Рассчитать среднее значение и показатели вариации. Виды средних и способы их вычисления

Вариация – это изменение (колеблемость) значений признака в пределах изучаемой совокупности при переходе от одного объекта (группы объектов), или от одного случая к другому. Абсолютные и относительные показатели вариации, характеризующие колеблемость значений варьирующего признака, позволяют, в частности, измерить степень связи и взаимозависимости между признаками, определить степень однородности совокупности, типичности и устойчивости средней, определить величину погрешности выборочного наблюдения, статистически оценить закон распределения совокупности и т. п.

В этой теме необходимо уяснить сущность (смысл), назначение и способы вычисления каждого показателя вариации, рассматриваемого в курсе теории статистики: размах вариации, среднее линейное отклонение, средний квадрат отклонений (дисперсию), среднее квадратическое отклонение, относительные коэффициенты вариации (коэффициент осцилляции, коэффициент среднего линейного отклонения, коэффициент вариации).

Размах вариации (R ) представляет собой разность между максимальным (х max) и минимальным (х min) значениями признака в совокупности (в ряду распределения):

R = х max - х min. (5.1)

Мерой других показателей вариации является разность не между крайними значениями признака, а средняя разность между каждым значением признака и средней величиной этих признаков. Разность между отдельным значением признака и средней называют отклонением.

Среднее линейное отклонение вычисляется по следующим формулам:

по индивидуальным (несгруппированным) данным

; (5.2)

по вариационным рядам (сгруппированным данным)

. (5.3)

Так как алгебраическая сумма отклонений индивидуальных значений признака от средней (согласно нулевому свойству) всегда равна нулю, то при расчете среднего линейного отклонения используется арифметическая сумма отклонений, взятая по модулю, т.е.
.

Среднее линейное отклонение имеет ту же размерность, что и признак, для которого оно исчисляется.

Дисперсия и среднее квадратическое отклонение. Среднее линейное отклонение относительно редко применяется для оценки вариации признака. Поэтому обычно вычисляются дисперсия ( 2) и среднее квадратическое отклонение (). Эти показатели применяются не только для оценки вариации признака, но и для измерения связи между ними, для оценки величины ошибки выборочного наблюдения и других целей.

Дисперсия признака рассчитывается по формулам:

по первичным данным

; (5.4)

по вариационным рядам

. (5.5)

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии:

по первичным данным

; (5.6)

по вариационным рядам

. (5.7)

Среднее квадратическое отклонение так же, как и среднее линейное отклонение, имеет ту же размерность, что и сам исходный признак.

Дисперсию можно определить и как разность между средним квадратом вариантов и квадратом их средней величины, т. е.
. (5.8)

В этом случае по первичным данным дисперсия равна:

(5.9)

Применительно к сгруппированным данным, расчет дисперсии этим способом в развернутом виде представим в таком виде:

. (5.10)

Для рядов распределения с равными интервалами значение дисперсии можно вычислить, применяя способ условных моментов, т. е.

, (5.11)

где
- первый условный момент; (5.12)

- второй условный момент. (5.13)

Среднее квадратическое отклонение по способу условных моментов определяется по формуле:

(5.14)

Преобразуя выражение расчета дисперсии по способу условных моментов, получим формулу вида:
(5.15)

На основе одних и тех же исходных данных получим одинаковое значение дисперсии.

Относительные показатели вариации вычисляются как отношение ряда абсолютных показателей вариации к их средней арифметической и выражаются в процентах:

коэффициент осцилляции -
; (5.16)

коэффициент относительного линейного отклонения -
; (5.17)

коэффициент вариации -
. (5.18)

Задача 1 . Рассмотрим способы расчета показателей вариации на основе данных табл. 5.1.

Таблица 5.1. Исходные данные для расчета показателей вариации

Затраты времени на производство деталей мин

Количество деталей, шт. (f)

Середина интервала (х)

; к = 2

Приведенный ряд распределения ранжированный, поэтому здесь легко найти минимальное значение признака, оно равно 8 мин. (10 - 2), и максимальное, равное 18 мин. (16 + 2). Значит, размах вариации признака в этом ряду составит 10 мин., т. е.

R = x max – x min = 18 – 8 = 10 мин.

Вычислим среднее линейное отклонение. Прежде всего необходимо вычислить среднюю величину . Все вычисления будем вести в табличной форме (табл. 5.1.), отводя для каждой вычислительной операции графу в таблице.

Поскольку исходные данные представлены рядом распределения, то

мин.

мин.

Покажем способы расчета дисперсии:

а) обычным способом (по определению):

;

б) как разность между средним квадратом и квадратом средней величины:

Для определения величины дисперсии по этой формуле необходимо вычислить средний квадрат вариантов признака по формуле:

;

 2 =178,6 – (13,2) 2 =4,36;

в) по способу условных моментов:

;

;

г) на основе преобразования формулы расчета дисперсии по способу условных моментов имеем:

Дисперсия – число отвлеченное, не имеющее единиц измерения.

Среднее квадратическое отклонение вычислим путем извлечения корня квадратного из дисперсии:

мин.

По способу условных моментов величину среднего квадратического отклонения определим так:

Вычислим относительные показатели вариации:

%;

%;

%.

Основным относительным показателем вариации является коэффициент вариации (V). Он используется для сравнительной оценки меры колеблемости признаков, выраженных в различных единицах измерения.

Наряду с вариацией количественных признаков может наблюдаться и вариация качественных признаков (в частности альтернативной изменчивости качественных признаков). В этом случае каждая единица изучаемой совокупности либо обладает каким-то свойством, либо нет (например, каждый взрослый человек либо работает, либо нет). Наличие признака у единиц совокупности обозначают 1, а отсутствие –0; долю же единиц совокупности, обладающих изучаемым признаком, обозначают p, а не обладающих им – q. Дисперсия альтернативного признака определяется по формуле:

; (5.19)

p + q = 1 (5.20)

Если, например, доля поступивших в университет равна 30%, а не поступивших – 70%, то дисперсия равна 0,21(0,3 · 0,7). максимальное значение произведения pq равно 0,25 (при условии, когда одна половина единиц обладает данным признаком, а другая половина нет: (0,5 · 0,5 = 0,25).

Способ разложения общей дисперсии. Для оценки влияния различных факторов, определяющих колеблемость индивидуальных значений признака, воспользуемся разложением общей дисперсии на составляющие: на так называемую групповую дисперсию и среднюю из внутригрупповых дисперсий:

, (5.21)

где
– общая дисперсия, характеризующая вариацию признака как результат влияния всех факторов, определяющих индивидуальные различия единиц совокупности.

Вариацию признака, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия  2 , которая является мерой колеблемости частных средних по группам
вокруг общей средней и исчисляется по формуле:

, (5.22)

где n j – число единиц совокупности в каждой группе;

j – порядковый номер группы.

Вариацию признака, обусловленную влиянием всех прочих факторов, кроме группировочного (факторного), характеризует в каждой группе внутригрупповая дисперсия:

, (5.23)

где i – порядковый номер x и f в пределах каждой группы.

По совокупности в целом средняя из внутригрупповых дисперсий определяется по формуле:

(5.24)

Отношение межгрупповой дисперсии  2 к общей
даст коэффициент детерминации:

(5.25)

который характеризует долю вариации результативного признака, обусловленную вариацией факторного признака, положенного в основание группировки.

Показатель, полученный как корень квадратный из коэффициента детерминации, называется коэффициентом эмпирического корреляционного отношения, т.е.:

(5.26)

Он характеризует тесноту связи между результативным и факторным (положенным в основу группировки) признаками. Численное значение коэффициента эмпирического корреляционного отношения имеет два знака: . При решении вопроса о том, с каким знаком его следует брать, необходимо иметь ввиду: если вариация факторного и результативного признаков идет синхронно в одном и том же направлении (возрастает или убывает), то корреляционные отношение берется со знаком плюс; если же изменение этих признаков идет в противоположных направлениях, то оно берется со знаком минус.

Для вычисления групповых и межгрупповых дисперсий можно применять любой из описанных выше способов исчисления среднего квадрата отклонений.

Задача 2. Вычислим все названные дисперсии по исходным данным табл. 5.2.

Таблица 5.2. Распределение посевной площади озимой пшеницы по урожайности

Номер участка

Урожайность, ц/га

Посевная площадь, га

Вычислим среднюю урожайность озимой пшеницы по всем участкам (общая средняя):

ц/га.

Общую дисперсию найдем по формуле:

В гр. 6 табл. 5.2. вычислим значения для расчета среднего квадрата вариантов признака:

.

Находим общую дисперсию:

Урожайность зависит от многих факторов (качество почвы, размер внесения органических и минеральных удобрений, качество семян, сроки сева, уход за посевами и др.) Общая дисперсия в данном случае измеряет колеблемость урожайности за счет всех факторов.

Задача 3. Разобьем совокупность участков на две группы: I группа – посевные площади, на которых не вносились органические удобрения; II – площади, на которых они вносились. К первой группе отнесем участки 1-4, а ко второй – 4-8. По данным этих групп рассчитаем остальные из необходимых нам дисперсий, используя уже произведенные в табл. 5.2. вычисления.

Таблица 5.3. Расчетные данные для вычисления межгрупповой и групповых дисперсий

Номер участка

Урожайность, ц/га (х)

Посевная площадь, га (f)

Номер участка

Урожайность, ц/га (х)

Посевная площадь, га (f)

Определяем:

для I группы:

для II группы:

а) групповую среднюю

а) групповую среднюю

ц/га;

ц/га;

б) средний квадрат вариантов признака

;

;

в) групповую дисперсию

в) групповую дисперсию

Определяем среднюю из групповых дисперсий:

.

Находим межгрупповую дисперсию:

Средняя из групповых дисперсий измеряет колеблемость признака за счет всех прочих факторов, кроме положенного в основание группировки (разграничения на группы), а межгрупповая – за счет именно этого фактора. Сумма этих дисперсий должна дать общую дисперсию, а именно:

Отношение межгрупповой дисперсии к общей в нашем примере даст следующее значение коэффициента детерминации:

, или 71,8%,

т. е. вариация урожайности озимой пшеницы на 71,8% зависит от вариации размеров внесения органических удобрений. Остальные же 28,2% вариации урожайности зависит от влияния всех остальных факторов, кроме размеров внесения органических удобрений.

Коэффициент эмпирического корреляционного отношения составит:

.

Это говорит о том, что внесение органических удобрений оказывает весьма существенное влияние на урожайность.

5.1. Понятие средней величины

Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

5.2. Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качестве структурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

где X i – варианта (значение) осредняемого признака;

n – число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

,

где X i – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
f i – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:


Средний возраст рассчитаем по формуле простой средней:

Сгруппируем исходные данные. Получим следующий ряд распределения:

В результате группировки получаем новый показатель – частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
средняя гармоническая, если m = -1;
средняя геометрическая, если m –> 0;
средняя арифметическая, если m = 1;
средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.

Формулы степенных средних приведены в табл. 4.4.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Таблица 5.1

Виды степенных средних

Вид степенной
средней
Показатель
степени (m)
Формула расчета
Простая Взвешенная
Гармоническая -1
Геометрическая 0
Арифметическая 1
Квадратическая 2
Кубическая 3

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым . Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i 1 , i 2 , i 3 ,..., i n . Очевидно, что объем производства в последнем году определяется начальным его уровнем (q 0) и последующим наращиванием по годам:

q n =q 0 × i 1 × i 2 ×...×i n .

Приняв q n в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

Отсюда

5.3. Структурные средние

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

,

где X Me – нижняя граница медианного интервала;
h Me – его величина;
(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
S Me-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
m Me – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

В нашем примере могут быть получены даже три медианных значения – исходя из признаков количества предприятий, объема продукции и общей суммы затрат на производство:

Таким образом, у половины предприятий уровень себестоимость единицы продукции превышает 125,19 тыс. руб., половина всего объема продукции производится с уровнем затрат на изделие больше 124,79 тыс. руб. и 50 % общей суммы затрат образуется при уровне себестоимости одного изделия выше 125,07 тыс. руб. Заметим также, что наблюдается некоторая тенденция к росту себестоимости, так как Ме 2 = 124,79 тыс. руб., а средний уровень равен 123,15 тыс. руб.

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

где Х Mo – нижнее значение модального интервала;
m Mo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);
m Mo -1 – то же для интервала, предшествующего модальному;
m Mo+1 – то же для интервала, следующего за модальным;
h – величина интервала изменения признака в группах.

Для нашего примера можно рассчитать три модальных значения исходя из признаков числа предприятий, объема продукции и суммы затрат. Во всех трех случаях модальный интервал один и тот же, так как для одного и того же интервала оказываются наибольшими и число предприятий, и объем продукции, и общая сумма затрат на производство:

Таким образом, чаще всего встречаются предприятия с уровнем себестоимости 126,75 тыс. руб., чаще всего выпускается продукция с уровнем затрат 126,69 тыс. руб., и чаще всего затраты на производство объясняются уровнем себестоимости в 123,73 тыс. руб.

5.4. Показатели вариации

Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов.

Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (X max) и минимальным (X min) наблюдаемыми значениями признака:

H=X max - X min .

Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.

Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:

При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:

(Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)

Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.

Дисперсия признака (s 2) определяется на основе квадратической степенной средней:

.

Показатель s, равный , называется средним квадратическим отклонением.

В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле

Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле

,

где n – объем выборки; s 2 – дисперсия признака, рассчитанная по данным выборки.

Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

.

2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

.

3. Коэффициент вариации:

является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).

Боярский А.Я. Теоретические исследования по статистике: Сб. Науч. Трудов.– М.: Статистика,1974. С. 19–57.

Предыдущая

При анализе данных статистического наблюдения часто возникает необходимость получить обобщенную характеристику изучаемых процессов и явлений. Одной из важнейших обобщающих характеристик статистического анализа является средняя величина . В средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные действием случайных факторов, и находят выражение общие и закономерные черты, свойственные всей совокупности в целом.

Средняя величина – обобщающий показатель, характеризующий типичный уровень явления в расчете на единицу однородной совокупности. В средних величинах выражается действие общих условий, закономерность изучаемого явления. Метод средних является одним из важнейших статистических методов. Основным условием правильного научного использования средней величины в статистическом анализе является качественная однородность совокупности, по которой исчислена средняя. Поэтому перед исчислением средних величин все единицы совокупности расчленяют на однородные группы, по которым и исчисляют средние. Если не произвести такого расчленения, то в результате можно прийти к результату, который совершенно неправильно будет характеризовать наблюдаемую совокупность. Метод средних неотделим от метода группировок, так как именно группировки обеспечивают качественную однородность исследуемых статистических совокупностей.

Средние величины широко используются при изучении социально-правовых процессов, отражающих результаты деятельности государства, органов и учреждений, общественных структур (например, средние темпы роста и прироста объема преступности или раскрываемости, изменение структуры системы профилактики и др.).

Средние величины, используемые в статистическом анализе можно разделить на два класса: степенные средние и структурные средние.

Степенные средние определяются по формуле:

где х – индивидуальные значения осредняемого признака;

n – число единиц совокупности

z – степень средней.

При подстановке в формулу различных значений z получаем выражения для вычисления различных видов степенных средних:

при z = 1 – средняя арифметическая;

при z = 0 – средняя геометрическая;

при z = -1 – средняя гармоническая;

при z = 2 – средняя квадратическая.

Наиболее распространенным видом степенной средней является средняя арифметическая . Она используется в тех случаях, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц рассматриваемой совокупности.



В зависимости от характера исходных данных средняя арифметическая определяется двумя способами.

Допустим, что количество правонарушений по 10 населенным пунктам региона за определенный период составило: 6000, 5900, 5700, 5600,5400, 5300, 4900, 4500, 3600, 3100. Требуется вычислить среднее количество правонарушений по региону. Для его определения необходимо просуммировать количество правонарушений по всем населенным пунктам и полученную сумму разделить на число населенных пунктов в регионе.

Среднее число правонарушений в регионе составило 5000. Используемая в данном примере формула называется простой средней арифметической . Простой она называется потому, что исчисляется простым суммированием индивидуальных значений признака и делением полученной суммы на объем совокупности. Эта формула применяется в тех случаях, когда исходные данные не сгруппированы (не образованы в группы по какому-то признаку) и каждой единице совокупности соответствует определенное значение признака, либо, когда все частоты (частости) равны между собой.

Если же отдельные значения признака встречаются не один, а несколько, причем неодинаковое число раз, то среднюю величину рассчитывают по формуле взвешенной средней арифметической:

Для исчисления взвешенной средней выполняются следующие последовательные операции: умножения каждого варианта на соответствующую ему частоту, суммирование полученных произведений и деление полученной суммы на сумму частот. Рассмотрим пример применения взвешенной средней арифметической.

Пример 4.1.

Годовая нагрузка 15 судей городского суда, специализирующихся на.рассмотрении гражданских дел различной направленности, составила: 17;42;47;47;50;50;50;63;68;68;75;78;80;80;85. Вычислить среднюю годовую нагрузку на одного судью.

Решение.

В данном примере мы имеем дело с дискретным рядом, причем некоторые варианты ряда повторяются несколько раз, например, 47; 50 и т.д. Следовательно, необходимо для исчисления средней арифметической применить формулу взвешенной средней. Представим ряд в виде таблицы.



Таблица 4.1

Подставим в формулу для исчисления средней арифметической взвешенной значения вариантов (количество гражданских дел) и соответствующие им частоты (количество судей).

Следовательно, средняя годовая нагрузка 15 судей городского суда составляет 60 дел.

Часто вычисление средних величин приходится производить по данным, сгруппированным в виде интервальных рядов распределения, когда значения признака представлены в виде интервалов. Для того, чтобы определить среднюю в интервальном ряду, необходимо перейти от интервального ряда к дискретному путем замены интервалов значений признака их серединами. В закрытом интервале (в котором указаны обе границы – нижняя и верхняя) серединное значение определяется как полусумма значений верхней и нижней границ. Иногда приходится иметь дело с открытыми интервалами (в которых имеется лишь одна из границ – верхняя или нижняя). В этом случае предполагается, что ширина данного интервала (расстояние между границами интервала) такая же, как и у соседнего интервала. После перехода от интервального ряда к дискретному вычисление средней производится по формуле взвешенной средней арифметической.

Рассмотрим пример исчисления средней арифметической для интервального ряда.

Пример 4.2.

Сроки рассмотрения уголовных дел районным судом характеризуются следующим образом:

до 3-х дней – 360 дел;

от 3-х до 5-ти дней – 190 дел;

от 5-ти до 10-ти дней – 70 дел;

от 10-ти до 20-ти дней – 170 дел.

Определить средний срок рассмотрения дела.

Решение.

Занесем статистические данные в таблицу 4.2. Для этого представим их в виде интервального ряда. При этом первый интервал будет открытым – до 3-х дней, у него нет нижней границы. Поэтому при нахождении середины данного интервала следует принимать его величину равной величине последующего интервала: 3-5 лет. Таким образом, открытый интервал до 3-х лет будет аналогичен закрытому интервалу 1-3 года и его середина будет равна 2-м годам. Для облегчения исчисления взвешенной средней рекомендуем предварительные вычисления заносить в таблицу, в нашем случае это произведение вариантов на частоты – последний столбец.

Таблица 2

Теперь воспользуемся формулой для исчисления взвешенной средней арифметической:

дней

Как уже было отмечено выше, вторая группа средних, применяемых в статистическом анализе – структурные средние . Их используют для характеристики структуры совокупности. К структурным средним относятся такие показатели, как мода и медиана .

Модой (Мо) называется значение признака (вариант), который наиболее часто встречается в исходной совокупности.

В дискретном вариационном ряду Мо является вариант, имеющий наибольшую частоту. Рассмотрим порядок определения моды на примере:

Пример 4.3.

При обследовании 500 уголовных дел по групповым преступлениям установлены следующие их размеры по количеству членов группы – таблица 4.3.

Таблица 4.3

Решение.

Модальной величиной в данном примере будет преступная группа, состоящая из 4 человек (Мо = 4), поскольку этому значению в дискретном ряду распределения соответствует наибольшее количество уголовных дел – 250 (именно этот вариант имеет наибольшую частоту).

Для определения моды в интервальном ряду распределения сначала находят модальный интервал (интервал, которому соответствует максимальная частота), а затем моду вычисляют по формуле:

где х 0 – нижняя граница модального интервала;

h – ширина модального интервала;

f Mo – частота модального интервала;

f Mo -1 – частота интервала, предшествующего модальному;

f Mo +1 – частота интервала, следующего за модальным.

Пример 4.4 .

105 уголовных дел по конкретному виду преступлений за год распределились по срокам расследования следующим образом – таблица 4.4. Найти моду.

Таблица 4.4

Решение.

Наибольшей частотой в данном случае является 50 (дел), следовательно, модальный интервал будет 3-4 месяца.

Воспользуемся формулой для нахождения моды в интервальном ряду и подставим необходимые значения:

Следовательно, чаще всего встречающийся срок расследования уголовных преступлений за год составил 3,5 месяца.

Медиана - это значение признака, занимающее центральное место в ранжированной совокупности, при этом первая половина совокупности имеет значение признака меньше, чем медиана, а вторая имеет значения признака больше, чем медиана.

Для определения медианы в дискретном вариационном ряду необходимо:

1) Вычислить накопленные частоты.

2) Определить порядковый номер медианы по формуле:

3) По накопленным частотам найти значение признака, которое имеет единица совокупности с найденным порядковым номером.

Пример 4.5.

Распределение уголовных дел по срокам рассмотрения представлены в таблице 4.5. Вычислить медианное значение срока рассмотрения дел.

Таблица 4.5

Решение.

Сначала необходимо вычислить накопленные частоты – таблица 4.5, столбец 3. Находим такое значение накопленной частоты, которое равно или первый раз превышает значение 200: . Этому значению соответствует накопленная частота, равная 260-ти, следовательно, медианой ряда сроков заседаний является срок продолжительностью 4 дня (Ме = 4).

Для того, чтобы найти медиану в интервальном ряду распределения, необходимо:

1) Вычислить накопленные частоты;

2) Определить порядковый номер медианы, используя ту же формулу, что и для дискретного вариационного ряда;

3) По накопленным частотам найти интервал, содержащий нужную нам единицу совокупности (медианный интервал);

4) Вычислить медиану по формуле:

где х 0 – нижняя граница медианного интервала;

h – ширина медианного интервала;

f M е – частота медианного интервала;

– накопленная частота интервала, предшествующего медианному;

Пример 4.6

Для иллюстрации нахождения медианы в интервальном ряду возьмем условие примера 4.4.

Решение.

Сначала необходимо вычислить накопленные частоты. Воспользуемся, как и в предыдущих примерах, табличной формой записи – таблица 4.6.

Таблица 4.6

Затем находим порядковый номер медианы:

Первая накопленная частота, равная или превышающая половину частот ряда (порядковый номер медианы) – это 85 (см. табл. 4.6). Следовательно, медианный интервал в данном случае «3-4 месяца».

Воспользуемся формулой для нахождения медианы в интервальном ряду:

Медианное значение срока расследования составляет 3,35 месяца, т.е. первая половина уголовных дел была расследована менее, чем за 3,35 месяца, а вторая половина дел – более, чем за 3,35 месяца.

Средняя величина дает обобщающую характеристику варьирующего признака. Однако в ряде случаев этого бывает недостаточно и возникает потребность в исследовании вариации (колебаний), которые не проявляются в средней величине.

Изучая результаты статистического наблюдения того или иного признака у конкретных единиц совокупности, практически всегда можно отметить различие между ними.

В процессе статистического исследования того или иного количественного признака отдельные единицы наблюдения могут существенно различаться между собой даже в пределах однородной совокупности. Наблюдаемые различия индивидуальных значений признака внутри изучаемой совокупности в статистике принято называть вариацией признака.

Средние величины двух или более совокупностей могут быть одинаковыми, но при этом исследуемые совокупности существенно различаются величиной вариации, т.е. в одной совокупности отдельные варианты могут далеко отстоять от средней величины, а в другой - размещаться более кучно вокруг средней. В том случае, когда значения признака имеют большое колебание, как правило, можно говорить и о большем разнообразии тех условий, которые воздействовали на исследуемую совокупность.

Если отдельные варианты наблюдаемой статистической совокупности недалеко отстоят от средней величины, то можно говорить, что данная средняя величина достаточно полно отражает изучаемую совокупность, но при этом сама средняя величина ничего не говорит о возможной вариации исследуемого признака.

Изучение характера и меры возможной случайной вариации распределения признаков в исследуемой совокупности является одним из ключевых разделов статистики.

Вариация свойственна практически всем без исключения природным и общественным явлениям и процессам, в том числе и в юридической сфере.

Для измерения величины вариации признака в совокупности используют следующие показатели размера вариации:

§ размах вариации,

§ среднее линейное отклонение,

§ дисперсия (средний квадрат отклонения),

§ среднее квадратическое отклонение,

§ коэффициент вариации.

Размах вариации является наиболее простым измерителем вариации и представляет собой разность между максимальным и минимальным значениями признака в совокупности:

где R – размах вариации;

х max – максимальное значение признака;

х min – минимальное значение признака.

Размах вариации учитывает лишь крайние отклонения и не отражает колеблемости всех вариант в совокупности.

Для получения обобщенной характеристики распределения отклонений исчисляют среднее линейное отклонение , которое учитывает различия всех единиц совокупности. Данный показатель представляет собой среднюю арифметическую величину из отклонений индивидуальных значений признака от средней арифметической без учета знака этих отклонений.

где – среднее линейное отклонение;

х i – индивидуальные значения признака;

– среднее значение признака;

n – объем совокупности.

Данная формула представляет собой простое среднее линейное отклонение . Взвешенное среднее линейное отклонение определяется следующим образом:

где f i – частота повторений.

Среднее линейное отклонение как меру вариации признака в статистическом анализе используют довольно редко, так как в большинстве случаев этот показатель не отражает степень рассеивания признака.

Для преодоления недостатков среднего линейного отклонения вычисляют показатель, наиболее объективно отражающий меру вариации – дисперсию (средний квадрат отклонений). Она определяется как средняя из отклонений, возведенных в квадрат.

- простая дисперсия

- взвешенная дисперсия

При возведении отклонений вариант от средней арифметической величины в квадрат положительные и отрицательные отклонения получают один и тот же положительный знак. Кроме того, большие отклонения от средней величины, будучи возведенными в квадрат, получают и больший «удельный вес», оказывая большее влияние на величину показателя вариации. Однако, возводя отклонения вариант от средней арифметической величины в квадрат, мы искусственно увеличиваем и сам показатель вариации. Чтобы преодолеть этот недостаток, вычисляется среднее квадратическое отклонение , которое исчисляется путем извлечения квадратного корня из среднего квадрата отклонения (дисперсии).

Дисперсия и среднее квадратическое отклонение являются общепринятыми мерами вариации признака.

Приведенные показатели вариации выражаются именованными числами, имею те же единицы измерения, что и изучаемый признак, т.е. дают представление об абсолютной величине вариации признака.

Для сравнения степени колеблемости разнородных явлений, разных по своему характеру и размерам признаков, используется относительный показатель вариации, который называется коэффициентом вариации.

Коэффициент вариации дает возможность сопоставить вариацию одного и того же признака в разных статистических совокупностях, а также разнородных признаков одной и той же или различных статистических совокупностей.

где V – коэффициент вариации;

– среднее квадратическое отклонение;

– среднее арифметическое значение признака

По величине коэффициента вариации судят об однородности совокупности. Если его значение не превышает 33%, то совокупность считается однородной.

Рассмотрим порядок расчета показателей вариации на следующем примере.

Пример 4.7.

Имеются данные промежуточной аттестации студентов одной из групп юридического факультета.

5 5 4 4 5 5 5 2 4 4 3 5 4 4 3 5 5 5 3 2 4 3 4 5 4 5 3 5 2 2 4 5 3 3 5

Найти размах вариации, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение, коэффициент вариации. Сделать выводы.

Решение.

Составим таблицу для промежуточных вычислений – таблица 47.

Таблица 4.7

Баллы, x i Частота, f i x i f i x i - |x i - | f i (x i - ) 2 (x i - ) 2 f i
-2
-1
Итого:

1) Найдем средний балл по формуле взвешенной средней арифметической:

балла

2) Размах вариации равен балла

3) Среднее линейное отклонение ищем по формуле взвешенного линейного отклонения балла

4) Дисперсия также находится в данном случае по формуле взвешенной дисперсии

5) Среднее квадратическое отклонение

6) Коэффициент вариации

Вывод: коэффициент вариации меньше 33%, следовательно, данная совокупность однородная.

В данном случае рассматривался пример вычисления показателей вариации для дискретного ряда. Для интервального ряда порядок вычисления показателей вариации аналогичен, а x i будет соответствовать серединам интервалов.

Контрольные вопросы

1. Понятие средней величины в статистике.

2. Виды средних величин. Их краткая характеристика.

3. Средняя арифметическая. Ее виды.

4. Свойства средней арифметической.

5. Структурные средние.

6. Понятие моды и медианы.

7. Определение моды и медианы в дискретном ряду распределения.

8. Определение моды и медианы в интервальном ряду распределения.

9. Графический метод определения структурных средних.

10. Понятие вариации признака.

11. Абсолютные показатели вариации признака в совокупности.

12. Коэффициент вариации, его роль в статистическом анализе.

Задачи

Задача 1 . Годовая нагрузка 20 судей городского суда, специализирующихся на рассмотрении гражданских дел различной направленности, составила: 17;42;47;47;50;50;50;63;68;68;75;78;80;80;85;72;81;45;55;60. Вычислите среднюю годовую нагрузку на одного судью.

Задача 2 . Возрастной состав лиц, совершивших пре­ступления, характеризуется следующими данными: в возрасте 14-15 лет – 69,2 тыс. чел.; 16-17 лет – 138,9; 18-24 года – 363,3; 25-29 лет – 231,0; 30 лет и старше – 791,6 тыс. чел.. Вычислите средний возраст преступников.

Задача 3 . Состояние преступности по населенным пунктам региона характеризуется следующими данными:

Определите моду и медиану количества совершенных преступлений.

Задача 4 . Имеются данные о среднем размере ущерба от преступных посягательств в результате совершения хищений чужого имущества:

Определите моду и медиану среднего размера ущерба.

Задача 5 . Производительность труда следователей двух подразделений ОВД характеризуется следующими данными:

Вычислить показатели вариации производительности труда следователей в 1-ом и 2-ом подразделениях, по результатам расчета сделать выводы.

Задача 6 . По данным о распределении числа правонарушений по возрасту их субъектов определить среднее линейное отклонение, дисперсию, среднее квадратическое отклонение, коэффициент вариации. Сделать выводы.

  1. СТАТИСТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА ВЗАИМОСВЯЗИ СОЦИАЛЬНО-ПРАВОВЫХ ЯВЛЕНИЙ

Одна из основных задач, с которой встречается каждый юрист, правовед – оценка взаимосвязи между переменными, отражающими социально-правовые явления или процессы. К примеру, нередко проблему преступности молодежи рассматривают в зависимости от уровня безработицы. Неэффективность институтов социальной защиты связывают с миграционными потоками, рассматривают как последствия въезда (выезда) на территорию дополнительного числа людей и т.д.

Очевидно, что точность полученных результатов будет зависеть от того, насколько полно мы учтем взаимосвязь всех возможных переменных величин при построении статистической модели изучаемого социально-правового процесса или явления.

Связи в статистике классифицируют по тесноте, направлению, форме и числу факторов.

По тесноте различают функциональные и статистические связи.

При функциональной связи с изменением значений одной переменной вторая изменяется строго определенным образом, т.е. каждому значению факторного (независимого) признака соответствует одно, строго определенное значение результативного (зависимого) признака. В реальности функциональных связей не существует, они являются лишь абстракциями, полезными при анализе явлений.

Связь, при которой каждому значению факторного признака соответствует не одно, а несколько значений результативного признака называется статистической (стохастической).

По направлению связи делят на прямые (положительные) и обратные (отрицательные). При прямой связи направление изменения факторного признака совпадает направлению изменения результативного признака. При обратной связи направления изменения значений факторного и результативного признаков противоположны.

По аналитической форме различают линейные и нелинейные связи. Линейные связи графически отображаются прямой, нелинейные – параболой, гиперболой, показательной функцией и т.п.

В зависимости от количества факторов, действующих на результативный признак, существуют парные (однофакторные) и множественные (многофакторные) связи. В случае парной связи значения результативного признака обусловлены действием одного фактора, при множественной связи – нескольких факторов.

Для исследования статистических связей используется целый комплекс методов: корреляционный анализ, регрессионный анализ, дискриминантный анализ, кластерный анализ, факторный анализ и др. Остановимся на рассмотрении корреляционного и регрессионного анализа.

Корреляционно-регрессионный анализ как общее понятие позволяет решать следующие задачи:

§ измерение тесноты связи между двумя (и более) переменными величинами;

§ определение направления связи;

§ установление аналитического выражения (формы) взаимосвязи между явлениями;

§ определение возможных ошибок показателей тесноты связи и параметров уравнений регрессии.

Статистические методы различных обобщений, указывая на наличие прямой или обратной связи между признаками, не дают представления о мере связей, ее количественном выражении. Эту задачу решает корреляционный анализ, который позволяет установить характер взаимосвязи и количественно ее измерить.

Для измерения тесноты связи между результативным и факторным признаками наиболее широко используется линейный коэффициент корреляции , который был введен К. Пирсоном. В теории разработаны различные модификации формул для расчета коэффициента корреляции.

Где - среднее арифметическое произведения факторного и результативного признака;

Среднее арифметическое факторного признака;

Среднее арифметическое результативного признака;

Среднее квадратическое отклонение факторного признака;

Среднее квадратическое отклонение результативного признака;

n – число наблюдений.

Линейный коэффициент корреляции принимает значения в диапазоне от – 1 до 1. Чем ближе его значение по абсолютной величине к 1, тем теснее связь. Его знак указывает на направление связи: знак «–» соответствует обратной связи, знак «+» – прямой. Степень тесноты взаимосвязи признаков в зависимости от коэффициента корреляции приведена в таблице 5.1.

Таблица 5.1

Для оценки значимости коэффициента корреляции применятся t -критерий Стьюдента . Для этого определяется расчетное (фактическое) значение критерия:

Где - линейный коэффициент парной корреляции;

n – объем совокупности.

Расчетное значение t -критерия сравнивается с критическим (табличным), которое выбирается из таблицы значений Стьюдента (приложение 1) в зависимости от заданного уровня значимости и числа степеней свободы k = n – 2.

Если , то величина коэффициента корреляции признается существенной.

Рассмотрим расчет линейного коэффициента корреляции на примере.

Пример 5.1.

Из имеющихся 11 пар данных на осужденных с информацией: стаж работы/ количество изготовленных изделий, представленных в таблице 5.2, рассчитать линейный коэффициент корреляции, сделать выводы:

Регрессионный анализ позволяет установить аналитическую зависимость, в которой изменение среднего значения результативного признака обусловлено влиянием одной или нескольких независимых величин, а множество прочих факторов, также оказывающих влияние на результативны

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

средняя арифметическая;

средняя геометрическая;

средняя гармоническая;

средняя квадратическая;

средняя хронологическая.

Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике.

Средняя арифметическая

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака - через. Следовательно, средняя арифметическая простая равна:

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х встречается в совокупности 2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается символом n.

Вычислим среднюю заработную плату одного рабочего в руб.:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

Полученная формула называется средней арифметической взвешенной.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами. Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:

В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.

Основные свойства средней арифметической.

Средняя арифметическая обладает рядом свойств:

1. От уменьшения или увеличения частот каждого значения признака х в п раз величина средней арифметической не изменится.

Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

  • 2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:
  • 3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:
  • 4. Если х = с, где с - постоянная величина, то.
  • 5. Сумма отклонений значений признака Х от средней арифметической х равна нулю:

Средняя гармоническая

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной.

Характеристиками вариационных рядов, наряду со средними, являются мода и медиана.

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

Для интервальных рядов распределения с равными интервалами мода определяется по формуле:

где - начальное значение интервала, содержащего моду;

Величина модального интервала;

Частота модального интервала;

Частота интервала, предшествующего модальному;

Частота интервала, следующего за модальным.

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке).

Реферат

Средние величины и показатели вариации

1.Сущность средних в статистике

2.Виды средних величин и способы их расчёта

3.Основные показатели вариации и их значение в статистике

1. Сущность средних величин в статистике

В процессе изучения массовых социально-экономических явлений возникает необходимость выявления их общих свойств, типичных размеров и характерных признаков. Необходимость в обобщающем среднем показателе возникает в том случае, когда признаки, характеризующие единицы изучаемой совокупности, количественно варьируют. Например, размер дневной выработки ткачей на текстильной фабрике зависит от общих условий производства, ткачи используют одинаковое сырьё, работают на одинаковых станках и т.д. В то же время часовая выработка отдельных ткачей колеблется, т.е. варьирует, так как зависит от индивидуальных особенностей каждого ткача (его квалификации, профессионального опыта и т.д.). Чтобы характеризовать дневную выработку всех ткачей предприятия, необходимо исчислить среднюю величину дневной выработки, так, как, только, в, этом, показателе найдут отражение общие для ткачей условия производства.

Таким образом, исчисление средних обобщающих показателей означает отвлечение (абстрагирование) от особенностей, отражающихся в величине признака у отдельных единиц, и выявление общих для данной совокупности типичных черт и свойств.

Таким образом, средней величиной в статистике является обобщённая, количественна характеристика признака и статистической совокупности. Она выражает характерную, типичную величину признака у единиц совокупности, образующихся в данных условиях места и времени под влиянием всей совокупности факторов. Действие разнообразных факторов порождает колебание, вариацию усредняемого признака. Средняя величина является общей мерой их действия, равнодействующей всех этих факторов. Средняя величина характеризует совокупность по усредняемому признаку, но относится к единице совокупности. Например, средняя выработка продукции на одного рабочего данного предприятия представляет собой отношение всей выработки (за любой период времени) к общей (средней за тот же период) численности его рабочих. Она характеризует производительность труда данной совокупности, но относится к одному рабочему. В средней величине массового явления погашаются индивидуальные различия единиц статистической совокупности в значениях усредняемого признака, обусловленные случайными обстоятельствами. Вследствие этого взаимопогашения в средней проявлявляется общее, закономерное свойство данной статистической совокупности явлений. Между средней и индивидуальными значениями осреднённого признака существует диалектическая связь как между общим и отдельным. Средняя является важнейшей категорией статистической науки и важнейшей формой обобщающих показателей. Многие явления общественной жизни становятся ясными, определёнными, лишь, будучи обобщенными, в форме средних величин. Таковы, например, упомянутая выше производительность труда, совокупность рабочих, урожайность сельскохозяйственных культур и т.д. Средняя выступает в статистике важнейшим методом научного обобщения. В этом смысле говорят о методе средних величин, который широко применяется в экономической науке. Многие категории экономической науки определяются с использованием понятия средней.

Основным условием правильного применения средней величины является однородность статистической совокупности по усредняемому признаку. Однородной статистической совокупностью называется такая совокупность, в которой её составные элементы (единицы) сходны между собой по существенным для данного исследования признакам и относятся к одному и тому же типу явлений. Однородная совокупность, будучи однородна по одним признакам, может быть разнородной по другим. Только в средних для таких совокупностей проявляются специфические особенности, закономерности развития анализируемого явления. Средняя вычисленная для неоднородной статистической совокупности, т.е. такой в которой объединены качественно различные явления, теряет своё научное значений. Такие средние являются фиктивными, не только не дающими представления о действительности, но и искажающими её. Для формирования однородных статистических совокупностей производится соответствующая группировка. С помощью группировок и в качественно однородной совокупности могут быть выделены характерные в количественном отношении группы. Для каждой из них может быть вычислена своя средняя, называемая средней групповой (частной) в отличие от общей средней (для совокупности в целом).

2. Виды средних величин

Большое значение в методологии средних величин имеют вопросы выбора формы средней, т.е. формулы по которой можно правильно вычислить среднюю величину, и выбора весов средней. Наиболее часто в статистике применяются средняя агрегатная, средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратичная, мода и медиана. Применение той или иной формулы зависит от содержания усредняемого признака и конкретных данных, по которым её необходимо рассчитать. Для выбора формы средней можно воспользоваться так называемым средним исходным соотношением.

2.1 Средняя арифметическая

Средняя арифметическая - одна из наиболее распространенных форм средней величины. Средняя арифметическая рассчитывается как частное от деления суммы индивидуальных значений (вариантов) варьирующего признака на их число. Средняя арифметическая применяется в тех случаях, когда объём варьирующего признака явлений однородной статистической совокупности, образуется путём суммирования значений признака всех единиц явлений статистической совокупности. Различают следующие средне арифметические величины:

1) Простая средняя арифметическая , которая определяется путём простого суммирования количественных значений варьирующего признака и деления этой сумы на их варианты и рассчитывается по следующей формуле:


Х - средняя величина статистической совокупности,

x i - сумма отдельных варьирующих вариантов явлений статистической совокупности,

n i - количество варьирующих вариантов явлений статистической совокупности.

2) Среднеарифметическая взвешенная - средняя величина признака явления, вычисленная с учётом весов. Веса средних величин - частоты, с которыми отдельные значения признака осредняемого принимаются в расчёт при исчислении его средней величины. Выбор весов средней величины зависит от сущности усредняемого признака и характера данных, которыми располагают для вычисления средних величин. В качестве весов средних величин могут быть показатели численности единиц или размеры частей статистической совокупности (в форме абсолютных или относительных величин), обладающих данным вариантом (значением) усредняемого признака явления статистической совокупности, а также величины показателя связанного с усредняемым признаком. Среднеарифметическая взвешенная рассчитывается по следующей формуле:


X- средняя арифметическая взвешенная,

х - величина отдельных варьирующих вариантов явлений статистической совокупности,

Назначение простой, и взвешенной средней арифметической является определение среднего значения варьирующего признака. Если в изучаемой статистической совокупности варианты значений признака встречаются по одному разу или имеют одинаковый вес, то применяется простая средняя арифметическая, если же варианты значений данного признака встречаются в изучаемой совокупности по несколько раз или имеют различные веса, для определения среднего значения варьирующего признака применяется средняя арифметическая взвешенная.

2.2 Средняя гармоническая

Средняя гармоническая применяется для расчёта средней величины тогда, когда непосредственные данные о весах отсутствуют, а известны варианты усредняемого признака (х) и произведения значений вариантов на количество единиц, обладающих данным его значением w (w = xf).

Данная средняя рассчитывается по следующим формулам:

1.) Среднегармоническая простая:

Х - средняя гармоническая простая,

n - количество варьирующих вариантов явлений статистической совокупности.

2) Среднегармоническая взвешенная:

Х - средняя гармоническая взвешенная,

х - сумма отдельных варьирующих вариантов явлений статистической совокупности,

При использовании гармонической взвешенной выявляют веса и таким образом получают тот же результат, который дал бы расчёт по средней арифметической взвешенной, если бы были известны все необходимые для этого данные.

2.3 Средняя агрегатная

Средняя агрегатная рассчитывается по формуле:

X - средняя агрегатная,

х - сумма отдельных варьирующих вариантов явлений статистической совокупности,

Средняя агрегатная вычисляется в тех случаях, когда известны (имеются) значения числителя и значения знаменателя исходного соотношения средней.

2.4 Средняя геометрическая