Дозатор бетонной смеси. Машины и оборудование для приготовления бетонной смеси и растворов

Приготовление бетонной смеси сводится в основном к дозированию и перемешиванию составляющих материалов. На современных бетонных заводах дозирование составляющих производят по массе с помощью дозаторов автоматического или полуавтоматического действия.

Бетонные смеси заданных составов получают при точном дозировании (отмеривании) компонентов (цемент, заполнители, вода и добавки) перед поступлением в бетоносмеситель. Погрешность дозирования составляющих материалов бетонной смеси допускается для цемента, воды и добавок ±2%, для заполнителей ±2,5% по массе (СНиП ИМ5-76).

Цикличное или непрерывное дозирование осуществляют с помощью дозаторов для заполнителей, цемента, воды и добавок.

Дозаторы цикличного дейст в и я отмеривают загруженную в мерник дозу материала и после разгрузки повторяют цикл.

Дозаторы непрерывного действия выдают равномерным потоком материал, отмериваемый непрерывно.

По принципу действия дозаторы делятся на объемные, весовые и объемно-весовые (смешанные).

Объемные дозаторы просты по конструкции, однако обеспечить на них необходимую точность дозирования сыпучих составляющих бетонной смеси трудно. Объясняется это влиянием физико-механических свойств сыпучих материалов (влажность, крупность, объемная масса), а также способом заполнения мерника (интенсивность и высота истечения, степень уплотнения). Погрешность дозирования повышается с увеличением крупности материалов, интенсивности и высоты его истечения. Объемные дозаторы жидкости равноценны по точности дозирования весовым дозаторам, поэтому их широко используют при приготовлении бетонной смеси.

Объемное дозирование сыпучих составляющих применяется на отдельно стоящих бетоносмесителях и бетоносмесительных установках непрерывного действия малой производительности.

Весовые дозаторы сыпучих составляющих бетонной смеси дают более высокую точность дозирования. Поэтому весовое дозирование сыпучих компонентов применяют повсеместно на бетоносмесительных установках средней и большой производительности.

Объемно-весовые дозаторы предназначены для дозирования компонентов бетона на легких заполнителях - керамзитобетона. По объему дозируют керамзит, поскольку его доза по массе не является характерной величиной из-за колебания в широких пределах величины объемной массы.

Суммарная заданная масса керамзита и песка обеспечивается добавлением необходимого количества песка по массе.

По способу управления дозаторы бывают с ручным, дистанционным и автоматическим управлением.

При ручном управлении цикличных дозаторов открывают и закрывают впускные и выпускные затворы вручную. При управлении дозаторами непрерывного действия вручную изменяют производительность, регулируя высоту слоя материала или скорость его передвижения.

При дистанционном управлении загрузку, дозирование и выгрузку материалов производят с пульта управления. Дозировщик, наблюдая за стрелками циферблатных указателей, нажимает соответствующие кнопки (ключи, тумблеры) управления исполнительными механизмами загрузки и выгрузки мерника дозатора.

В дозаторах непрерывного действия дистанционное регулирование их производительности осуществляют с пульта.

При автоматическом управлении загрузка, дозирование и выгрузка материалов на цикличных дозаторах и изменение производительности дозаторов непрерывного действия происходит автоматически.

В дозаторах цикличного действия ручное и дистанционное управление применяют как на объемных, так и на весовых дозаторах, автоматическое - только на весовых. В дозаторах непрерывного действия ручное управление используют только при объемном дозировании, дистанционное - при объемном и весовом, автоматическое- при весовом.


Похожая информация:

  1. III. Подбор заданной подвижности смеси, определение фактического расхода материала
  2. Аналитические суждения (А.с.) - суждения, истинность которых устанавливается без обращения к действительности посредством логико-семантического анализа их компонентов;

Одна из важнейших операций процесса приготовления бетонной смеси и раствора на – это дозирование составляющих: вяжущих, заполнителей и воды. Существует два метода дозирования материалов: по объему и по весу. При объемном дозировании порции материала отмеряются сосудами выверенной емкости (объемными дозаторами), состоящими из двух телескопических призм с двумя затворами; верхним, перекрывающим выпускной люк бункера, к которому подвешен дозатор, и нижним, служащим для опорожнения дозатора. Вдвигая нижнюю призму в верхнюю или выдвигая ее при помощи градуированных болтов, на которых она подвешена, можно изменять в определенных пределах порцию материала. Объемные просты по конструкции, но не дают достаточной точности дозирования, так как объемный вес исходных материалов (например, цемента и заполнителей) не представляет собой постоянную величину, а зависит от ряда их физических свойств: степени уплотненности, влажности, крупности зерен и т. п. Так, объемный вес цемента в зависимости от степени его уплотненности может изменяться в пределах до 50%; объемный вес песка в зависимости от степени влажности - в пределах до 35%; гравия и щебня в зависимости от зернового состава - до 30%. Поэтому официальные инструкции рекомендуют для цемента только весовое дозирование с допускаемой погрешностью в 1 - 2%. Заполнители, для которых точность дозирования установлена в пределах ± 3 - 5%, также предпочтительнее дозировать по весу, в особенности при объеме бетонных работ свыше 100 000 м3. Дозирование воды по объему имеет более широкое распространение, в частности у передвижных машин.

Наиболее простой объемный дозатор для воды представляет собой бачок с поплавком, отсекающим струю воды по достижении ею определенного, заранее намеченного уровня. Типовая конструкция дозатора для воды к бетономешалкам периодического действия с барабанами емкостью от 250 до 1 200 л и к - от 150 до 750 л. такова: водомерный бак подключается к водопроводной сети при посредстве трехходового крана. В верхней крышке бака устанавливается воздушный клапан с указателем наполнения, При открытии впускного водяного клапана трехходового крана (выпускной клапан при этом закрывается) вода из сети через питательно-сливную трубу поступает в бак, вытесняя при этом воздух через клапан. Достигнув клапана, вода поднимает его и разобщает водомерный бак с атмосферой, вследствие чего дальнейшее поступление воды в бак прекращается. После открытия выпускного водяного клапана вода из бака выливается по трубе (эффект сифона) в смесительный барабан, а воздушный клапан при этом опускается. Вытекание воды из бака продолжается до тех пор, пока ее уровень не достигнет отверстия на конце дозирующей трубки. При этом атмосферный воздух, засасываемый трубкой, попадает в колено сифона, происходит разрыв водяной струи, и слив воды прекращается. Устанавливая конец дозирующей трубки на разных уровнях, можно сливать из водомерного бака различные дозы, размеченные на шкале; поворот трубки осуществляется стрелкой. Дозаторы этой конструкции выпускаются емкостью от 40 до 200 л. Хотя вода с достаточной степенью точности может дозироваться по объему, однако там, где устанавливают весовые дозаторы для цемента и заполнителей, в целях унификации аппаратуры целесообразно дозировать по весу и воду. В зависимости от типа обслуживаемых бетономешалок - периодического или непрерывного действия -

  • 2.8. Исторические сведения о развитии строительных машин
  • 2.9. Пути развития и повышения качества строительных машин и оборудования
  • Глава 3. Приводы строительных машин. Силовое оборудование
  • 3.1. Общие понятия и определения
  • 3.2. Двигатели внутреннего сгорания
  • 3.3. Электрические двигатели
  • Глава 4. Трансмиссии и системы управления
  • 4.1. Общие сведения о трансмиссиях
  • 4.2. Фрикционные передачи
  • 4.3. Ременные передачи
  • 4.4. Зубчатые передачи
  • Глава 5. Гидро- и пневмоприводы
  • Глава 6. Основы автоматического управления и технические средства автоматики
  • 6.1. Общие сведения о системах автоматики
  • Глава 7. Ходовое оборудование строительных машин
  • 7.1. Виды ходового оборудования и их характеристики
  • 7.3. Шинноколесное (пневмоколесное) и рельсоколесное ходовое оборудование
  • Глава 8. Транспортные машины
  • Глава 9. Транспортирующие машины и оборудование
  • 9.1. Ленточные и пластинчатые конвейеры, эскалаторы
  • Глава 10. Грузоподъемные машины
  • 10.4. Лебедки
  • Глава 11. Строительные подъемники и краны
  • 11.1. Общие сведения
  • 11.3. Башенные краны
  • 11.4. Самоходные стреловые краны
  • 11.5. Краны пролетного типа
  • 11.6. Устойчивость кранов
  • 11.7, Устройства безопасности
  • 11.8. Техническое освидетельствование кранов, основные
  • Глава 12. Погрузочно-разгрузочные машины
  • 12.1. Назначение и виды машин
  • 12.2. Машины для перегрузки штучных грузов
  • 12.3. Погрузочные машины для сыпучих грузов
  • Глава 13. Машины для земляных работ: общие сведения
  • 13.1. Виды земляных сооружений
  • 13.2. Способы разработки грунтов
  • 13.3. Свойства грунтов, влияющие на трудность их разработки
  • 13.4. Рабочие органы землеройных машин и их взаимодействие с грунтом
  • 13.5. Общая классификация машин и оборудования для разработки грунтов
  • Глава 14. Одноковшовые экскаваторы
  • 14.1. Общие сведения
  • 14.2. Строительные гидравлические экскаваторы
  • 14.3. Гидравлические экскаваторы с рабочим оборудованием обратная лопата
  • 14.4. Гидравлические экскаваторы с рабочим оборудованием прямая лопата
  • 14.5. Погрузочное рабочее оборудование
  • 14.6. Гидравлические грейферы
  • 14.7. Экскаваторы-планировщики
  • 14.8. Оборудование для рыхления грунтов
  • 14.9. Неполноповоротные гидравлические экскаваторы
  • 14.10. Мини- и микроэкскаваторы
  • 14.11. Экскаваторы с гибкой подвеской рабочего оборудования (канатные экскаваторы). Рабочее оборудование прямого копания
  • 14.12. Драглайны
  • Глава 15. Экскаваторы непрерывного действия
  • 15.1. Общие сведения
  • 15.2. Роторные траншейные экскаваторы
  • 15.3. Цепные траншейные экскаваторы
  • Глава 16. Землеройно-транспортные машины
  • Глава 17. Бурильные машины
  • Глава 18. Машины для подготовительных работ и разработки мерзлых грунтов
  • 18.1. Машины для подготовительных работ
  • 19.4. Грунтоуплотняющие машины и оборудование динамического действия
  • Глава 20. Технические средства гидромеханизации
  • 20.1. Общие сведения
  • Глава 21. Машины и оборудование для погружения свай
  • 21.1. Способы устройства свайных фундаментов
  • Глава 22. Машины и оборудование для переработки каменных материалов
  • 30...15 60...30 60 15...0 60...30 В а а - от мелкого к крупному; 6 - от крупного к мелкому; в - комбини­рованно
  • Глава 23. Машины и оборудование для приготовления бетонных смесей и строительных растворов
  • 23.1. Дозаторы
  • Глава 24. Машины и оборудование для бетонных работ
  • 24.1. Бетононасосные установки
  • Глава 25. Машины и оборудование для отделочных и кровельных работ
  • 25.1. Машины и оборудование для штукатурных работ
  • Глава 26. Ручные машины
  • 26.3. Ручные машины для крепления изделий и сборки конструкций
  • 26.4. Ручные машины для разрушения прочных материалов и работы по грунту
  • 26.6. Ручные машины для резки, зачистки поверхностей и обработки кромок материалов
  • 26.7. Ручные машины для распиловки, долбежки и строжки материалов
  • Глава 1. Общие сведения о механизации и автоматизации строительства 5
  • Глава 15. Экскаваторы непрерывного действия 422
  • Глава 23. Машины и оборудование для приготовления бетонных смесей и строительных растворов

    23.1. Дозаторы

    Бетон представляет собой искусственный каменный матери­ал, получаемый из смеси вяжущих веществ, воды и заполнителей после ее формования и затвердевания. Строительные растворы не имеют в своем составе крупных заполнителей. До формования эти тщательно смешанные компоненты называют соответственно бе­тонной смесью и строительным раствором.

    Приготовление бетонных смесей и строительных растворов со­стоит из дозирования компонентов и их перемешивания. Для дози­рования применяют дозаторы, а для перемешивания - смеси­тельные машины или смесители.

    Дозаторы бывают объемными и весовыми. Первыми дозатора­ми материалы дозируют по объему, а вторыми - по массе. Объем­ные дозаторы более просты, но менее точны из-за непостоянства плотности и влажности дозируемых сыпучих материалов и усло­вий заполнения мерных емкостей. Их применяют обычно для до­зирования воды. Для дозирования сыпучих материалов их исполь­зуют только в условиях строительных площадок для смесителей с объемом готового замеса до 250 л.

    По режиму работы различают дозаторы цикличные (порционные) и непрерывного действия. В порционных дозаторах материал дози­руется в мерном или весовом бункере, а в дозаторах непрерывно­го действия материал подают в смесители непрерывным потоком с заданной производительностью. Управляют дозаторами автома­тически или полуавтоматически с пульта управления.

    Весовой дозатор цикличного действия применяют для порци­онного автоматического взвешивания цемента, заполнителей, хи­мических добавок и воды, а также выдачи отвешенных порций в смесители (рис. 23.1). Компоненты дозируют поочередно, загру­жая весовой бункер 8 сначала материалом с более крупными раз­мерами кусков, а затем - более мелкий, поверх первого. Сигнал на начало дозирования одного компонента поступает с пульта уп­равления 1 к электропневматическому клапану 2, после срабаты­вания которого сжатый воздух от компрессорной установки по­

    ступает в пневмоцилиндр 3. По­следний открывает впускной за­твор 9 одного из бункеров 10 с дозируемым компонентом, кото­рый через воронку загружается в весовой бункер 8. Последний сис­темой тяг и рычагов связан с ве­соизмерительным устройством 6 с циферблатным указателем. По достижении в весовом бункере требуемой дозы сигнал об окон­чании загрузки, сформированный задатчиком массы циферблатного указателя, поступает к пульту уп­равления, который отключает кла­пан 2, а управляемый этим клапа­ном пневмоцилиндр 3 закрывает затвор, прекращая этим подачу ма­териала в весовой бункер.

    После перенастройки задатчи- ка массы циферблатного указате­ля так же дозируют второй компонент. Сигнал на разгрузку весо­вого бункера поступает с пульта управления на электропневмати­ческий клапан 4, который открывает доступ сжатого воздуха в пневмоцилиндр 5. Последний открывает разгрузочный затвор 7, и отмеренные компоненты разгружаются в смеситель 6.

    Дозаторы рассмотренного типа различаются пределом взвеши­вания, зависящим от вместимости весового бункера и других свя­занных с ним параметров. В качестве питателей при дозировании песка, щебня и т.п. применяют ленточные питатели и затворы различных конструкций. При дозировании цемента используют аэрожелоба, шнековые и барабанные питатели. При дозировании жидкостей применяют затворы, обеспечивающие необходимую герметичность.

    Дозаторы непрерывного действия для сыпучих материалов пред­ставляют собой какой-либо питатель или сочетание питателей, в которых автоматически с требуемой точностью поддерживается заданная производительность. Независимо от конструктивных осо­бенностей дозаторы непрерывного действия включают в себя пи­татель, измерительное устройство производительности и САР.

    Рис. 23.1. Функциональная схема весового дозатора цикличного дей­ствия

    На рис. 23.2 приведена схема дозатора цемента. Дозируемый материал подается на ленту ленточного питателя 2 из загрузочно­го бункера с помощью лопастных питателей 1, в приводе которых установлен вариатор 16. Также вариатором 14 приводится в дви­жение ленточный питатель. Производительность дозатора регули­руют путем поддержания постоянного значения массы материала

    Рис. 23.2. Схема дозатора непрерывного действия для цемента

    на ленте питателя 2 и изменения скорости движения ленты. Для стабилизации массы дозируемого материала ленточный питатель подвешен к раме дозатора шарнирно на оси приводного барабана и с помощью тяги - к коромыслу 3, уравновешенному грузом 6. При отклонении массы материала на ленте питателя от значения, соответствующего заданной производительности дозатора, коро­мысло отклоняется от своего равновесного положения, воздей­ствуя на индуктивный преобразователь 5, с сердечником которо­го оно связано, в результате чего на вход бесконтактного элект­ронного регулятора <2 подается напряжение, отличное от нуля. Этот сигнал, пройдя тиристорный усилитель 9, включает двигатель 17 исполнительного механизма вариатора 16, передаточное отноше­ние которого и, следовательно, частота вращения лопастных пи­тателей будут изменяться до тех пор, пока масса материала на ленте питателя не достигнет заданного значения. Для устранения колебаний коромысла служит демпфер 4.

    Для изменения скорости движения ленты служит автоматическая цепь из синхронного генератора 10, задатчика 11, регулятора 12, тиристорного усилителя 13 и исполнительного двигателя 15. Гене­ратор вырабатывает сигнал переменного тока с частотой, про­порциональной частоте выходного вала вариатора. Выпрямленное напряжение сравнивается с напряжением задатчика, соответству­ющим установленной производительности. Разность этих напря­жений подается на вход регулятора, который через тиристорный усилитель включает исполнительный двигатель, изменяющий пе­редаточное отношение вариатора до достижения нулевого сигна­

    ла на входе регулятора. Общее ко­личество подаваемого в смеситель материала регистрируется счетчи­ком 7, кинематически связанным с головным барабаном ленточно­го питателя.

    Универсальные дозаторы (рис. 23.3) применяют для дозирования заполнителей. Дозируемый матери­ал поступает на ленточный пита­тель 5 из бункераJчерез затвор 4. Нагрузка от шарнирно подвешен­ного питателя воспринимается гру- зоприемным устройством 6 и фик­сируется встроенным в него силоизмерительным датчиком, сигнал от которого поступает в умножитель 7. Второй, скоростной сигнал поступает на умножитель от тахогенератора 2 через преобразова­тель 8. Результат преобразования сигналов в умножителе поступа­ет в блок задания и сравнения 13, в котором формируется сигнал, воздействующий на регулятор 14, управляющий приводом 15 ва­риатора 1 в кинематической цепи привода ленточного питателя. При работе в цикличном режиме сигнал с умножителя поступает в интегрирующий блок 12 и далее в блок задатчика дозы 11. По до­стижении заданного значения поданной массы материала регуля­тор 10 отключает двигатель 9 привода питателя.

    Для дозирования жидкостей в установках небольшой произво­дительности применяют компактные дозаторы турбинного типа на базе расходомеров воды, которые могут работать как в циклич­ном, так и в непрерывном режимах.

    23.2. Смесители

    В зависимости от вида приготовляемой смеси смесители под­разделяют на растворосмесители - для приготовления штукатур­ных, кладочных, отделочных и других растворов и бетоносмеси­тели - для приготовления бетонных смесей: обычных, сухих, ке- рамзитобетонных, ячеистых, особо тяжелых и др.

    Смесители могут быть стационарными для работы в составе бето- носмесительных установок, заводов сборных железобетонных изде­лий (ЖБИ) и комбинатов крупнопанельного домостроения, пере­базируемыми для объектов с небольшими объемами работ и мобиль­ными (авторастворосмесители, автобетоносмесители). По режиму работы смесители могут быть цикличными и непрерывного действия.

    дозатора для заполнителей

    В цикличных смесителях исходные компоненты смешиваются отдельными порциями. Их главным параметром является вмес­тимость смесительного барабана (по объему исходных компонен­

    тов). Отечественная промышленность выпускает бетоносмесите­ли вместимостью 100...4500 л и растворосмесители вместимо­стью 40... 1500 л.

    В смесителях непрерывного действия исходные компоненты по­ступают непрерывно, также непрерывно выдается готовая смесь. Для приготовления смесей с различной рецептурой и частой сме­ной рецептов более приспособлены цикличные смесители. Их при­меняют на растворобетонных установках, заводах ЖБИ и в домо­строительных комбинатах. Смесители непрерывного действия при­меняют в дорожном и энергетическом строительстве с ограни­ченным числом рецептов смеси (не более трех).

    По принципу смешивания компонентов смесители подразде­ляют на гравитационные, принудительные и гравитационно-при- нудительные. Первые два типа могут быть как цикличного, так и непрерывного действия.

    Наибольшее распространение в строительстве получили как гравитационные бетоносмесители цикличного действия, так и при­нудительные. В гравитационных смесителях рабочим органом яв­ляется смесительный барабан с наклонной или горизонтальной осью вращения.

    Рис. 23.4. Гравитационный бетоносмеситель цикличного действия (а) и ки­нематическая схема его привода (б)

    Гравитационный бетоносмеситель с наклонной осью вращения (рис. 23.4, а ) состоит из установленного на опорных стойках 4 смесительного барабана 1 с лопастями на его внутренней поверхно­сти, приводимого во вращение электродвигателем 2 через систему зубчатых передач с конечной кинематической парой шестерня 5 -

    зубчатый венец 6 (рис. 23.4, б), охватывающий барабан. Для за­грузки барабан устанавливают пневмоцилиндром 3 в слегка на­клонное положение горловиной вверх. В таком же положении он находится во время смешивания компонентов. Для разгрузки ба­рабана его прокидывают тем же пневмоцилиндром.

    Исходные компоненты, загружаемые в смесительный барабан скиповым подъемником, смешиваются в барабане при его враще­нии лопастями, которые поднимают смесь на некоторую высоту, откуда она падает вниз, подхватывается другими лопастями и т.д. После перемешивания в течение 60...90 с готовую смесь выгружа­ют из барабана, для чего его опрокидывают без остановки враще­ния. Продолжительность полного рабочего цикла, включающего загрузку исходных компонентов, их перемешивание и выгрузку готовой смеси, составляет 90... 150 с. Гравитационные смесители отличаются простотой устройства и обслуживания, способнос­тью приготавливать смесь с крупными (до 120... 150 мм) запол­нителями.

    Смесители принудительного действия с вращающимися лопаст­ными валами применяют для приготовления бетонных смесей и растворов практически любой подвижности и жесткости с круп­ностью заполнителя не более 70 мм. Различают смесители с вер­тикальными и горизонтальными лопастными валами. В настоящее время широкое распространение получили роторные смесители с вертикальными валами, работающие с повышенными скоростя­ми движения рабочих органов. Эти машины особенно рекоменду­ется применять для приготовления жестких смесей.

    В роторный смеситель (рис. 23.5) сухие компоненты подают че­рез загрузочный патрубок 3, а воду - по кольцевой перфориро­ванной трубе 4. Смесь перемешивается лопастями 12, установлен­ными на державках 13 кронштейнов 2, в кольцевом пространстве, ограниченном внешней обечайкой 1 смесительной чаши и внут­ренним стаканом 10, футерованными сменными износостойкими плитами 11. Несколько таких кронштейнов закреплены на травер­се 9, вращение которой передается от электродвигателя 6 через редуктор 5. Разгружают готовую смесь через секторный затвор 8, управляемый пневмоцилиндром 7.

    Цикличные смесители с горизонтальным лопастным валом итурбулентные смесители применяют для приготовления строи­тельных растворов. В смесителях первого типа (рис. 23.6) смесь перемешивается двумя винтовыми лопастями 3, установленны­ми на валу 4, приводимом в движение от электродвигателя 2 через ременную передачу 1 и редуктор 5. Разгружают готовую смесь через затвор 6, управляемый пневмоцилиндром 7.

    В турбулентный растворосмеситель (рис. 23.7) компоненты за­гружают через горловину в верхней части корпуса 1. При враще­нии лопастного ротора, приводимого в движение электродвига-

    телем 2, перемешиваемые материалы совершают многократные перемещения в конической периферии корпуса, поднимаясь вверх по ней и оседая в центральной части. Разгружают готовый ра­створ через люк 3 при открытом затворе 4.

    Рис. 23.6. Растворосмеситель с винтовыми лопастями

    Производительность смесите­лей цикличного действия

    П ■■ Kz А-ц 1Сц ^

    где П - производительность сме­сителей цикличного действия, м 3 /ч;V - вместимость смесителя по за­грузке, м 3 ; z - число замесов в час;kg- коэффициент выхода смеси (£ в = 0,75 ...0,85); к„ - коэффици­ент использования смесителя во времени.

    Смесителями непрерывного дей­ствия комплектуют бетоно- и ра- створосмесительные установки про­изводительностью до 30 м 3 /ч.

    В горизонтальном двухвальном смесителе (рис. 23.8) компонен­ты смеси непрерывным потоком подают в корыто 8, в котором вращаются навстречу друг другу валы 6 с закрепленными на них лопастями 7, установленными под углом 40...45° к оси вала для перемещения смеси в процессе ее перемешивания к разгрузочно­му затвору 5. Валы приводятся во вращение электродвигателем 1 через ременную передачу 2, редуктор 3 и зубчатую пару 4. Техни­ческая производительность смесителей непрерывного действия оп­ределяется объемом смеси, перемещаемым в единицу времени в осевом направлении, и зависит от размера лопастей, угла их уста­новки и частоты их вращения.

    1 2 3 4 _

    \ \ v v **

    Рис. 23.7. Турбулентный раство- росмеситель

    AhTv

    ^ Г 1 „/ф... ..ж.. ж

    Рис. 23.8. Горизонтальный двухвальный смеситель непрерывного действия (а) и кинематическая схема его привода (б)

    23.4. Бетоно- и растворосмесительные заводы и установки

    Процесс производства бетонов и растворов представляет со­бой ряд последовательных механизированных и в значительной мере автоматизированных операций, включающих погрузочно- разгрузочные работы при приеме и хранении сырьевых материа­лов на складах, их рыхление, подогрев в зимнее время, транспор­тирование компонентов смесей в расходные бункера смеситель­ного узла, дозирование, перемешивание и выгрузку готовой сме­си, аспирацию, обеспыливание линий движения материалов и вентиляцию производственных помещений.

    Перечисленные работы составляют технологическое содержа­ние работы бетоно- и растворосмесительных заводов и установок с законченным, расчлененным и комбинированным технологическими циклами. Продукцией предприятий с законченным циклом явля­ется готовая смесь, с расчлененным циклом - сухая смесь, на осно­ве которой приготавливают бетонную смесь или строительный ра­створ в автобетоносмесителях в пути их следования на строитель­ную площадку или в смесительных установках, расположенных в местах использования смесей; с комбинированным циклом - го­товая и сухая смеси. Расчлененная технология производства целе­сообразна при большой удаленности строительного объекта от сме­сительного предприятия, так как при транспортировании гото­вой смеси в этом случае может ухудшиться ее качество.

    В зависимости от назначения, мощностей и особенностей объек- тов-потребителей смесей различают стационарные постоянно дей­ствующие заводы, выпускающие товарные смеси, приобъектные установки, создаваемые на срок строительства объекта, и пере­движные смесительные установки. Их классифицируют по режиму процесса приготовления смесей (периодического и непрерывного дей­ствия) и по технологической схеме компоновки оборудования(i высотные и двухступенчатые). При высотной схеме исходные ком­поненты поднимают на полную высоту установки, после чего они по технологической цепочке движутся вниз только под действием силы тяжести. При двухступенчатой схеме сырьевые материалы поднимают сначала в расходные бункера, а затем, после дозиро­вания, - в смеситель. Высотные схемы более компактны и лучше приспособлены для автоматизации производства, но они несколько дороже по капитальным затратам.

    Заводы и установки, приготовляющие бетонную смесь с за­полнителем крупнее 70 мм при водоцементном отношении В/Ц = = 0,45... 0,6 комплектуют гравитационными бетоносмесителями. Для приготовления жестких бетонных смесей используют роторные смесители. На приобъектных установках применяют небольшие смесители с барабанами вместимостью до 250 л.

    Контрольные вопросы

      Из каких компонентов приготавливают бетонные смеси и строи­тельные растворы? Какие типы машин и оборудования используют для этого?

      Приведите классификацию дозаторов. Чем они различаются между собой по функциональным и конструктивным признакам? Для дозиро­вания каких компонентов и в каких условиях их применяют?

      Изобразите и объясните функциональную схему весовых дозаторов цикличного действия. Какие устройства применяют в этих дозаторах в качестве питателей?

      Из каких составных частей состоит дозатор непрерывного действия? Объясните схемы устройства и принцип работы дозатора цемента и уни­версального дозатора для заполнителей.

      Приведите классификацию смесителей и назовите предпочтитель­ные объекты их применения.

      Назовите основные типы смесителей цикличного действия, опи­шите их устройство и принцип действия. Как определяют их производи­тельность?

      Назовите основные типы и объекты применения смесителей не­прерывного действия. Как устроен и как работает горизонтальный двух- вальный смеситель?

      Перечислите работы, сопутствующие приготовлению бетонных и растворных смесей. Назовите основные типы бетоно- и растворосмеси- тельных заводов и установок и виды их продукции. Какая технологиче­ская схема используется при большой удаленности строительного объекта от смесительного предприятия?

      Назовите виды смесительных предприятий и приведите их класси­фикацию. Каковы особенности высотной и двухступенчатой технологи­ческих схем? Какими бетоносмесителями комплектуют бетонные заводы и установки?

    74 75 76 77 78 79 ..

    Дозировочная аппаратура (дозаторы) для бетонной смеси

    Компоненты бетонной смеси (цемент, песок, гравий или щебень, а также спецдобавки) должны быть отмерены в строго определенных количествах. Дозирование (отмеривание) компонентов производится при помощи различного типа дозаторов цикличного и непрерывного действия. По методу дозирования материалов дозаторы разделяют на объемные и весовые. Объемный метод дозирования, являясь значительно более простым, не обеспечивает надлежащей точности дозирования сухих компонентов, так как объемная масса заполнителей и, в частности, песка сильно колеблется в зависимости от его влажности, а цемента и других порошкообразных материалов - от степени их уплотненности. Весовой метод дозирования с точки зрения применяемой аппаратуры более сложен, чем объемный, но обеспечивает высокую точность дозирования независимо от физического состояния материала.
    Дозирование материалов, применяемых для приготовления гидротехнических бетонных смесей, производится только по весу с точностью: по цементу и воде ±1% и по заполнителям ±2%.
    Весовая дозировочная аппаратура может быть классифицирована по роду отвешиваемого материала и по системам загрузки, отвешивания и управления.
    По роду отвешиваемого материала бывают дозаторы для цемента, заполнителей, воды и пластифицирующих добавок.
    По системе загрузки весовые дозаторы разделяют на:
    а) загружаемые гравитационным путем; впуск и регулирование потока материала, поступающего в мерный сосуд, производится в этих дозаторах с помощью секторного или шиберного затвора;
    б) загружаемые с помощью специальных питателей; между выпускным люком бункера и мерником в этих дозаторах ставится питающий механизм - шнековый, барабанный, лотковый или вибрационный.
    По системе отвешивания весовые дозаторы разделяют на индивидуальные, предназначенные для взвешивания только одного сорта материала, и групповые -для взвешивания нескольких сортов материала.
    По системе управления весовые дозаторы разделяются на дозаторы с ручным (непосредственным) и дистанционным управлением. В первом случае операции с загрузочным затвором (для впуска в дозатор материала) и разгрузочным (для выдачи взвешенной дозы материала) производят вручную рычагами управления; при дистанционном управлении все эти операции выполняют с пульта управления.

    Весовые дозаторы могут быть с неавтоматическим и автоматическим взвешиванием. В дозаторах с неавтоматическим взвешиванием оператор следит за весом насыпаемого из бункера материала по шкале циферблатного указателя и по достижении нужного веса закрывает загрузочный затвор. В дозаторах с автоматическим взвешиванием оператор только открывает загрузочный затвор, а закрывается он по достижении нужного веса материала автоматически.

    Основные эксплуатационные характеристики дозаторов различных типов цикличного действия приведены в табл. 24.

    Таблица 24.

    Дозаторы цикличного действия (рис. 216) имеют обычно весовой механизм рычажного типа и независимо от конструкции состоят из загрузочного устройства, весового бункера, разгрузочного устройства, весового механизма с циферблатным указателем, аппаратуры управления затвором и весовыми механизмами.

    Рис. 216. Принципиальная схема дозатора цикличного действия

    Для контроля и наблюдения за процессом взвешивания параллельно со шкальными коромыслами к грузоприемным рычагам подключаются циферблатные указательные приборы с секторной или с круговой шкалой. Первые устанавливаются на дозаторах с ручным управлением, вторые (с круговой шкалой) - на автоматических дозаторах. На современных автоматизированных дозаторах устанавливаются счетчики числа отвесов, которые иногда снабжаются самопишущими приборами, регистрирующими на ленте каждый отвес материала.

    Число порционных весовых дозаторов и их размеры определяются составом бетонной смеси и количеством установленных бетоносмесителей. Автоматические дозаторы применяют на бетонных заводах с гнездовым расположением бетоносмесителей, а дозаторы с ручным управлением - на заводах при линейном расположении бетоносмесителей с индивидуальными бункерами для компонентов.

    Из числа выпускаемых отечественной промышленностью наиболее прогрессивными дозаторами цикличного действия являются электротензометрические и фотоэлектрические дозаторы.

    Электротензометрический дозатор цикличного действия (рис. 217) с программным управлением предназначен для последовательного взвешивания двух компонентов (песка и крупного щебня, песка и мелкого щебня, щебня двух фракций и т. д.) в одном ковше.

    Рис. 217. Схема электротензометрического дозатора:
    1 - рама; 2 - электромагнитный питатель; 3 - электродинамометрический элемент; 4 - весовая рычажная система; 5 - ковш; 6 - циферблатный указательный прибор

    Он состоит из рамы, электромагнитных питателей, электродинамических элементов, весовой рычажной системы, ковша и циферблатного указательного прибора.

    Работа дозатора основана на использовании тензоэффекта, заключающегося в изменении омического сопротивления тензометра в зависимости от величины прилагаемой на него нагрузки. В качестве датчиков системы автоматики применяют проволочные преобразователи (тензометры), наклеенные на упругие элементы, на которых подвешен ковш дозатора. Деформация упругого элемента линейно зависит от прилагаемой нагрузки (веса). Процесс дозирования (электротензометрического взвешивания) состоит из воздействия поступающего в ковш материала на тензодатчики (упругие элементы с тензометрами), с последующим преобразованием этого воздействия в электрическую величину в ее использования для срабатывания элементов системы автоматического управления.

    Управление дозатором производится с пульта управления, на передней шкале которого смонтированы электроизмерительные приборы, световое контрольное табло, программное устройство, пусковые кнопки, сигнальные лампы и т. д. Световое табло обеспечивает визуальный контроль правильности считывания программы, записанной на перфокарте, которая вкладывается в программное устройство. Надписи на экране табло соответствуют шифру на перфокарте и просматриваются лишь при включенных лампочках.

    На бетоносмесительных заводах и установках непрерывного действия дозирование материалов производится при помощи дозаторов непрерывного действия, которые могут быть объемными и весовыми.

    Работа дозаторов объемного типа основана на принципе обеспечения постоянства объема на одинаковых по длине участках непрерывного потока отдозированного материала. Точность дозирования объемными дозаторами может быть обеспечена стабильностью площади поперечного сечения и скорости потока материала. Однако при изменении параметров самого материала- его влажности, плотности, гранулометрического состава - объемные дозаторы без специальной системы регулирования не могут обеспечить высокую точность дозирования.

    Объемные дозаторы непрерывного действия могут быть ленточные, лотковые, тарельчатые, вибрационные и др.

    Для непрерывного объемного дозирования воды (или жидкости в виде, например, пластифицирующих добавок) применяют различного типа водомерные баки, вододозирующие счетчики и водомеры, работающие по схеме постоянного напора в расходном баке (или трубопроводе) с регулировкой дозы воды изменением проходного отверстия или работающие при помощи счетчиков расхода воды, подключаемых к водопроводной сети и автоматически отключающих подачу воды после отмеривания заданной дозы.

    Работа весовых дозаторов основана на принципе обеспечения постоянства веса на одинаковых по длине участках непрерывного потока отдозированного материала. Весовые дозаторы имеют устройства, которые дают возможность регулировать интенсивность потока материала при изменении его параметров. Однако в конструктивном отношении весовые дозаторы являются более сложными, чем объемные.

    По принципу действия весовые дозаторы непрерывного действия подразделяют на: а) одноступенчатые, сочетающие в одном агрегате устройства для взвешивания и регулирования подачи транспортируемого материала, и б) двухступенчатые, в которых эти устройства разделены и являются самостоятельными элементами.

    Одноступенчатые дозаторы выполняются с регулированием дозы путем изменения скорости ленты весового транспортера или за счет изменения погонной нагрузки весового транспортера при неизменной его скорости. Двухступенчатые дозаторы выполняются с ленточными или с электромагнитными вибрационными питателями и с тензометрическим весовым устройством.

    → Бетонная смесь


    Классификация дозаторов бетона


    Количество материалов, входящих в состав бетонной смеси или строительного раствора, должно соответствовать заданному рецепту. Согласно СНиП III-15-76 погрешность в дозировании (отмеривании) компонентов перед поступлением их в смесители не должна превышать следующих значений по массе:
    цемент и порошковые добавки заполнители вода и жидкие добавки...

    Заданные дозы материалов отмеривают дозаторами.

    По характеру работы дозаторы делятся на цикличные и непрерывного действия.

    Цикличные дозаторы отмеривают заданную массу или объем порции материала, загружаемого в мерный бункер, и после разгрузки повторяют цикл.

    Дозаторы непрерывного действия выдают непрерывным потоком материал с заданным значением производительности.

    По методу дозирования материалов дозаторы разделяют на объемные, весовые и объемно-весовые.

    Объемные дозаторы сыпучих материалов наиболее просты по конструкции, но уступают весовым по точности дозирования. Объясняется это влиянием изменения состояния материала (влажности, крупности фракций, плотности), а также влиянием способа загрузки материалов в мерную емкость (интенсивности загрузки, высоты падения и степени уплотнения). Точность дозирования снижается с увеличением крупности материалов, интенсивности загрузки и высоты их падения.

    Объемные дозаторы жидкости в отличие от объемных дозаторов сыпучих материалов обеспечивают более точную дозировку, так как плотность жидкостей при постоянной температуре изменяется незначительно.

    Объемные дозаторы сыпучих материалов применяются на отдельно стоящих смесителях и смесительных установках небольшой производительности, а объемные дозаторы жидкостей применяют более широко.

    Весовые дозаторы отличаются сложной конструкцией, стоимость их выше, но они обеспечивают более высокую точность дозирования. Весовое дозирование сыпучих и жидких материалов широко применяют на всех современных установках различной производительности.

    Объемно-весовые дозаторы предназначены для дозирования одного компонента по объему с соблюдением суммарной массы двух компонентов. Применяют их на установках по приготовлению бетонной смеси с пористыми заполнителями (керамзитом). В этом случае керамзит дозируют по объему, но с обязательным обеспечением заданной массы двух заполнителей, например керамзита и песка вместе взятых. Дозируют эти материалы в такой последовательности: сначала отмеривают заданный объем керамзита, взвешивают его, дополняя песок до заданной суммарной дозы песка и керамзита.

    По способу управления дозаторы подразделяются на три группы: с ручным, полуавтоматическим дистанционным и автоматическим управлением.

    При ручном управлении цикличных дозаторов открывают и закрывают впускные и выпускные затворы вручную. В случае управления дозаторами непрерывного действия вручную производительность изменяют, регулируя высоту слоя материала или скорость его движения.

    При полуавтоматическом дистанционном управлении цикличными дозаторами загрузку, дозирование и выгрузку материалов производят с пульта управления. Оператор, наблюдая за стрелками циферблатных указателей, управляет исполнительными механизмами загрузки и выгрузки мерника дозатора с помощью соответствующих кнопок, ключей, тумблеров. В дозаторах непрерывного действия дистанционное регулирование их производительности осуществляют с пульта.
    При а в т ом этическом управлении загрузка, дозирование и выгрузка материалов на цикличных дозаторах и изменение производительности дозаторов непрерывного действия происходят без участия оператора по системе автоматического регулирования (САР).