Шероховатость поверхности после обработки. Шероховатость поверхности после механической обработки

Обозначений шероховатости поверхности на чертежах

Таблица 3.1

*Обдирочное шлифование применяют в качестве предварительной обработки поверхностей отливок и поковок, не выдерживая допуска на размер.

**Этот метод не повышает точности размера, полученного на предшествующей обработке.

При обработке заготовок лезвийным инструментом шероховатость поверхности в значительной мере зависит от скорости резания и подачи. На рис. 3,5, а показано влияние скорости резания на шероховатость поверхности при точении стали (кривая 1 ) и чугуна (кривая 2 ). После обтачивания стальной заготовки со скоростью резания около 20 м/мин (кривая 1) наблюдается наибольшая шеро­ховатость, что связано с явлением активного образования нароста на режущей части резца. При скорости резания свыше 80 м/мин образование нароста практически прекращается. Кроме того, при высоких скоростях резания значительно уменьшается глубина пла­стически деформированного слоя, что также снижает шероховатость поверхности.

На рис. 3.5, б показана зависимость шероховатости поверх­ности от подачи при точении заготовки из стали 45 резцом с радиу­сом закругления вершины 2,5 мм. Из рисунка видно, что изменение малых подач (до 0,2 мм/об) незначительно влияет на изменение шероховатости поверхности. Но при переходе в область подач свыше 0,2 мм/об микронеровности обработанной поверхности воз­растают более интенсивно.

Рис. 3.5. Графики зависимостей шероховатости поверхности от скоростей резания и подач

С увеличением глубины резания шероховатость поверхности возрастает незначительно и практически ее можно не учитывать.

Значительное влияние па шероховатость поверхности оказывает состояние режущей части инструмента: микронеровности режущей кромки инструмента ухудшают шероховатость обработанной по­верхности; это особенно заметно при обработке протяжками, раз­вертками или широкими резцами. Затупление режущего инстру­мента приводит к увеличению шероховатости обработанной по­верхности.

При обработке заготовок абразивным инструментом шерохова­тость поверхности снижается с уменьшением зернистости и повы­шением твердости шлифовального круга, повышением скорости резания, уменьшением продольной и поперечной подач.

При обработке стали с высоким содержанием углерода (С > 0 5%) получается более чистая поверхность, чем при обработке низкоуглеродистой стали.

Применение смазывающе-охлаждающей жидкости улучшает ше­роховатость обработанной поверхности. Одновременно повышается стойкость инструмента. На рис. 3.6 показано (по данным К. С. Колева) влияние охлаждения на микрогеометрию поверхности при точении стали Х4Н быстрорежущим резцом при подаче S = 0,67 мм/об: 1 - точение без применения охлаждения; 2 - охла­ждение водной эмульсией (0,5 % соды и 0,1 % мыла).

Жесткость технологической системы значительно влияет на шероховатость и волнистость поверхности. Так, например, при точении нежесткого вала с установкой на центры наибольшая шеро­ховатость поверхности получается примерно в средней части по длине вала. Недостаточная жесткость системы может быть причи­ной появления вибрации при резании и, как следствие, образова­ния волнистой поверхности.

Рис. 3.6. Рис. 3.7.

Физико-механические свойства поверхностного слоя деталей и заготовок в значительной мере зависят от воздействия тепловых и силовых факторов в процессе обработки. Поверхностный слой обработанной стальной заготовки состоит из трех зон (рис. 3.7): I – зоны резко выраженной деформации, характеризуемой иска­жением кристаллической решетки, дроблением зерен и повышенной твердостью; II – зоны деформации, характеризуемой вытянутыми зернами и снижением твердости по сравнению с первой зоной; III - переходной зоны (зоны постепенного перехода к структуре основ­ного металла).

Исходные заготовки из стали, полученные ковкой, литьем или прокатом, имеют поверхностный слой, состоящий из обезуглероженной зоны и переходной зоны, т. е. зоны с частичным обезуглерожи­ванием. Например, заготовки, полученные горячей штамповкой, имеют обезуглероженный слой в пределах 150-300 мкм, а полу­ченные свободной ковкой - от 500 до 1000 мкм.

При обработке стальных заготовок резанием глубина деформации распространяется до 100-300 мкм. У чугунных заготовок глубина распространения деформации незначительна (до 15 мкм).

При механической обработке металлов деформация поверхност­ного слоя сопровождается упрочнением (наклепом) этого слоя. С увеличением глубины резания и подачи глубина наклепанного слоя возрастает. Так, например, при черновом точении глубина наклепа составляет 200-500 мкм, при чистовом точении 25-30 мкм, при шлифовании 15-20 мкм и при очень тонкой обработке 1-2 мкм.

Рис. 3.8. Рис. 3.9.

С увеличением скорости ре­зания глубина наклепа умень­шается. Это объясняется уменьшением продолжитель­ности воздействия сил реза­ния на деформируемый ме­талл. На рис. 3.8 показано (по данным К. С. Колева) влияние скорости резанияv при точении стали ЗОХГС (кривая 1 ) и стали 20 (кри­вая 2 ) на наклеп Н d .

При шлифовании деталей доминирующим фактором яв­ляется тепловой, служащий причиной появления в поверх­ностном слое обрабатываемого металла растягивающих на­пряжений. На рис. 3.9 пока­зана схема распределения ос­таточных напряжений σ по­сле шлифования на глубину h поверхностного слоя (кри­вая 1 ). Появление растягива­ющих напряжений связано с быстрым нагреванием поверхностного слоя в зоне контакта металла детали с шлифовальным кругом. После прохождения шлифоваль­ного круга поверхностный слой, охлаждаясь, стремится сжаться, вызывая растягивающие напряжения. При шлифовании с выхажи­ванием (т. е. с последующим выключением продольной подачи) значительно уменьшаются напряжения растяжения и увеличи­ваются напряжения сжатия (кривая 2 ).

Появляются шероховатости в виде бугров и каналов, хорошо и слабо заметные, которые можно обнаружить лишь при помощи специальных приборов.

Данные неровности располагаются по направлению движения резца и выдают поперечную шероховатость. При обработке резцом важное значение имеет именно такая неровность, обусловленная конфигурацией и параметрами винтовых выступов. Высота ребра шероховатостей зависит от множества моментов и не может быть высчитана, а находится лишь путем проведения опытов.

Причины появления неровностей

  • Если металл подвергался термической обработке, то шероховатость его поверхности становится меньше, так как увеличивается однородность его состава.
  • Параметры подачи. При крупных – высота неровностей сильно отличается от заложенной и превышает ее.
  • При скорости резки 4-6 м/мин параметры неровностей несущественны; с увеличением скорости резки неровности увеличиваются; при повышении скорости резки до 55-75 м/мин высота неровностей уменьшается, и при скорости 70 м/мин шероховатость поверхности получается самой маленькой. Следующее увеличение скорости резки незначительно влияет на шероховатость обработанной поверхности.
  • Химический состав жидкости для смазки, используемой при токарной обработке, имеет значение. Лучших показателей можно добиться, если жидкость имеет масла, мыло, способные повысить ее свойства смазки.
  • При несильном затуплении резца поверхность часто получается несколько лучше, чем при остром резце. При дальнейшем затуплении шероховатость поверхности увеличивается.
  • Резцами из твердых материалов очень трудно получить ровную поверхность при обработке металлов.
  • Важное значение имеют серьезные зазоры в подшипниках, неважная балансировка узлов станка, малая жесткость исходной детали, углы резца, его вылет. Эти явления при токарной обработке вызывают шероховатость поверхности продольного характера.

Эталоны чистоты

Если учитывать стоимость работы, то тщательная отделка поверхности всегда дороже грубой обработки. Поэтому для измерения класса чистоты детали применяются специальные приборы.

Данные классы иначе называют эталонами чистоты и определяются в цеховых условиях по уже проверенным образцам различных классов.

На шероховатость поверхности, обработанной резанием, оказывает влияние большое число факторов, связанных с условиями изготовления заготовки. В частности, высота и форма неровностей, а также характер расположения и направление обработочных рисок зависят от принятого вида и режима обработки; условий охлаждения и смазки инструмента; химического состава и микроструктуры обрабатываемого материала; конструкции, геометрии и стойкости режущего инструмента; типа и состояния используемого оборудования, вспомогательного инструмента и приспособлений.

Все многообразные факторы, обусловливающие шероховатость обработанной поверхности, можно объединить в три основные группы: причины, связанные с геометрией процесса резания; пластической и упругой деформациями обрабатываемого материала и возникновением вибраций режущего инструмента относительно обрабатываемой поверхности.

Процесс возникновения неровностей вследствие геометрических причин принято трактовать как копирование на обрабатываемой поверхности траектории движения и формы режущих лезвий. С геометрической точки зрения величина, форма и взаимное расположение неровностей (направление обработочных рисок) определяются формой и состоянием режущих лезвий и теми элементами режима резания, которые влияют на изменение траектории движения режущих лезвий относительно обрабатываемой поверхности. В различных условиях обработки пластические и упругие деформации обрабатываемого материала и вибрация искажают геометрически правильную форму неровностей, нарушают их закономерное распределение на поверхности и в значительной степени увеличивают их высоту. В ряде случаев пластические деформаций и вибрации вызывают появление продольной шероховатости, достигающей значительных размеров, и увеличение поперечной шероховатости.

Преобладающее влияние на формирование шероховатости поверхности оказывает (как правило) одна из трех указанных групп причин, которая и определяет характер и величину шероховатости. Однако в отдельных случаях шероховатость возникает в результате одновременного и почти равнозначного воздействия всех указанных причин и вследствие этого не имеет четко выраженных закономерностей.

Геометрические причины образования шероховатости

За один оборот заготовки резец перемещается на величину подачи S1 (мм/об) и переходит из положения 2 в положение 1 (рис. 1, а). При этом на обработанной поверхности остается некоторая часть металла, не снятая резцом и образующая остаточный гребешок m. Совершенно очевидно, что величина и форма неровностей поверхности, состоящих из остаточных гребешков, определяются подачей S1 и формой режущего инструмента.

Например, при уменьшении подачи до значения S2 высота Rz неровностей снижается до Rz (рис. 1, б). Изменение углов φ и φ1 в плане оказывает влияние не только на высоту, но и на форму неровностей поверхности (рис. 1, в).

При использовании резцов с закругленной вершиной достаточно большого радиуса r1 форма неровностей становится соответственно также закругленной (рис. 1, г). При этом увеличение радиуса закругления вершины резца до r2 приводит к уменьшению высоты Rz шероховатости (рис. 1, д).


Рис. 1. Геометрическике причины образования шероховатости при точении


Формула расчета подачи учитывающая геометрические причины образования шероховатости:

S o =0,14 x √(Ra x r) ,

Где S o - подача на оборот; Ra - шероховатость, мкм; r - радиус при вершине инструмента, мм.

При изготовлении режущего инструмента и при его затуплении на режущем лезвии инструмента образуются неровности и зазубрины, определенным образом увеличивающие шероховатость обрабатываемой поверхности. Влияние неровностей лезвия инструмента на шероховатость обработанной поверхности особенно существенно при тонком точении с малыми подачами, когда неровности лезвия соизмеримы с величиной Rz. В отдельных случаях полного копирования профиля зазубрин лезвия на обрабатываемую поверхность может и не произойти, так как пластически деформированный металл стружки и обрабатываемой поверхности иногда затекает в зазубрины режущей кромки, частично затормаживаясь в их плоскости, и делает их как бы более мелкими. В результате этого рост высоты шероховатости обработанной поверхности в некоторых случаях отстает от увеличения глубины зазубрин режущего лезвия. Однако и в этих случаях влияние зазубрин лезвия на шероховатость обрабатываемой поверхности может быть значительным.

По имеющимся практическим данным при затуплении режущего инструмента и появлении на нем зазубрин шероховатость обработанной поверхности возрастает при точении - на 50-60%, фрезеровании цилиндрическими фрезами - на 100-115 %, фрезеровании торцовыми фрезами - на 35-45%, сверлении - на 30-40% и развертывании - на 20-30%. Указанное увеличение шероховатости обрабатываемой поверхности при затуплении режущего инструмента связано не только с геометрическим влиянием зазубрин, возникающих на режущем лезвии, но и с возрастанием радиуса округления лезвия. Увеличение радиуса округления лезвия повышает степень пластической деформации металла поверхностного слоя, что приводит к росту шероховатости поверхности. Для устранения влияния зазубрин и притупления режущего лезвия рекомендуются тщательная (желательно алмазная) доводка инструментов и своевременная их переточка.

Приведенные выше сведения о геометрических причинах возникновения неровностей при точении дают основание сделать следующие выводы.
1. Увеличение главного φ и вспомогательного φ 1 углов резца в плане приводит к росту высоты неровностей. При чистовой обточке целесообразно пользоваться проходными резцами с малыми значениями углов φ и φ 1, не следует без особой необходимости применять подрезные резцы.
2. Возрастание радиуса закругления вершины резца снижает высоту шероховатости поверхности.
3. Понижение шероховатости режущих поверхностей инструмента посредством тщательной (желательно алмазной) доводки устраняет влияние неровностей режущего лезвия на обрабатываемую поверхность. Наряду с уменьшением шероховатости обрабатываемой поверхности доводка заметно повышает стойкость режущего инструмента, а следовательно, и экономичность его использования.

Пластические и упругие деформации металла поверхностного слоя

При обработке резанием пластичных материалов металл поверхностного слоя претерпевает пластическую деформацию, в результате которой значительно изменяются размеры и форма неровностей обработанной поверхности (обычно шероховатость при этом увеличивается).

При обработке хрупких металлов наблюдается вырывание отдельных частиц металла, что также ведет к увеличению высоты и изменению формы неровностей.

Скорость резания является одним из наиболее существенных факторов, влияющих на развитие пластических деформаций при точении.

Шероховатость обработанной поверхности в значительной степени связана с процессами образования стружки и в первую очередь с явлениями нароста . В зоне малых скоростей (v = 2÷5 м/мин), при которых нарост не образуется, размеры неровностей обработанной поверхности незначительны.

С увеличением скорости размеры неровностей поверхности возрастают, достигая при 20-40 м/мин своего наивысшего значения, многократно превосходящего расчетную величину.

Дальнейшее повышение скорости резания уменьшает нарост и понижает высоту шероховатости обработанной поверхности.

В зоне скоростей (v > 70 м/мин), при которых нарост не образуется, шероховатость поверхности оказывается минимальной. В этом случае дальнейшее увеличение скорости резания лишь незначительно снижает высоту шероховатости поверхности.

При высокой скорости резания глубина пластически деформированного поверхностного слоя незначительна и размеры шероховатости приближаются к расчетным.

В случае обработки хрупких материалов (например, чугуна) наряду со срезом отдельных частиц металла происходят их сдвиг и беспорядочное хрупкое откалывание от основной массы металла, увеличивающее шероховатость поверхности. Повышение скорости резания уменьшает откалывание частиц, и обрабатываемая поверхность становится более гладкой.

При чистовой обработке металлов, когда состояние и точность обработанной поверхности имеют решающее значение, совершенно естественно стремление вести обработку в зоне скоростей, при которых нароста на инструменты не образуется, а шероховатость поверхности получается наименьшей.

Подача - второй элемент режима резания, оказывающий большое влияние на шероховатость, что связано не только с указанными выше геометрическими причинами, но и в значительной степени обусловлено пластическими и упругими деформациями в поверхностном слое.

Резание металлов осуществляется инструментом, лезвие которого всегда имеет некоторый радиус округления ρ. При внедрении резца в обрабатываемый материал происходит отделение стружки по плоскости скалывания А-А (рис. 2). При этом часть металла, лежащего ниже точки В, не срезается, а подминается округленной частью резца, подвергаясь упругой и пластической деформации.


Рис. 2. Схема отделения стружки резцом

После прохождения резца несрезанный слой металла частично упруго восстанавливается, вызывая трение по задней поверхности резца. Разница степени упругого восстановления металла выступов и впадин неровностей обычно увеличивает высоту шероховатости.

Наименьшая толщина t min срезаемого слоя (при превышении t min происходит резание, а при снижении - только пластическое и упругое смятие металла округленной поверхностью лезвия инструмента) зависит от радиуса округления режущего лезвия, свойств обрабатываемого материала и скорости резания (при сокращении радиуса округления р и увеличении скорости резания t min уменьшается).

Неровности поверхности в этом случае образуются не столько под влиянием геометрических причин, сколько в результате упругих и пластических деформаций, скорости резания и радиуса округления режущего лезвия резца. В связи с этим для обеспечения наименьшей шероховатости обработанной поверхности и высокой производительности чистовое точение углеродистых конструкционных сталей следует проводить при s = 0,05÷0,12 мм/об.

При точении цветных сплавов хорошо доведенными или алмазными резцами t min уменьшается, поэтому для снижения высоты шероховатости может оказаться полезным уменьшение подачи до 0,01-0,02 мм/об.

Наблюдениями многочисленных исследователей установлено, что при обычном точении влияние глубины резания на шероховатость ничтожно и практически может не приниматься во внимание. При уменьшении глубины резания до 0,02 мм (вследствие наличия на режущей кромке резца округления) нормальное резание прекращается и резец, отжимаясь от изделия, начинает скользить по обрабатываемой поверхности, периодически врезаясь в нее и вырывая отдельные участки. Поэтому глубину резания при работе обычными резцами не следует брать слишком малой.

При глубине резания меньше подачи глубина оказывает геометрическое влияние на высоту шероховатости. В этом случае уменьшение глубины резания снижает высоту шероховатости.

Обрабатываемый материал и его структура оказывает существенное влияние на характер и высоту неровностей обработанной поверхности. Более вязкие и пластичные материалы (например, малоуглеродистая сталь), склонные к пластическим деформациям* дают при их обработке резанием грубые и шероховатые поверхности.

Применение смазочно-охлаждающих жидкостей, предотвращающих схватывание, уменьшающих трение и облегчающих процесс стружкообразования, способствует снижению высоты неровностей поверхности.

Вибрации режущего инструмента, станка и заготовки

В процессе резания возникают вынужденные колебания системы станок-заготовка-инструмент, вызываемые действием внешних сил, и автоколебания системы, появление которых связано с периодическим упрочнением (наклепом) срезаемого слоя металла и изменением условий трения или резания. Вынужденные колебания системы обусловливаются дефектами отдельных механизмов станка (неточностью зубчатых передач, плохой балансировкой вращающихся частей, неудовлетворительной сшивкой ремня, чрезмерными зазорами в подшипниках и др.), являющимися причиной неравномерности его движения.

Вибрация лезвия режущего инструмента относительно обрабатываемой поверхности являются дополнительным источником увеличения шероховатости обработанной поверхности. Очевидно, что высота шероховатости поверхности будет тем значительнее, чем больше удвоенная амплитуда колебания лезвия инструмента относительно обрабатываемой поверхности.

Большое влияние на шероховатость обработанной поверхности оказывает состояние станка. Новые и хорошо отрегулированные станки, установленные на массивных фундаментах или на виброопорах, хорошо изолированные от вибраций другого оборудования, обеспечивает минимальную шероховатость.

Очень важным является создание достаточно высокой жесткости приспособлений для крепления заготовок и вспомогательных инструментов для установки режущего инструмента. Например, в случае обработки заготовок на револьверном станке из прутка с закреплением последнего в трехкулачковом самоцентрирующем патроне высота шероховатости обработанной поверхности на 30-40 % выше, чем при зажатии прутка в нормальном цанговом патроне, имеющем большую поверхность соприкосновения с заготовкой и создающем поэтому большую ее устойчивость.

Особенно сказываются вибрации технологической системы на шероховатость обработанной поверхности при тонком растачивании на алмазно-расточных станках. Неравномерность припуска, снимаемого при тонком растачивании, обусловливающая колебание сил резания, также может являться причиной вибрации технологической системы, увеличивающих шероховатость обработанной поверхности.

Формирование шероховатости поверхности при различных видах механической обработки (фрезеровании, сверлении, шлифовании, доводке и др.) подчиняется в общем тем же закономерностям, что и при точении. Характер этих закономерностей видоизменяется в зависимости от изменения соотношения влияния геометрических причин, пластических деформаций и вибраций, связанных с особенностями отдельных видов механической обработки.

Поверхность детали из древесины всегда имеет неровности различной формы и высоты, образующиеся в процессе обработки.

На полученной в результате обработки поверхности древесины различают следующие неровности различного происхождения (рис. 7): риски, неровности разрушения, неровности упругого восстановления по годовым слоям древесины, структурные неровности, ворсистость и мшистость.

Риски представляют собой следы, оставленные на обработанной поверхности рабочими органами режущих инструментов (зубьями пил, ножами фрез и пр.). Риски имеют форму гребешков и канавок (рис. 7,а), обусловленных геометрической формой зубьев пил, или периодически повторяющихся возвышений и впадин (рис. 7, б), являющихся следствием кинематического процесса резания при цилиндрическом фрезеровании (кинематическая волнистость).

Неровности разрушения (рис. 7, в) - это выколы и вырывы целых участков поверхности древесины и образовавшиеся в результате этого углубления с неровным дном. Выколы и вырывы всегда ориентированы вдоль волокон и сопутствуют сучкам, наклону волокон, свилеватости и завиткам.

Неровности упругого восстановления (рис. 7, г) образуются в результате неодинаковой величины упругого смятия режущим инструментом поверхностного слоя древесины на участках различной плотности и твердости. Различные по плотности и твердости годичные слои древесины восстанавливаются после прохода резца неодинаково, в результате чего поверхность обработки получается неровной.

Структурные неровности (рис. 7, д) представляют собой различные по форме, размерам и расположению впадины, полученные на поверхностях изделий, спрессованных из древесных частиц, и обусловленные способом изготовления этих изделий и расположением частиц.

Ворсистость - это присутствие на поверхности обработки часто расположенных не полностью отделенных волокон (ворсинок) древесины, мшистость - не полностью отделенных пучков волокон и мелких частиц древесины.

Шероховатость поверхности обработки характеризуется размерными показателями неровностей и наличием или отсутствием ворсистости или мшистости. Требования к шероховатости поверхности установлены (ГОСТ 7016-75) без учета неровностей, обусловленных анатомическим строением древесины (впадины, образованные полостями перерезанных сосудов), а также без учета случайных дефектов поверхности (скол, вырыв, выщербина).

Шероховатость поверхности определяется среднеарифметической величиной Rz max максимальных высот неровностей и рассчитывается по формуле: (2)

где H max 1 H max 2 ,.., H max n - расстояния от вершины гребня до дна впадины; n - количество замеров (для изделий мебели устанавливается пять на деталях площадью до 0,5 м 2 и десять на деталях площадью более 0,5 м 2).

В зависимости от числового значения Rz max установлены классы шероховатости:

Классы........1-й 2-й 3-й 4-й 5-й 6-й 7-й 8-й 9-й 10-й 11-й 12-й Rz max , мкм не более...1600 1200 800 500 320 200 100 60 32 16 8 4

Значение Rz max характеризует только высоту неровностей и не отражает наличие или отсутствие ворсистости и мшистости на обработанной поверхности. Ворсистость и мшистость нормируются указанием на допустимость или недопустимость их на обработанных поверхностях. Ворсистость на поверхности древесины и древесных материалов не допускается, если параметр шероховатости Rz max: имеет значение менее 8 мкм. Мшистость на поверхности древесины и древесных материалов не допускается, если параметр шероховатости Rz max имеет значение менее 100 мкм. Наличие ворсистости и мшистости определяется визуально.

Для контроля шероховатости поверхности в лабораторных условиях применяют микроскопы МИС-11 и ТСП-4 и индикаторный глубиномер. Метод определения шероховатости поверхности устанавливает ГОСТ 15612-70.

В цеховых условиях для сравнительной визуальной оценки шероховатости поверхности пользуются специально изготовленными эталонами. Каждый эталон делают из той же породы древесины и обрабатывают тем же видом резания, что и контролируемые детали. Эталоны должны арестовываться заводской лабораторией и заменяться новыми при их старении.

Влияние различных факторов на шероховатость поверхности обработки . Высота и форма, а также характер расположения неровностей на поверхностях обработанных заготовок зависят от ряда причин: состояния станков и инструмента, остроты и геометрии резца, направления резания относительно направлений волокон древесины, угла установки резца, толщины стружки, скорости резания. Кроме того, шероховатость поверхности зависит от анатомического строения древесины.

На шероховатость поверхности оказывает влияние вибрация в системе станок - инструмент - деталь, возникающая из-за недостаточной жесткости станка. По мере износа станка и особенно вследствие неравномерности его износа вибрация возрастает, увеличивая размеры неровностей.

Влияние вибрации может быть частично снижено профилактическим ремонтом станка с целью увеличения его жесткости, если она ниже установленной нормы.

При строгании ручным инструментом может вибрировать нож рубанка, если он закреплен ненадежно. В этом случае нож будет оставлять неровности на поверхности обработки. Вибрацию ножа в рубанке устраняют ремонтом рубанка, а также надежным закреплением ножа.

Большое влияние на качество резания оказывает острота резца, т. е. его способность образовывать в древесине при резании новые поверхности с заданной шероховатостью.

Чем острее лезвие, тем выше качество резания, т. е. тем меньше шероховатость обрабатываемой поверхности.

Реальный резец не может быть абсолютно острым (рис. 8, а). При заточке резца по мере приближения абразива к лезвию кончик лезвия выкрашивается. Причем чем меньше угол заострения резца, тем на большей длине происходит выкрашивание. Выкрашивание лезвия уменьшают правкой режущих граней оселком. После правки лезвие имеет скругленную форму (рис. 8, б).

Полученные при заточке лезвие и геометрическая форма резца в процессе работы изменяются. Происходит затупление резца (рис. 8, в), в результате чего уменьшается его режущая способность.

Различают две стадии затупления. Первая стадия - разрушение и закругление кончика лезвия, так как прочность резца в области, соприкасающейся с древесиной, небольшая.

Радиус закругления кончика лезвия в процессе работы резца возрастает. Причем у резцов с одним и тем же углом резания, но с разными углами заострения рβ за одно и то же время работы радиус затупления будет больше у резца с большим углом заострения (рис. 9).

Следующая стадия затупления - износ поверхностей резца в результате трения этих поверхностей о древесину. Изнашиваются больше всего передняя и задняя грани резца.

Режущую способность резцов увеличивают, используя для их изготовления высокопрочные и износостойкие материалы и выбирая оптимальные углы заострения.

Направление резания относительно направлений волокон древесины, угол установки резца и толщина стружки - взаимосвязанные факторы, определяющие качество поверхности обработки. При резании древесины вдоль волокон возможны два случая стружкообразования: с опережающей трещиной и без нее.

Опережающая трещина (рис. 10) образуется уже в начальный период работы резца. При внедрении резца в древесину после некоторого уплотнения стружки передней гранью резца начинается оттягивание стружки резцом от остальной массы древесины. Одновременно стружка изгибается. Когда связь между волокнами древесины достигнет предела прочности древесины на разрыв поперек волокон, начинается отслоение стружки и образование опережающей трещины. Длина опережающей трещины возрастает с увеличением толщины стружки.

Скорость распространения опережающей трещины всегда выше скорости резания. Поэтому после образования опережающей трещины режущая кромка не работает. В этот период поверхность резания образуется передней гранью резца путем отрыва стружки от обрабатываемой детали; режущая кромка только сглаживает образованную гранью поверхность. Поскольку стружка образуется отрывом, а не срезается непосредственно лезвием, качество поверхности обработки получается невысоким. Кроме того, при резании против волокон опережающая трещина, расположенная в плоскости волокон, может стать причиной вырыва волокон древесины, приводящего к браку.

Чтобы уменьшить вредное влияние опережающей трещины на качество поверхности обработки, необходимо создать подпор волокон древесины вблизи лезвия (рис. 11). В результате подпора волокон древесины стружка надламывается по мере продвижения резца. Надлом стружки происходит вблизи ребра подпорного элемента, поэтому чем меньше щель между ребром и лезвием резца, тем меньше граница развития опережающей трещины. Такой способ применяют, например, при строгании ручными рубанками.

Наиболее высокое качество поверхности обработки получается при тонкой стружке, когда длина элемента стружки l э мала. Чтобы получить стружку с небольшой длиной элемента, применяют ручные рубанки с двойным ножом, имеющие специальные стружколомы.

При резании древесины вдоль волокон без образования опережающей трещины качество поверхности обработки получается высоким, так как поверхность резания образуется режущей кромкой. Если режут по волокнам и параллельно им (угол встречи равен нулю), то при срезании тонкой стружки и малом угле резания опережающая трещина не появляется, так как резцу легче отогнуть стружку, чем разорвать древесину. В этом случае качество поверхности обработки повышается с уменьшением угла резания.

Однако обрабатываемые заготовки имеют неоднородное строение текстуры древесины, поэтому при больших значениях угла встречи, особенно на участках, имеющих пороки строения древесины, будут появляться вырывы волокон, приводящие к браку. Кроме того, уменьшение угла резания связано с уменьшением угла заточки, что снижает прочность резца.

Резание без образования опережающей трещины возможно также смещением слоев стружки относительно слоев древесины под поверхностью резания, т. е. при продольной усадке стружки.

Продольная усадка стружки возникает, когда передняя грань резца, двигая перед собой стружку, сжимает ее вдоль волокон и превращает в изолированный от обрабатываемой заготовки уплотненный слой. Режущая способность резца используется в полной мере, когда угол резания составляет 70°, а толщина стружки невелика. В этих условиях обеспечивается высокое качество поверхности резания при различных значениях угла встречи резца с волокнами. Резание с продольной усадкой стружки применяют, например, при строгании ручным рубанком-шлифтиком.

При резании древесины в торец качество поверхности обработки получается невысоким. Под поверхностью обработки волокна древесины изогнуты и растянуты, в направлении волокон образуются трещины (рис. 12). Качество обработки при прочих равных условиях выше, когда толщина стружки и угол резания малы.

При резании древесины поперек волокон по мере продвижения резца образуются стружка скалывания (рис. 13, а) или стружка отрыва (рис. 13, б) с короткой опережающей трещиной. Качество поверхности обработки при образовании стружки скалывания достаточно высокое. При стружке отрыва поверхность получается очень шероховатой, с образованием неровностей разрушения.

Качество обработки на больших скоростях резания всегда выше, чем обработка тем же видом резания, но с малыми скоростями. Поэтому для повышения класса шероховатости обрабатываемой поверхности следует повышать в пределах технической возможности станка скорость резания, что одновременно ведет к увеличению производительности станка.

Классы шероховатости поверхности при различных видах обработки и нормы шероховатости. При обработке древесины резанием на станках и ручным инструментом можно получить поверхности различных классов шероховатости в зависимости от режимов обработки, состояния инструмента и обрабатываемой древесины.

Классы шероховатости поверхности при различных видах обработки:

Продольное черновое пиление: на ленточнопильных станках........................5-2 на круглопильных станках..........................4-2 ручными пилами....................................3-2 Продольное чистовое пиление: на круглопильных станках..........................8-4 ручными пилами....................................6-4 Поперечное черновое пиление: на круглопильных станках..........................4-3 ручными пилами....................................3-2 Поперечное чистовое пиление: на круглопильных станках..........................7-4 ручными пилами....................................5-3 Фрезерование черновое.............................7-5 Фрезерование чистовое.............................9-6 Сверление отверстий, долбление гнезд на станках...8-6 Сверление отверстий вручную.......................7-5 Долбление гнезд вручную долотами..................4-2 Точение: черновое..........................................7-4 чистовое..........................................10-7 Строгание вручную шерхебелем......................6-5 Строгание вручную рубанками, фуганком.............8-5 Циклевание ручными циклями: черновое..........................................9-8 чистовое..........................................11-10 Шлифование на станках: черновое..........................................8-6 чистовое..........................................10-9 Шлифование вручную................................12-8

Приведенные классы шероховатости можно получить при средних режимах работы на станках, нормальном состоянии инструмента и древесины. Класс шероховатости при обработке шерхебелем приведен без учета волнистости, обусловленной формой ножа шерхебеля.

Требования к шероховатости поверхностей при изготовлении мебели диктуются назначением деталей, характером последующей обработки.

Шероховатость не отделываемых поверхностей мебели, видимых при эксплуатации и невидимых, но соприкасающихся с предметами в процессе эксплуатации, должна быть не ниже 8-го класса, остальных невидимых - не ниже 6-го.

На поверхности, обработанной токарным резцом, образуются неровности в виде винтовых выступов и винтовых канавок (рис. 1, а), отчетливо заметные при крупной подаче s и обнаруживаемые лишь при помощи специальных приборов, если подача невелика.

Такие неровности расположены в направлении подачи и образуют поперечную шероховатость в отличие от продольной шероховатости (рис. 1, б), образуемой неровностями в направлении скорости резания v.

Рис. 1. Поперечная (а) и продольная (б) шероховатости, получающиеся при токарной обработке.

При токарной обработке наибольшее значение имеет поперечная шероховатость, характеризуемая формой и размерами винтовых выступов, образующих неровности. Высота таких неровностей зависит от очень многих факторов, участвующих в процессе резания и действующих в разных случаях по-разному, и поэтому не может, быть определена с помощью расчетов, а находится лишь опытным путем.

Причины образования шероховатостей

1. Термическая обработка материала. Если материал подвергнут термической обработке, то шероховатость его поверхности уменьшается, т.к. повышается однородность его структуры.

2. Величина подачи. При крупных подачах высота неровностей значительно отличается от расчетной и превышает ее в несколько раз.

3. Скорость резания. При скорости резания до 3-5 м/мин размеры неровностей незначительны; с увеличением скорости резания неровности возрастают; при повышении скорости резания до 60-70 м/мин высота неровностей уменьшается, и при скорости около 70 м/мин шероховатость поверхности получается наименьшей. Дальнейшее повышение скорости резания незначительно влияет на шероховатость обработанной поверхности.

4. Состав смазочно-охлаждающей жидкости, применяемой при токарной обработке. Наилучшие результаты получаются, если жидкость содержит минеральные масла, мыльные растворы и другие вещества, повышающие ее смазочные свойства.

5. Степень затупления резца. При небольшом затуплении резца обработанная поверхность часто получается даже несколько чище, чем при остром резце. При дальнейшем затуплении резца шероховатость поверхности увеличивается.

6. Материал режущего инструмента. Например, резцами из твердых сплавов очень трудно получить хорошую поверхность при обработке вязких материалов.

7. Вибрации, возникающие в процессе резания. Особое значение в этом случае приобретают чрезмерные зазоры в направляющих суппорта и в подшипниках, неточности зубчатых передач станка, плохая балансировка вращающихся частей станка, недостаточная жесткость обрабатываемой детали, углы резца, его вылет и т.д. Все эти вредные явления при токарной обработке вызывают продольную шероховатость поверхности.