды;

- коэффициент полноты водоизмещения;

L , B , T – длина, ширина и осадка судна по КВЛ

Для решения этого уравнения необходимо задать дополнительные параметры:
, которые в первом приближении принимаем такими же как и у прототипа.

Тогда осадка судна определится по формуле:

м.

Ширина судна равна:
м

Длина судна равна:
м

Высота борта проектируемого судна вычисляется по формуле:

Соотношение главных размерений судна по возможности для I ограничен-ного района плавания не должны выходить за пределы:

;

Проконтролируем коэффициент полноты водоизмещения по скоростному режиму судна.

Коэффициент полноты водоизмещения для сухогрузных судов должен укладываться в диапазон

Так как коэффициент полноты водоизмещения укладывается в рекомендуемый диапазон, то для дальнейшего проектирования принимаем δ= 0.835

Для дальнейших расчетов ширина судна принимается равной: B = 12.8 м.

С учетом округления длина проектируемого судна принимается равной:

м.

Фактическая высота надводного борта судна м.

Минимально возможная высота надводного борта равна
м.

Высота борта удовлетворяет правилам о грузовой марке, в отношении высоты надводного борта.

Коэффициенты полноты корпуса показаны на рис. 2.5.

Коэффициент полноты ВЛ α – отношение площади ватерлинии к площади описанного прямоугольника:

где S ВЛ – площадь ватерлинии.

Коэффициент полноты мидель – шпангоута β – отношение погруженной площади мидель – шпангоута к площади описанного прямоугольника:

Рис. 2.5. Коэффициенты полноты: а – площади ватерлинии;

б – площади мидель-шпангоута; в – водоизмещения

Коэффициент общей полноты δ – отношение объема подводной части судна V к объему описанного параллелепипеда:

. (2.3)

Коэффициент вертикальной полноты χ – отношение объема подводной части судна к объему цилиндра, площадь основания которого равна площади ватерлинии (S ), а высота – осадке судна (T ):

или или (2.4)

Коэффициент продольной полноты φ отношение объема подводной части судна к объему цилиндра, площадь основания которого равна площади мидель – шпангоута (), а высота – длине судна (L):

или или (2.5)

Вторые обозначения приняты в иностранной литературе.

    1. Соотношение главных размерений судна

Главные размерения суднаL.В.Н и Т определяют размеры, а их соотношения дают представление о форме корпуса и характеризуют некоторые мореходные качества судна.

Отношение L/В дает представление о быстроходности судна, так как чем больше это отношение, тем быстроходнее судно.

Отношение L/Н характеризует жесткость и прочность корпуса судна, т. е. с его ростом снижается жесткость и прочность корпуса.

Отношение Н/Т характеризует степень непотопляемости судна и с его ростом непотопляемость повышается.

Отношение В/Т влияет на остойчивость и ходкость судна и с его ростом увеличивается остойчивость, но ходкость ухудшается в связи с увеличением сопротивления воды.

Характерные значения коэффициентов полноты и соотношения главных размерений приведены в таблице 2.1.

Таблица 2.1. Коэффициенты полноты и соотношение

Главных размерений транспортных судов

Типы судов

L/В

В/Т

Н/Т

L/Н

δ

α

Сухогрузные

суда

1,25-1,52

10,3-14,5

0,62-0,75

0,80-0,85

0,95-0,98

Балкеры

1,30-1,58

10,5-14,5

0,73-0,83

0,78-0,88

0,96-0,99

Танкеры

1,18-1,52

11,5-14,0

0,72-0,90

0,78-0, 89

0,98-0,99

Контейнеровозы

1,35-2,1

9,0-14,0

0,60-0,70

0,82-0,86

0,95-0,98

Накатные суда

1,85-2,28

8,2-10,5

0,59-0,69

0,82-0,88

0,94-0,97

    1. Теоретический чертеж

Форму судна наиболее полно определяет теоретический чертеж судна – совокупность проекций сечений поверхности судна на три главные взаимно перпендикулярные плоскости судна (рис. 2.6).

Рис. 2.6. Теоретический чертеж судна

В качестве главных плоскостей проекций теоретического чертежа принимают: диаметральную плоскость, основную плоскость и плоскость мидель – шпангоута.

Линии пересечения судовой поверхности плоскостями, параллельными диаметральной плоскости, называются батоксами . Линии пересечения поверхности судна плоскостями, параллельными основной плоскости, называются ватерлиниями, а линии пересечения поверхности судна плоскостями, параллельными плоскости мидель - шпангоута, – теоретическими шпангоутами.

Проекция всех этих линий на диаметральную (вертикальную) плоскость называется – «БОК». Батоксы на этой проекции изображаются без искажений, а ватерлинии и шпангоуты видны в виде прямых линий. Проекция линий пересечения на горизонтальную (основную) плоскость называется «ПОЛУШИРОТОЙ ».Ватерлинии на проекции изображаются без искажений, а батоксы и шпангоуты в виде прямых линий. Так как ватерлинии симметричны (при симметричной форме судна), то они на полушироте изображаются только по одну сторону от ДП. На полушироте изображается линия пересечения верхней палубы и борта, а также все палубы судна. Проекция всех линий пересечения на плоскость мидель - шпангоута называется «КОРПУС »(профильная проекция). На корпусе с правой стороны от ДП изображают проекцию носовых шпангоутов, а с левой стороны – кормовых. Проекции ватерлиний и батоксов изображаются в виде прямых линий.

Теоретический чертеж необходим для расчетов мореходных качеств – плавучести, остойчивости, непотопляемости, постройки корпуса судна, а также в эксплуатации – для определения размеров помещений и расстояний до отверстий в корпусе судна. Прямые линии теоретического чертежа называют «сеткой», а наклонные сечения – «рыбинами ».

При разработке теоретического чертежа судна используют масштабы уменьшения: 1:200, 1:100, 1:50, 1:20, 1:10 в зависимости от размеров судна.

При постройке судна на судоверфях некоторые участки корпуса вычерчивают в масштабе 1:1 на полу специального цеха, называемого «плазом».

ЛЕКЦИЯ №2

Геометрия судового корпуса. Главные размерения. Коэффициенты полноты. Классификация морских судов. Роль и задачи классификационных обществ.

Ограничительные поверхности и плоскости сечений корпуса судна, а также объемы почти невозможно описать математическими функциями. Поэтому для изображения формы корпуса рассекают его системой плоскостей (рис.1, 2).

Рис.1 – Система плоскостей корпуса судна

Геометрическая форма наружной поверхности корпуса судна изображается в виде теоретического чертежа (рис.3).

За плоскости проекций теоретического чертежа принимают следующие:

Основную плоскость (ОП), проходящую через средний прямолинейный участок линии киля

Диаметральную (вертикально-продольную), проходящую вдоль всего судна и условно делящую его на две симметричные части – правый и левый борт. Проекция судна на эту плоскость - бок .

Плоскость грузовой (ГВЛ) или конструктивной (КВЛ) ватерлинии, совпадающую с поверхностью спокойной воды при плавании судна по проектную осадку. Проекция судна на эту плоскость – полуширота .

Плоскость мидель-шпангоута (вертикально-поперечную), проходящую посредине расчетной длины судна и делящую его на две несимметричные части – носовую и кормовую. Проекция судна на эту плоскость - корпус .

Рис.2 - Изображение корпуса судна на теоретическом чертеже:

а - бок, b - корпус, с - полуширота, 1 - корпус носовой оконечности, 2 - диаметральная плоскость, 3 - корпус кормовой оконечности

Сечения судна плоскостями, параллельными плоскостям проекций, образуют три системы главных сечений: шпангоуты, ватерлинии и батоксы.

Рис.3 – Теоретический чертеж корпуса судна

Теоретический чертеж – основа всех судостроительных чертежей, например, положения и контура конструктивных шпангоутов (плазовый чертеж), разверток листов, а также теоретических расчетов судна (например, расчетов остойчивости и дифферента).

Главными геометрическими размерениями судна является его длина L , ширина B , высота борта H и осадка T (см. рис.4).

Длина наибольшая
- расстояние, измеренное в горизонтальной плоскости между крайними точками носовой и кормовой оконечностей корпуса без выступающих частей.

Длина по конструктивной ватерлинии
- расстояние, измеренное в плоскости конструктивной ватерлинии между точками пересечения ее носовой и кормовой частей с диаметральной плоскостью.

Длина между перпендикулярами
- расстояние, измеренное в плоскости конструктивной ватерлинии между носовым и кормовым перпендикулярами.

Рис.4 – Главные геометрические размерения судна

Длина по любой ватерлинии измеряется, как
.

Длина цилиндрической вставки - длина корпуса судна с постоянным сечением шпангоута.

Ширина наибольшая
- расстояние, измеренное между крайними точками корпуса без учета выступающих частей.

Ширина на мидель-шпангоуте В - расстояние, измеренное на мидель-шпангоуте между теоретическими поверхностями бортов на уровне конструктивной или расчетной ватерлинии.

Высота борта Н - вертикальное расстояние, измеренное на мидель-шпангоуте от горизонтальной плоскости, проходящей через точку пересечения килевой линии с плоскостью мидель-шпангоута, до бортовой линии верхней палубы.

Высота борта до главной палубы
- высота борта до самой верхней сплошной палубы.

Осадка (Т ) - вертикальное расстояние, измеренное в плоскости мидель-шпангоута от основной плоскости конструктивной или расчетной ватерлинии.

Осадка носом и осадка кормой и - измеряются на носовом и кормовом перпендикулярах до любой ватерлинии.

Средняя осадка Т ср - измеряется, от основной плоскости до ватерлинии в середине длины судна.

Носовая и кормовая седловатость h н и h к - плавный подъем палубы от миделя в нос и корму; величина подъема измеряется на носовом и кормовом перпендикулярах.

Погибь бимса h б - разница по высоте между краем и серединой палубы, измеренная в самом широком месте палубы.

Надводный борт F - расстояние, измеренное по вертикали у борта на середине длины судна от верхней кромки палубной линии до верхней кромки соответствующей грузовой марки.

Форма судна в известной мере характеризуется следующими коэффициентами полноты и соотношениями главных размерений (см. рис.5):

Рис.5 – Определение коэффициентов полноты корпуса судна

Коэффициент общей полноты водоизмещения - отношение объема подводной части корпуса к объему прямоугольного параллелепипеда с размерами ребер , , , в который вписывается этот объем (рис.5, а):

.

Коэффициент полноты площади ватерлинии
- отношение площади конструктивной (грузовой) ватерлинии к площади описанного вокруг нее прямоугольника со сторонами и (рис.5, б):

,

Коэффициент полноты площади мидель-шпангоута - отношение погруженной части площади мидель-шпангоута
к площади описанного вокруг него прямоугольника со сторонами и (рис.5, в):

,

Коэффициент вертикальной полноты корпуса - отношение объема подводной части корпуса к объему прямого цилиндра с основанием, ограниченным обводом конструктивной ватерлинии и образующей, равной осадке судна :

.

Коэффициент продольной полноты - отношение объема подводной части корпуса к объему цилиндра, основание которого очерчено обводом мидель-шпангоута, а длина образующих равна длине судна :

.

Основными соотношениями главных размерений являются
,
,
,
,
, а также обратные им соотношения.

Увеличивающийся поток грузов, перевозимых морским путем, стремление к снижению транспортных расходов и к максимальной загрузке имеющихся портов, разнообразие перевозимых грузов, развитие технологии судостроения, а также становящийся все более популярным туризм, - все это привело к тому, что традиционное, действовавшее еще полвека назад деление судов на пассажирские и грузовые сейчас уже не принято.

Суда классифицируются: по АКТ, по району плавания, по типу движителя и двигателя, по характеру движения и, наконец, по назначению. По АКТ различают суда полнонаборные и шельтердечные (рис. 6).

Полнонаборные суда имеют палубу, идущую от кормы до носа, которая одновременно служит палубой надводного борта и палубой переборок, так как до нее доводятся поперечные водонепроницаемые переборки (рис. 6, а). Разновидности полнонаборных судов: трехостровное, колодезное и колодезное с квартердеком. Трехостровное судно (рис. 6, b) имеет три надстройки: в корме (ют), посередине судна (средняя надстройка) у в носу (бак). Этот тип судна был распространен в период между двумя мировыми войнами. Иногда кормовую и среднюю надстройки объединяли в сплошную кормовую надстройку. При этом между кормовой надстройкой и баком образовывался так называемый колодец. Отсюда название «колодезное судно» (рис. 6, с). Объем трюмов ограничивается в корме туннелем гребного вала и формой кормовой оконечности. Для компенсации главную палубу в этом месте иногда приподнимали (рис. 6, d), обычно на половину твиндека, и возник так называемый квартердек.

а - полнонаборное судно 1 - верхняя палуба и палуба переборок; 2 - запас плавучести; 3 - переборки; 4 - твиндек

b - трехостровное судно 1 - ют; 2 - средняя надстройка; 3 - бак; 4 - главная (верхняя палуба)

с -колодезное судно 1 - верхняя палуба; 2 - удлиненный ют; 3 - колодец; 4 - бак

d - колодезное судно с квартердеком 1 - квартердек; 2 - верхняя палуба; 3 - средняя надстройка; 4 - колодец; 5 - бак

е шельтердечное судно 1 - главная палуба и шельтердек; 2 - обмерный люк; 3 - палуба надводного борта (палуба переборок); 4 - переборки

Рис.6 – Архитектурно-конструктивные типы судов

У полнонаборных судов и их разновидностей запас плавучести определяется объемом корпуса судна между ватерлинией при максимальной осадке и палубой переборок. На рисунке заштрихованная площадь соответствует запасу плавучести полнонаборных судов. Шельтердечные суда (рис. 6, е) обладают значительно меньшим запасом плавучести, чем полнонаборные. Верхняя палуба у шельтердечных судов служит одновременно главной палубой, а палуба переборок (палуба надводного борта) расположена ниже. На верхней палубе находятся надстройки, но они при обмере судна не принимаются во внимание, так как не являются непроницаемыми и сплошными. Эти надстройки показаны на рисунке темными прямоугольниками.

По району плавания различают суда неограниченного плавания, которые иногда называют также судами дальнего плавания или морскими судами, и суда ограниченного плавания (суда прибрежного плавания, суда для плавания в морских бухтах и т. д.

По типу главного двигателя различают суда с паровым двигателем (с поршневой паровой машиной и паровой турбиной); суда с двигателем внутреннего сгорания (с двигателем внутреннего сгорания и с газовой турбиной); суда с атомным двигателем. Это разделение судов по типу двигателя является весьма грубым.

По типу движителя суда с механическим приводом различают: суда с гребными колесами (в наше время почти не встречаются; суда с гребным винтом (винт фиксированного шага и винт регулируемого шага), который может также находиться в насадке; суда со специальным движителем (крыльчатым и водометным).

Другие, менее важные принципы классификации судов - по виду применяемого материала (суда из дерева, легких сплавов, пластмассы, железобетона) и по количеству корпусов (однокорпусные, двухкорпусные – катамараны и трехкорпусные – тримараны).

С развитием судостроения все актуальнее становится классификация судов по принципу движения на воде . Различают водоизмещающие суда (к ним относится подавляющее большинство морских судов) и суда, которые поддерживаются при движении динамической силой (суда на подводных крыльях и суда на воздушной подушке).

С точки зрения эксплуатации наиболее важным является деление судов по назначению, поскольку в последнее время быстро развивается специализация судов.

По назначению различают пассажирские суда, в том числе: линейные пассажирские лайнеры, круизные и каботажные пассажирские суда (для экскурсий и круизов) и грузовые суда, в том числе универсальные для генеральных грузов, контейнеровозы, накатные суда (суда с горизонтальной грузообработкой), баржевозы, для перевозки массовых грузов, танкеры, рефрижераторные и прочие суда для перевозки специальных грузов (например, для перевозки леса, машин, сверхтяжелых грузов и т.д.).

Грузовые суда можно подразделять также по виду их эксплуатации: на линейные суда, которые курсируют между портами по расписанию, и суда нерегулярного плавания (трампы), которые ходят в зависимости от накопления партии груза.

Следует еще назвать рыболовные суда (рыболовные исследовательские, промысловые, перерабатывающие суда-фабрики и транспортные для рыбы и рыбопродуктов), а также специальные и вспомогательные суда (для гидрографических и океанологических исследований, кабельные, буксиры, ледоколы, пожарные, спасательные и др.).

Морское судоходство - перевозка людей и грузов морем - издавна связано с определенным риском. Не всегда судно было в состоянии противостоять морской стихии. И в наше время случаются не только повреждения, но и гибель судов из-за неудовлетворительных прочности, остойчивости, надежности оборудования и оснащения судна, неправильного размещения груза, ошибок в судовождении, а также вследствие пожаров, столкновений и посадок на мели. Поэтому повышение безопасности плавания судов всегда было серьезной задачей. В XVIII-ом столетии возникли первые национальные классификационные общества, которые распределили морские суда того времени - парусные - на соответствующие классы в зависимости от их мореходности. После гибели участвовавшего в гонках за «Голубую ленту» пассажирского лайнера «Титаник» в 1912 г. был проведен ряд международных конференций по безопасности судов и приняты соответствующие конвенции.

После второй мировой войны в рамках ООН была образована Межправительственная морская консультативная организация (ИМКО), в компетенцию которой входит международное сотрудничество по вопросам безопасности в области судостроения и судоходства. Международная конвенция по охране человеческой жизни на море 1960 г. и новое Международное соглашение о грузовых марках 1966 г. признаны почти всеми правительствами судоходных государств и нашли отражение в юридических бюллетенях, правилах и т. д. Наряду с этим существуют и другие национальные правила, которые касаются безопасности судоходства и судов. Соблюдение правил постройки судов, которые содержатся в вышеназванных договорах и соглашениях, контролируется национальными классификационными или другими государственными органами.

Так как безопасность судна зависит главным образом от его прочности, остойчивости, надежности оборудования и оснащения, страховые общества при заключении договора определяют характеристики и состояние судна. Для того чтобы не ошибиться, страховые общества в прошлом держали на службе собственных экспертов, которые должны были судить о техническом состоянии судов. Возникшие позже объединения экспертов разделили все суда на классы в зависимости от их мореходности и присвоили каждому классу определенный знак. Первый печатный перечень, в котором определенными символами были обозначены характеристики судов, появился в 1764 г. в Англии - он был издан Регистром Ллойда. Это классификационное общество возникло в 1760 г. и наряду с французским Бюро Веритас, основанным в 1828 г., является старейшим. Все страны с развитым судоходством имеют собственные национальные классификационные организации, которые на основе опыта постройки и эксплуатации судов издают Правила их классификации, постройки и обеспечения безопасности судов.

Основные задачи классификационных обществ:

    Разработка и издание Правил;

    Проверка классификационной документации (чертежей) на новых и переоборудованных судах;

    Приемка судов на верфях и надзор за постройкой новых судов, а также за ремонтом и переоборудованием старых;

    Классификация и классификационные (ревизионные) осмотры судов, находящихся в эксплуатации;

    Регистрация судов в судовом Регистре.

Издание Правил необходимо для того, чтобы информировать пароходства, проектные бюро и судостроительные верфи об условиях классификации. В них содержатся требования к материалам, размеры и условия изготовления деталей корпуса судна, правила монтажа механических и электрических установок, технология выполнения сварки и клепки, правила по оборудованию и оснащению, обеспечению необходимой остойчивости и защиты от пожаров. Кроме того, издаются Правила для особых типов судов и установок (танкеров, рудовозов и судов для массовых грузов, яхт, трюмных холодильных установок и т. д.). Существуют Правила, которые относятся к безопасности эксплуатации и движения судов, такие как Правила по обеспечению непотопляемости, Правила содержания радио-, теле- и навигационных установок, Предписания или рекомендации по размещению грузов - зерна, руды и т. д. Объем правил, публикуемых классификационными организациями, зависит от возложенных на них задач и данных им прав.

При проведении надзора за постройкой на верфи и классификации судов классификационные органы исходят из соответствующей документации. В документах (чертежах, расчетах, описаниях) должны содержаться все данные, которые необходимы для оценки прочности и надежности судна в целом или отдельных установок и частей оборудования. Постройку новых и переоборудуемых старых судов можно производить только после утверждения всей необходимой для этого документации.

При классификации судна исходят из того, что его корпус, установки, оборудование и устройства должны соответствовать требованиям, имеющим юридическую силу. Класс присваивается судну на несколько лет, если оно находится в удовлетворительном состоянии. На судне проводятся регулярные классификационные осмотры - ревизии. Обычно суда осматриваются раз в год на плаву с целью подтверждения класса и каждые 3-5 лет в доке для обновления класса. От этого правила бывают отклонения: суда с более сильным износом и старые, которые уже не имеют наивысшего класса, осматриваются через более короткие промежутки времени. Пассажирские суда раз в год, а грузовые и прочие морские суда один раз между двумя осмотрами по обновлению класса подвергаются осмотру днища в доке. Наряду с этими регулярными ревизиями проводятся также особые ревизии после аварии, пожара или другого повреждения судна.

Классификация судна подтверждается:

Присвоением ему класса;

Составлением аттестата класса судна (сертификата) и других документов, а также передачей их владельцу судна (судовладельцу, капитану).

Список судов, которым присвоен класс Регистра, ежегодно публикуется классификационными обществами.

С ростом интенсивности судоходства увеличилось также количество морских катастроф, в результате которых гибнут люди и большие материальные ценности. К причинам многих несчастных случаев следует отнести неудовлетворительное состояние предохранительных устройств, недостаточную прочность и неполноценное оборудование судов, а также слабую профессиональную подготовку членов экипажей. Поэтому морские страны договорились о минимальных требованиях, которые должны предъявляться к судам в отношении их безопасности. Первое соглашение 1914 года было в 1929 г. заменено Лондонской конвенцией об охране человеческой жизни на море (СОЛАС 1929), которая в 1948 и в 1960 гг. переиздавалась. Новые изменения были разработаны конференцией, проведенной в 1972 г. СОЛАС содержит требования, которые обязательны для всех судов (за исключением военных) государств - участников договора.

Эти требования в основном касаются:

Текущих осмотров и проверок судов, включая машинные установки, устройства и оборудование, а также составления свидетельств о безопасности;

Конструкции судна в отношении разделения корпуса пассажирских судов переборками и остойчивости поврежденных судов;

Выполнения и установки переборок пиков и машинного отделения, туннеля гребного вала, двойного дна;

Закрытия отверстий в водонепроницаемых переборках и в наружной обшивке ниже предельной осадки;

Водоотливных систем на пассажирских судах;

Документации по остойчивости для пассажирских и грузовых судов, а также планов обеспечения безопасности при поступлении воды для машин и электрических установок;

Противопожарной защиты, обнаружения и тушения пожаров на пассажирских и грузовых судах, а также общих мероприятий по борьбе с пожарами;

Оборудования пассажирских и грузовых судов спасательными средствами;

Оборудования судов телеграфными и радиотелефонными установками.

§ 6. Соотношения главных размерений и коэффициенты, характеризующие форму судового корпуса

Кроме приведенных ранее общих сведений о форме обводов диаметральной плоскости, конструктивной ватерлинии и мидель-шпангоута, для более полной характеристики формы судовых корпусов и представления о зависящих от нее мореходных и эксплуатационных качествах судов необходимо знать следующие числовые соотношения главных размерений судна:

1) отношение L/B, влияющее на ходкость судна;

2) отношение В/Г, влияющее на остойчивость судна, его ходкость и качку. Увеличение относительной ширины улучшает остойчивость судна, но качка при этом становится более резкой и сопротивление воды движению судна возрастает;

3) отношение Н/Т, влияющее на непотопляемость судна. Увеличение относительной высоты борта улучшает непотопляемость судна;

4) отношение L/Т, влияющее на поворотливость судна. Увеличение относительной длины судна ухудшает его поворотливость;

5) отношение L/Н, связанное с характеристикой общей продольной прочности судна (по Правилам Регистра СССР L/H должно быть в пределах от 9 до 14).

Наконец, судить о форме подводной части корпуса судна позволяют безразмерные коэффициенты полноты, полученные путем сравнения основных площадей и объемов корпуса с соответствующими площадями и объемами простейших геометрических фигур и тел, построенных на его главных размерениях.

Такими основными коэффициентами полноты подводной части корпуса судна являются:

А) коэффициент полноты конструктивной (грузовой) ватерлинии а - отношение площади ватерлинии 5 к площади описанного прямоугольника, построенного по расчетной длине L и ширине корпуса В (рис. 8, а)


б) коэффициент полноты мидель-шпангоута в -отношение площади погруженной части мидель-шпангоута w к площади описанного прямоугольника, построенного по расчетной ширине В и осадке корпуса Т (рис. 8, б)



Рис. 8. Коэффициенты полноты подводной части корпуса судна: а - ватерлинии; б - мидель-шпангоута; в - водоизмещения.


в) коэффициент полноты водоизмещения В - отношение объема подводной части корпуса V к объему описанного параллелепипеда, построенного на расчетной длине L, ширине В и осадке корпуса Т (рис. 8, в)


Кроме трех приведенных основных и независимых коэффициентов а В и б, применяют два коэффициента ф и y), являющихся производными от первых и связанных с ними следующими соотношениями:

Г) коэффициент продольной полноты ф - отношение объема подводной части судна V к объему призмы с основанием, равным площади погруженной части мидель-шпагноута w, и высотой, равной длине корпуса L,


Подставляя вместо о и V их значения, после упрощения получим зависимость этого коэффициента общей полноты и полноты мидель-шпангоута


Коэффициент ф выражает распределение по длине корпуса объема его погруженной части, оказывающего влияние на сопротивление воды движению судна;

Д) коэффициент вертикальной полноты y - отношение объема подводной части корпуса V к объему призмы, основание которой равно площади конструктивной (грузовой) ватерлинии судна S, а высота- осадке корпуса Т

К главным размерениям судна относятся: длина (L), ширина (В), высота борта (Н или D), осадка (Т или d)

Длина судна (L). Различают длину:

По конструктивной ВЛ /Lквл/ - расстояние (в плоскости КВЛ) меж-ду точками пересечения её с форштевнем и ахтерштевнем;

Между перпендикулярами (Lпп) – расстояние в пл.КВЛ между носовым и кормовым перпендикулярами; носовой перпендикуляр проходит через крайнюю носовую точку КВЛ, кормовой – через ось баллера руля;

Наибольшую / Lнб/ - расстояние между крайними точками носо-вой и кормовой оконечностями;

Габаритную /Lгб/ - наибольшая длина плюс выступающие части.

Ширина судна В. Различают ширину:

По КВЛ /ВКВЛ/ - расстояние в пл.КВЛ в наиболее широкой части корпуса между точками пересечения её с внутренней поверхно- стью обшивки корпуса;

На миделе /Вмд/ - то же, что и Вквл, но в плоскости мидель-шпан- гоута;

Наибольшую /Внб/ - расстояние в наиболее широкой части кор- пуса между крайними его точками без учёта выступающих частей

Габаритную /Вгб/ - Внб с учётом выступающих частей.

Осадка судна /d, Т/ - расстояние в плоскости мидель-шпангоута между основной пл. (ОП) и КВЛ при расчётной ВЛ.

Посадка судна – средняя осадка, дифферент (разница осадок но-сом и кормой), крен (угол крена). Контроль за посадкой судна при эксплуатации осуществляется по маркам углубления, которые на-носят арабскими цифрами на обоих бортах на форштевне, в райо- не миделя, ахтерштевне на расстоянии 10 см друг от друга (в де-циметрах).

Высота борта /D,Н/ - расстояние по вертикали в плоскости миделя у борта от внутренней кромки вертикального киля до верхней кромки бимса верхней палубы.

Высота надводного борта F = D – d или Н – Т

Соотношения главных размерений (L/В, В/Т, Н/Т, L/Н, В/Н служат первичной характеристикой формы корпуса судна, а также они влияют на мореходные качества судна.
КОЭФФИЦИЕНТЫ ПОЛНОТЫ подводной части корпуса судна также служат характеристикой формы корпуса и кроме того для приближённых расчётов главных размерений судна.

S/LB – коэффициент полноты площади КВЛ

= /ВТ - коэффициент полноты площади мидель-шпангоута

V/ LBT – коэффициент общей полноты

V/ L - коэффициент продольной полноты

V/ST - коэффициент вертикальной полноты

Таблица соотношений главных размерений и коэффициентов по- лноты приведена в Ф на стр.62 табл.6