Химический состав газов газонефтяных и нефтяных залежей. Месторождения газовых гидратов: ресурсы и возможные методы разработки

Гидраты природных газов

Исследованиями доказано, что в определённых термодинамических условиях природный газ в земной коре вступает в соединение с пластовой поровой водой, образуя твёрдые соединения - гидраты газов, крупные скопления которых образуют газогидратные залежи.

Природный газ в связанном гидратном состоянии характеризуется иными свойствами, чем в свободном состоянии.

Гидраты газов представляют собой твёрдые соединения (клатраты), в которых молекулы газа при определённых давлениях и температурах заполняют структурные пустоты кристаллической решетки, образованной молекулами воды с помощью прочной водородной связи. Молекулы воды при образовании гидрата и сооружении ажурных полостей как бы раздвигаются молекулами газа, заключенными в эти полости, - удельный объем воды в гидратном состоянии возрастает до 1,26-1,32 см3/г (удельный объем воды в состоянии льда составляет 1,09 см3/г).

В настоящее время получены и изучены равновесные параметры гидратообразования практически всех известных природных и синтетических газов. Исключение составляют водород, гелий и неон.

Цель моей работы - узнать, что такое гидраты природных газов и рассмотреть газогидратные залежи на примерах.

Задачами являются:

1. узнать историю изучения природных газов

2. изучить свойства гидратов

3. рассмотреть месторождения

Газовые гидраты (также гидраты природных газов или клатраты) - кристаллические соединения, образующиеся при определённых термобарических условиях из воды и газа. Имя «клатраты» (от лат. clathratus - «сажать в клетку»), было дано Пауэллом в 1948 году. Гидраты газа относятся к нестехиометрическим соединениям, то есть соединениям переменного состава.

Впервые гидраты газов (сернистого газа и хлора) наблюдали ещё в конце XVIII века Дж. Пристли, Б. Пелетье и В. Карстен. Первые описания газовых гидратов были приведены Г. Дэви в 1810 году (гидрат хлора). В 1823 г. Фарадей приближённо определил состав гидрата хлора, в 1829 г. Левит обнаружил гидрат брома, а в 1840 г. Вёлер получит гидрат H2S. К 1888 году П. Виллар получает гидраты CH4, C2H6, C2H4, C2H2 и N2O.

Клатратная природа газовых гидратов подтверждена в 1950-е гг. после рентгеноструктурных исследований Штакельберга и Мюллера, работ Полинга, Клауссена.

В 1940-е годы советские учёные высказывают гипотезу о наличии залежей газовых гидратов в зоне вечной мерзлоты (Стрижов, Мохнаткин, Черский). В 1960-е годы они же обнаруживают первые месторождения газовых гидратов на севере СССР. Одновременно с этим возможность образования и существования гидратов в природных условиях находит лабораторное подтверждение (Макогон).

С этого момента газовые гидраты начинают рассматриваться как потенциальный источник топлива. По различным оценкам, запасы углеводородов в гидратах составляют от 1.8×1014 до 7.6×1018 м³(Рис.1)

Рис.1. Запасы углеводородных ресурсов.

Выясняется их широкое распространение в океанах и криолитозоне материков, нестабильность при повышении температуры и понижении давления.

В 1969 г. началась разработка Мессояхского месторождения в Сибири, где, как считается, впервые удалось (по чистой случайности) извлечь природный газ непосредственно из гидратов (до 36 % от общего объёма добычи по состоянию на 1990 г.).

Сейчас природные газовые гидраты приковывают особое внимание как возможный источник ископаемого топлива, а также участник изменений климата (см. Гипотеза о метангидратном ружье).

Общие сведения о гидратах

Природный газ, насыщенный парами воды, при высоком давлении и при определенной положительной температуре способен образовывать твердые соединения с водой - гидраты.

Гидраты – это физико-химические соединения углеводородных и не углеводородных газов с водой. Гидраты природных газов являются смешанными.

Рис.2. Газогидрат метана

По внешнему виду похожи на рыхловатый снег (Рис.2.). Основным условие для образования гидратов являются снижение температуры и повышение давления и наличие влаги. На их образование влияет состав газа. Сероводород и углекислый газ способствует образованию гидратов особенно сероводород, даже при незначительном содержании сероводорода повышается температура гидратообразования. Азот, углеводороды тяжелее бутана, а также минерализированная пластовая вода ухудшают условия образования гидратов.

Рис. 3. Равновесные гидратообразования.

Вероятность образования гидратов увеличивается с повышением давления и понижением температуры, так как повышается влагоемкость газа (Рис.3). В транспортируемом газе всегда присутствует определенное количество воды и если оно такого, что газ насыщается влагой, то при снижении температуры ниже «точки росы по воде», в газопроводе будут образовываться гидраты.

Гидраты относятся к веществам, в которых молекулы одних компонентов размещены в полостях решетки между узлами ассоциированных молекул другого компонента. Такие соединения обычно называют твердыми растворами внедрения, а иногда соединениями включения.

Рис. 4. Структура образования гидратов.

Молекулы гидратообразователей в полостях между узлами ассоциированных молекул воды гидратной решетки удерживаются с помощью Ван-дер-Ваальсовых сил притяжения. Гидраты образуются в виде двух структур, полости которых заполняются молекулами гидратообразователей частично или полностью (Рис. 4). В 1 (а) структуре 46 молекул воды образуют две полости с внутренним диаметром 5,2 * 10 - 10 м и шесть полостей с внутренним диаметром 5,9 *10 - 10 м; во II (б) структуре 136 молекул воды образуют восемь больших полостей с внутренним диаметром 6,9*10 - 10 м и шестнадцать малых полостей с внутренним диаметром 4,8*10 - 10 м.

При заполнении восьми полостей гидратной решетки состав гидратов структуры 1 выражается формулой 8M - 46Н2О или М - 5,75Н2О, где М - гидратообразователь.

Свойства гидратов

Природные газовые гидраты представляют собой метастабильный минерал, образование и разложение которого зависит от температуры, давления, химического состава газа и воды, свойств пористой среды и др.

Морфология газогидратов весьма разнообразна. В настоящее время выделяют три основных типа кристаллов:

Массивные кристаллы. Формируются за счёт сорбции газа и воды на всей поверхности непрерывно растущего кристалла.

Вискерные кристаллы. Возникают при туннельной сорбции молекул к основанию растущего кристалла.

Гель-кристаллы. Образуются в объёме воды из растворённого в ней газа при достижении условий гидратообразования.

В пластах горных пород гидраты могут быть как распределены в виде микроскопических включений, так и образовывать крупные частицы, вплоть до протяжённых пластов многометровой толщины.

Благодаря своей клатратной структуре единичный объём газового гидрата может содержать до 160-180 объёмов чистого газа. Плотность гидрата ниже плотности воды и льда (для гидрата метана около 900 кг/м³).

При повышении температуры и уменьшении давления гидрат разлагается на газ и воду с поглощением большого количества теплоты. Разложение гидрата в замкнутом объёме либо в пористой среде (естественные условия) приводит к значительному повышению давления.

Кристаллогидраты обладают высоким электрическим сопротивлением, хорошо проводят звук, и практически непроницаемы для свободных молекул воды и газа. Для них характерна аномально низкая теплопроводность (для гидрата метана при 273 К в пять раз ниже, чем у льда).

Для описания термодинамических свойств гидратов в настоящее время широко используется теория Ван-дер-Ваальса (внук)- Платтеу. Основные положения данной теории:

Решётка хозяина не деформируется в зависимости от степени заполнения молекулами-гостями либо от их вида.

В каждой молекулярной полости может находиться не более одной молекулы-гостя.

Взаимодействие молекул-гостей пренебрежимо мало.

К описанию применима статистическая физика.

Несмотря на успешное описание термодинамических характеристик, теория Ван-дер-Ваальса - Платтеу противоречит данным некоторых экспериментов. В частности, показано, что молекулы-гости способны определять как симметрию кристаллической решётки гидрата, так и последовательность фазовых переходов гидрата. Помимо того, обнаружено сильное воздействие гостей на молекулы-хозяева, вызывающее повышение наиболее вероятных частот собственных колебаний.

Строение гидратов

В структуре газогидратов молекулы воды образуют ажурный каркас (то есть решётку хозяина), в котором имеются полости. Установлено, что полости каркаса обычно являются 12- («малые» полости), 14-, 16- и 20-гранниками («большие» полости), немного деформированными относительно идеальной формы. Эти полости могут занимать молекулы газа («молекулы-гости»). Молекулы газа связаны с каркасом воды ван-дер-ваальсовскими связями. В общем виде состав газовых гидратов описывается формулой M·n·H2O, где М - молекула газа-гидратообразователя, n - число молекул воды, приходящихся на одну включённую молекулу газа, причём n - переменное число, зависящее от типа гидратообразователя, давления и температуры.

Полости, комбинируясь между собой, образуют сплошную структуру различных типов. По принятой классификации они называются КС, ТС, ГС - соответственно кубическая, тетрагональная и гексагональная структура. В природе наиболее часто встречаются гидраты типов КС-I, КС-II, в то время как остальные являются метастабильными.

Газовые гидраты в природе

Большинство природных газов (CH4, C2H6, C3H8, CO2, N2, H2S, изобутан и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Область их существования приурочена к морским донным осадкам и к областям многолетнемёрзлых пород. Преобладающими природными газовыми гидратами являются гидраты метана и диоксида углерода.

При добыче газа гидраты могут образовываться в стволах скважин, промышленных коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли, 30%-ный раствор CaCl2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляцией трубопроводов и подбором режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка - очистка газа от паров воды.

Условия залегания газогидратов

Гидраты газов представляют собой твердые соединения (клатраты), в которых молекулы газа при определенных давлении и температуре заполняют структурные пустоты кристаллической решетки, образованной молекулами воды с помощью водородной связи. Молекулы воды как бы раздвигаются молекулами газа - плотность воды в гидратном состоянии возрастает до 1,26 - 1,32 см3/г (плотность льда 1,09см3/г). Один объем воды в гидратном состоянии связывает в зависимости от характеристики исходного газа от 70 до 300 объемов газа.

Рисунок ниже представляет собой диаграмму гетерогенного состояния газов (по Ю.Ф. Макогону):

1 - N2; 2 - СН4; 3 - СО2;

природная газовая смесь с относительной плотностью по воздуху: 4 - 0,6, 5 - 0,8: 6 - C2H6.; 7 - С3Н8: 8 -H2S

Условия образования гидратов определяются составом газа, состоянием воды, внешними давлением и температурой и выражаются диаграммой гетерогенного состояния в координатах р - Т (рис. 5). Для заданной температуры повышение давления выше давления, соответствующего равновесной кривой, сопровождается соединением молекул газа с молекулами воды и образованием гидратов. Обратное снижение давления (или повышение температуры при неизменном давлении) сопровождается разложением гидрата на газ и воду.

Плотность гидратов природных газов составляет от 0,9 до 1,1 г/см3.

Газогидратные залежи - это залежи, содержащие газ, находящийся частично или полностью в гидратном состоянии (в зависимости от термодинамических условий и стадии формирования). Для формирования и сохранения газогидратных залежей не нужны литологические покрышки: они сами являются непроницаемыми экранами, под которыми могут накапливаться залежи нефти и свободного газа. Газогидратная залежь внизу может контактировать с пластовой подошвенной водой, газовой залежью или непроницаемыми пластами.

Процесс образования гидратов происходит с выделением тепла от 14 до 134 кДж/моль при t > 00 С. При t < 00 C теплота гидратообразования составляет 16-30 кДж/моль.

Газогидратная залежь снизу может контактировать с пластовой, подошвенной или крыльевой водой, со свободной газовой, газоконденсатной или нефтяной залежью или газонепроницаемыми пластами. ГГЗ приурочены к охлаждённым разрезам осадочного чехла земной коры на материках и в акватории Мирового океана.

Как правило, в пределах материков ГГЗ приурочены к районам распространения многолетнемёрзлых пород. На материках глубина залегания этих залежей достигает 700-1500 м.

Как известно, большая часть дна мирового океана сложена осадочными породами мощностью от десятков до тысячи и более метров. Современный термодинамичекий режим придонной части океана, начиная с глубин 150-500м, соответствует условиям существования гидратов природных газов.

Присутствие гидратов в разрезе можно обнаружить стандартными методами каротажа. Гидратсодержащие пласты характеризуются:

Незначительной амплитудой ПС;

Отсутствием или малым значением приращения показаний микроградиент-зонда;

Интенсивностью вторичной a активности, близкой к интенсивности водонасыщенных пластов;

Отсутствием глинистой корки и наличием каверн;

Значительной (в большинстве случаев) величиной rк; повышенной скоростью прохождения акустических волн и др.

В основе разработки газогидратных залежей лежит принцип перевода газа в залежи из гидратного состояния в свободное и отбора его традиционными методами с помощью скважин. Перевести газ из гидратного состояния в свободное можно путем закачки в пласт катализаторов для разложения гидрата; повышения температуры залежи выше температуры разложения гидрата; снижения давления ниже давления разложения гидрата; термохимического, электроакустического и других воздействий на газогидратные залежи.

При вскрытии и разработке газогидратных залежей необходимо иметь в виду их специфические особенности, а именно: резкое увеличение объема газа при переходе его в свободное состояние; постоянство пластового давления, соответствующего определенной изотерме разработки газогидратной залежи; высвобождение больших объемов воды при разложении гидрата и др.

Научные исследования

В последние годы интерес к проблеме газовых гидратов во всем мире значительно усилился. Рост активности исследований объясняется следующими основными факторами:

активизацией поисков альтернативных источников углеводородного сырья в странах, не обладающих ресурсами энергоносителей, так как газовые гидраты являются нетрадиционным источником углеводородного сырья, опытно-промышленное освоение, которого может начаться в ближайшие годы;

необходимостью оценки роли газовых гидратов в приповерхностных слоях геосферы, особенно в связи с их возможным влиянием на глобальные климатические изменения;

изучением закономерностей образования и разложения газовых гидратов в земной коре в общетеоретическом плане с целью обоснования поисков и разведки традиционных месторождений углеводородов (природные гидратопроявления могут служить маркерами более глубокозалегающих обычных месторождений нефти и газа);

активным освоением месторождений углеводородов, расположенных в сложных природных условиях (глубоководный шельф, полярные регионы), где проблема техногенных газогидратов обостряется;

целесообразностью сокращения эксплуатационных затрат на предупреждение гидратообразования в промысловых системах добычи газа за счёт перехода на энерго-ресурсосберегающие и экологически чистые технологии;

возможностью использования газогидратных технологий при разработке, хранении и транспорте природного газа.

В последние годы (после проведения в 2003 году совещания в ОАО «Газпром») исследования гидратов в России продолжались в различных организациях как посредством госбюджетного финансирования (два интеграционных проекта Сибирского отделения РАН, небольшие гранты РФФИ, грант губернатора Тюмени, грант министерства высшего образования РФ), так и за счёт грантов международных фондов - ИНТАС, СРДФ, ЮНЕСКО (по программе «плавучий университет» - морские экспедиции под эгидой ЮНЕСКО под лозунгом Training Through Research - обучение через исследования), КОМЕКС (Kurele-Okhosk-Marine Experiment), ЧАОС (Carbon-Hydrate Accumulations in the Okhotsk Sea) и др.

В 2002-2004 гг. исследования по нетрадиционным источникам углеводородов, включая газовые гидраты (с учетом коммерческих интересов ОАО «Газпром»), продолжались в ООО «Газпром ВНИИГАЗ» и ОАО «Промгаз» при небольшом масштабе финансирования. В настоящее время исследования по газовым гидратам проводятся в ОАО «Газпром» (главным образом, в ООО «Газпром ВНИИГАЗ»), в институтах Российской академии наук, в университетах.

Исследования геологических и технологических проблем газовых гидратов были начаты в середине 60-х годов специалистами ВНИИГАЗа. Вначале ставились и решались технологические вопросы предупреждения гидратообразования, затем тематика постепенно расширялась: включались в сферу интересов кинетические аспекты гидратообразования, далее значительное внимание было уделено геологическим аспектам, в частности возможностям существования газогидратных залежей, теоретическим проблемам их освоения.

Геологические исследования газовых гидратов

В 1970 году в Государственный реестр открытий СССР было внесено научное открытие «Свойство природных газов находиться в твёрдом состоянии в земной коре» под № 75 с приоритетом от 1961 г., сделанное российскими учеными В. Г. Васильевым, Ю. Ф. Макогоном, Ф. Г. Требиным, А. А. Трофимуком и Н. В. Черским. После этого геологические исследования газовых гидратов получили серьёзный импульс. Прежде всего, были разработаны графоаналитические методы выделения термодинамических зон стабильности газогидратов в земной коре (ЗСГ). При этом выяснилось, что зона стабильности гидратов (ЗСГ) метана, наиболее распространенного в земной коре углеводородного газа, покрывает до 20 % суши (в районах распространения криолитозоны) и до 90 % дна океанов и морей.

Эти сугубо теоретические результаты активизировали поиски гидратосодержащих пород в природе: первые успешные результаты были получены сотрудниками ВНИИГАЗа А. Г. Ефремовой и Б. П. Жижченко при донном пробоотборе в глубоководной части Чёрного моря в 1972 году. Они визуально наблюдали вкрапления гидратов, похожие на иней в кавернах извлеченного со дна грунта. Фактически, это первое, официально признанное в мире наблюдение природных газовых гидратов в породах. Данные А. Г. Ефремовой и Б. П. Жижченко впоследствии многократно цитировались зарубежными и отечественными авторами. На основе их исследований в США были разработаны первые методы отбора образцов субмаринных газогидратов. Позже А. Г. Ефремова, работая в экспедиции по донному пробоотбору в Каспийском море (1980 г.), также впервые в мире установила гидратоносность донных отложений этого моря, что позволило при более поздних детализированных исследованиях другим ученым (Г. Д. Гинсбург, В. А. Соловьев и др.) выделить в Южном Каспии гидратоносную провинцию (связанную с грязевулканизмом).

Большой вклад в геологические и геофизические исследования гидратосодержащих пород внесли сотрудники Норильской комплексной лаборатории ВНИИГАЗа М. Х. Сапир, А. Э. Беньяминович и др., изучавшие Мессояхское газовое месторождение, начальные пластовые Р, Т-условия которого практически совпадали с условиями гидратообразования метана. Этими исследователями в начале 70-х годов были заложены принципы распознавания гидратосодержащих пород по данным комплексного скважинного каротажа. В конце 70-х годов исследования в этой области в СССР практически прекратились. В то же время, в США, Канаде, Японии и других странах они получили развитие и к настоящему времени отработаны методики геофизического выделения гидратонасыщенных пород в геологических разрезах по данным комплекса каротажных данных. В России на базе ВНИИГАЗа были поставлены одни из первых экспериментальных исследований в мире по моделированию гидратообразования в дисперсных породах. Так, А. С. Схаляхо (1974 г.) и В. А. Ненахов (1982 г.) путём насыщения гидратами песчаных образцов установили закономерность изменения относительной проницаемости породы по газу в зависимости от гидратонасыщенности (А. С. Схаляхо) и предельный градиент сдвига поровой воды в гидратосодержащих породах (В. А. Ненахов) - две важные для прогноза добычи газогидратного газа характеристики.

Также была проведена важная работа Е. В. Захарова и С. Г. Юдина (1984 г.) по перспективам поиска гидратосодержащих отложений в Охотском море. Эта публикация оказалась прогностической: через два года после её опубликования появилась целая серия статей об обнаружении гидратосодержащих отложений при сейсмопрофилировании, донном пробоотборе, и даже при визуальном наблюдении с подводных обитаемых аппаратов в различных частях Охотского моря. К настоящему времени ресурсы гидратного газа России только в обнаруженных субмаринных скоплениях оцениваются в несколько трлн.м³. Несмотря на прекращение финансирования исследований по природным газогидратам в 1988 году, работы во ВНИИГАЗе были продолжены В. С. Якушевым, В. А. Истоминым, В. И. Ермаковым и В. А. Скоробогатовым на безбюджетной основе (исследования природных газогидратов не включались в официальную тематику института вплоть до 1998 года). Особую роль в организации и постановке исследований сыграл профессор В. И. Ермаков, который постоянно уделял внимание последним достижениям в области природных газогидратов и поддерживал эти исследования во ВНИИГАЗе на протяжении всей своей работы в институте.

В 1986-1988 гг. были разработаны и сконструированы две оригинальные экспериментальные камеры по исследованию газогидратов и гидратосодержащих пород, одна из которых позволяла наблюдать за процессом образования и разложения гидратов углеводородных газов под оптическим микроскопом, а другая - проводить изучение образования и разложения гидратов в породах различного состава и строения благодаря сменной внутренней гильзе.

К настоящему времени подобные камеры в модифицированном виде для исследований гидратов в поровом пространстве используются в Канаде, Японии, России и других странах. Проведенные экспериментальные исследования позволили обнаружить эффект самоконсервации газогидратов при отрицательных температурах.

Он заключается в том, что если монолитный газогидрат, полученный при обычных равновесных условиях, охладить до температуры ниже 0°С и сбросить давление над ним до атмосферного, то после первичного поверхностного разложения, газогидрат самоизолируется от окружающей среды тонкой пленкой льда, препятствующей дальнейшему разложению. После этого гидрат может храниться длительное время при атмосферном давлении (зависит от температуры, влажности и других параметров внешней среды). Обнаружение этого эффекта внесло значительный вклад в изучение природных газогидратов.

Разработка методики получения и изучения гидратосодержащих образцов различных дисперсных пород, уточненение методики изучения природных гидратосодержащих образцов, проведение первые исследования природных гидратосодержащих образцов, поднятых из мерзлой толщи Ямбургского ГКМ (1987 г.) подтвердили существование гидратов метана в «законсервированном» виде в мерзлой толще, а также позволили установить новый тип газогидратных залежей - реликтовые газогидратные залежи, распространенные вне современной ЗСГ.

Кроме того, эффект самоконсервации открыл новые возможности для хранения и транспорта газа в сконцентрированном виде, но без повышенного давления. Впоследствии эффект самоконсервации экспериментально был подтвержден исследователями в Австрии (1990 г.) и Норвегии (1994 г.) и в настоящее время исследуется специалистами из разных стран (Япония, Канада, США, Германия, Россия).

В середине 90-тых годов ВНИИГАЗом в содружестве с Московским Государственным Университетом (кафедра геокриологии - доцент Е. М. Чувилин с сотрудниками) были проведены исследования образцов керна из интервалов газопроявлений из толщи ММП в южной части Бованенковского ГКМ по методике, разработанной ранее при исследованиях образцов ММП Ямбургского ГКМ.

Результаты исследований показали присутствие в поровом пространстве мерзлых пород рассеянных реликтовых газогидратов. Аналогичные результаты позже были получены и при исследовании ММП в дельте реки Маккензи (Канада), где гидраты были идентифицированы не только по предложенной российской методике, но и наблюдались в керне визуально.

Экспериментальные и теоретические исследования свойств газовых гидратов

В 60-70-тые годы основное внимание уделялось условиям образования газовых гидратов из бинарных и многокомпонентных смесей, в том числе и в присутствии ингибиторов гидратообразования.

Экспериментальные исследования проводились специалистами ВНИИГАЗа Б. В. Дегтяревым, Э. Б. Бухгалтером, В. А. Хорошиловым, В. И. Семиным и др. На базе этих исследований были предложены первые эмпирические методы расчета фазовых равновесий газовых гидратов и разработаны инструкции по предупреждению гидратообразования в системах добычи газа.

Освоение Оренбургского месторождения с аномально-низкими пластовыми температурами привело к необходимости изучения проблем, связанных с гидратообразованием сероводородсодержащих газов. Это направление разрабатывалось А. Г. Бурмистровым. Им были получены практически важные данные по гидратообразованию в трехкомпонентных газовых смесях «метан - сероводород - диоксид углерода» и разработаны уточненные методики расчета применительно к сероводородсодержащим природным газам месторождений Прикаспийской впадины.

Следующий этап исследований термодинамики гидратообразования связан с освоением гигантских северных месторождений - Уренгойского и Ямбургского. Для совершенствования методов предупреждения гидратообразования применительно к системам сбора и промысловой обработки конденсатсодержащих газов понадобились экспериментальные данные по условиям гидратообразования в высококонцентрированных растворах метанола в широком диапазоне температур и давлений. В ходе экспериментальных исследований (В. А. Истомин, Д. Ю. Ступин и др.) выяснились серьёзные методические трудности получения представительных данных при температурах ниже минус 20 °C. В связи с этим была разработана новая методика исследований фазовых равновесий газовых гидратов из многокомпонентных газовых смесей с регистрацией тепловых потоков в гидратной камере и при этом обнаружена возможность существования метастабильных форм газовых гидратов (на стадии их образования), что подтвердилось последующими исследованиями зарубежных авторов. Анализ и обобщение новых экспериментальных и промысловых данных (как отечественных, так и зарубежных) дал возможность разработать (В. А. Истомин, В. Г. Квон, А. Г. Бурмистров, В. П. Лакеев) инструкцию по оптимальному расходу ингибиторов гидратообразования (1987 г.).

В настоящее время во ВНИИГАЗе начат новый цикл исследований по предупреждению техногенного гидратообразования. Значительные усилия учёных А. И. Гриценко, В. И. Мурина, Е. Н. Ивакина и В. М. Булейко были посвящены исследованиям теплофизических свойств газовых гидратов (теплотам фазовых переходов, теплоемкостям и теплопроводностям).

В частности, В. М. Булейко, проводя калориметрические исследования газового гидрата пропана, обнаружил метастабильные состояния газовых гидратов при их разложении. Что касается кинетики гидратообразования, то ряд интересных результатов был получен В. А. Хорошиловым, А. Г. Бурмистровым, Т. А. Сайфеевым и В. И. Семиным, особенно по гидратообразованию в присутствии ПАВ.

В последние годы эти ранние исследования российских учёных были «подхвачены» специалистами ряда зарубежных фирм с целью разработки новых классов так называемых низкодозируемых ингибиторов гидратообразования.

Проблемы и перспективы, связанные с природными газогидратами

Освоение месторождений севера Западной Сибири с самого начала столкнулось с проблемой выбросов газа из неглубоких интервалов криолитозоны. Эти выбросы происходили внезапно и приводили к остановке работ на скважинах и даже к пожарам. Так как выбросы происходили из интервала глубин выше зоны стабильности газогидратов, то длительное время они объяснялись перетоками газа из более глубоких продуктивных горизонтов по проницаемым зонам и соседним скважинам с некачественным креплением. В конце 80-х годов на основе экспериментального моделирования и лабораторных исследований мерзлого керна из криолитозоны Ямбургского ГКМ удалось выявить распространение рассеянных реликтовых (законсервировавшихся) гидратов в четвертичных отложениях. Эти гидраты совместно с локальными скоплениями микробиального газа могут сформировать газоносные пропластки, откуда происходят выбросы при бурении. Присутствие реликтовых гидратов в неглубоких слоях криолитозоны было в дальнейшем подтверждено аналогичными исследованиями на севере Канады и в районе Бованенковского ГКМ. Таким образом, сформировались представления о новом типе газовых залежей - внутримерзлотных метастабильных газ-газогидратных залежах, которые, как показали испытания мерзлотных скважин на Бованенковском ГКМ, представляют собой не только осложняющий фактор, но и определённую ресурсную базу для местного газоснабжения.

Внутримерзлотные залежи содержат лишь незначительную часть ресурсов газа, которые связывают с природными газогидратами. Основная часть ресурсов приурочена к зоне стабильности газогидратов - тому интервалу глубин (обычно первые сотни метров), где имеют место термодинамические условия для гидратообразования. На севере Западной Сибири это интервал глубин 250-800 м, в морях - от поверхности дна до 300-400 м, в особо глубоководных участках шельфа и континентального склона до 500-600 м под дном. Именно в этих интервалах была обнаружена основная масса природных газогидратов.

В ходе изучения природных газогидратов выяснилось, что отличить гидратосодержащие отложения от мерзлых современными средствами полевой и скважинной геофизики не представляется возможным. Свойства мерзлых пород практически полностью аналогичны свойствам гидратосодержащих. Определенную информацию о присутствии газогидратов может дать каротажное устройство ядерного магнитного резонанса, но оно весьма дорогостояще и применяется крайне редко в практике геолого-разведочных работ. Основным показателем наличия гидратов в отложениях являются исследования керна, где гидраты либо видны при визуальном осмотре, либо определяются по замеру удельного газосодержания при оттаивании.

Перспективы применения в промышленности газогидратных технологий

Технологические предложения по хранению и транспорту природного газа в гидратном состоянии появились ещё в 40-х годах 20-ого века. Свойство газовых гидратов при относительно небольших давлениях концентрировать значительные объёмы газа привлекает внимание специалистов длительное время. Предварительные экономические расчеты показали, что наиболее эффективным оказывается морской транспорт газа в гидратном состоянии, причем дополнительный экономический эффект может быть достигнут при одновременной реализации потребителям транспортируемого газа и чистой воды, остающейся после разложения гидрата (при образовании газогидратов вода очищается от примесей). В настоящее время рассматриваются концепции морского транспорта природного газа в гидратном состоянии при равновесных условиях, особенно при планировании разработки глубоководных газовых (в том числе и гидратных) месторождений, удаленных от потребителя.

Однако в последние годы все большее внимание уделяется транспорту гидратов в неравновесных условиях (при атмосферном давлении). Ещё одним аспектом применения газогидратных технологий является возможность организации газогидратных хранилищ газа в равновесных условиях (под давлением) вблизи крупных потребителей газа. Это связано со способностью гидратов концентрировать газ при относительно низком давлении. Так, например, при температуре +4°С и давлении 40 атм., концентрация метана в гидрате соответствует давлению в 15 - 16 МПа (150-160 атм.).

Сооружение подобного хранилища не является сложным: хранилище представляет собой батарею газгольдеров, размещенных в котловане или ангаре, и соединённую с газовой трубой. В весенне-летний период хранилище заполняется газом, формирующим гидраты, в осенне-зимний - отдает газ при разложении гидратов с использованием низкопотенциального источника теплоты. Строительство подобных хранилищ вблизи теплоэнергоцентралей может существенно сгладить сезонную неравномерность в производстве газа и представлять собой реальную альтернативу строительству ПХГ в ряде случаев.

В настоящее время активно разрабатываются газогидратные технологии, в частности, для получения гидратов с использованием современных методов интенсификации технологических процессов (добавки ПАВ, ускоряющие тепломасооперенос; использование гидрофобных нанопорошков; акустические воздействия различного диапазона, вплоть до получения гидратов в ударных волнах и др.).

Добыча гидратов природного газа

На сегодняшний день разрабатывается 3 основных способа добычи гидратов природного газа. Все они основаны на применении диссоциации - процесса, в ходе которого вещество распадается на более простые составляющие. В случае с гидратами природного газа диссоциация проходит при увеличении температуры и снижении давления, когда кристаллы льда тают или как-то изменяют свою форму, тем самым высвобождая молекулы природного газа, заключенные внутри кристалла.

Три основных перспективных метода добычи гидратов природного газа: термальное воздействие, снижение давления и воздействие ингибитором (веществом, замедляющим химические процессы, реакции).

Рис. 5. Способы добычи гидратов природного газа.

Термальное воздействие .

Этот метод основан на подаче тепла внутрь кристаллической структуры гидрата с целью повышения температуры и ускорения процесса диссоциации. Практическим примером такого метода может служить накачивание теплой морской воды внутрь слоя гидратов газа, залегающего на дне моря. Как только газ начнет высвобождаться из слоя морских отложений, его можно будет собрать.

Воздействие ингибитором

Некоторые виды спиртов, например метанол, действуют как ингибиторы при подаче внутрь слоя залегания гидратов газа, и вызывают изменение состава гидрата. Ингибиторы изменяют условия температуры и давления, способствуя диссоциации гидратов и высвобождению содержащегося в них метана.

Снижение давления.

В некоторых месторождениях гидратов есть участки, где природный газ уже

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина Газогидратные месторождения обладают наибольшим потенциалом по сравнению с другими нетрадиционными источниками газа. Сегодня себестоимость газа, добытого из гидратов, несопоставима с аналогичным показателем добычи газа из традиционных газовых месторождений.

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина

Газогидратные месторождения обладают наибольшим потенциалом по сравнению с другими нетрадиционными источниками газа. Сегодня себестоимость газа, добытого из гидратов, несопоставима с аналогичным показателем добычи газа из традиционных газовых месторождений. Однако вполне обоснованно полагать, что в ближайшей перспективе прогресс технологий газодобычи сможет обеспечить экономическую целесообразность разработки месторождений газовых гидратов. На основе анализа геологических условий залегания типовых газогидратных залежей и результатов численного моделирования автором выполнена оценка перспективности добычи газа из гидратов.

Газовые гидраты представляют собой твердые соединения молекул газа и воды, существующие при определенных давлениях и температурах. В одном кубометре природного гидрата содержится до 180 м3 газа и 0,78 м3 воды. Если раньше гидраты изучались с позиции технологических осложнений при добыче и транспорте природного газа, то с момента обнаружения залежей природных газовых гидратов их стали рассматривать как наиболее перспективный источник энергии. В настоящий момент известно более двухсот месторождений газовых гидратов, большая часть которых расположена на морском дне. По последним оценкам, в залежах природных газовых гидратов сосредоточено 10-1000 трлн м3 метана , что соизмеримо с запасами традиционного газа. Поэтому стремление многих стран (особенно стран-импортеров газа: США, Японии, Китая, Тайваня) освоить этот ресурс вполне объяснимо. Но, несмотря на последние успехи геологоразведочного бурения и экспериментальных исследований гидратов в пористых средах, вопрос об экономически рентабельном способе добычи газа из гидратов остается по-прежнему открытым и требует дальнейшего изучения.

Газогидратные месторождения

Самое первое упоминание о больших скоплениях газовых гидратов связано с Мессояхским месторождением, открытым в 1972 г. в Западной Сибири. Вопросами анализа разработки этого месторождения занимались многие исследователи, опубликовано более ста научных статей. Согласно работе в верхней части продуктивного разреза Мессояхского месторождения предполагается существование природных гидратов. Однако следует отметить, что прямые исследования гидратоносности месторождения (отбор керна) не проводились, а те признаки, по которым выявлены гидраты, носят косвенный характер и допускают различную трактовку .

Поэтому к настоящему моменту нет единого мнения о гидратоносности Мессояхского месторождения.

В этом отношении наиболее показательным является пример другого предполагаемого гидратоносного района - северного склона Аляски (США). Долгое время считалось, что данный район имеет значительные запасы газа в гидратном состоянии. Так, утверждалось , что в районе нефтяных месторождений Прудо Бей и Кипарук Ривер имеется шесть гидратонасыщенных пластов с запасами 1,0-1,2 трлн м3. Предположение о гидратоносности строилось на результатах опробования скважин в вероятном интервале залегания гидратов (эти интервалы характеризовались крайне низкими дебитами газа) и интерпретации геофизических материалов.

С целью изучения условий залегания гидратов на Аляске и оценки их ресурсов в конце 2002 г. компания «Анадарко» (Anadarko) совместно с Департаментом энергетики США организовала бурение разведочной скважины Хот Айс № 1 (HOT ICE #1). В начале 2004 г. скважина была закончена на проектной глубине 792 м. Тем не менее, несмотря на ряд косвенных признаков наличия гидратов (данные геофизических исследований и сейсморазведки), а также на благоприятные термобарические условия, гидратов в поднятых кернах обнаружено не было . Это еще раз подтверждает тезис о том, что единственным надежным способом обнаружения гидратных залежей является разведочное бурение с отбором керна.

На данный момент подтверждена гидратоносность лишь двух месторождений природных гидратов, представляющих наибольший интерес с точки зрения промышленного освоения: Маллик - в дельте реки Макензи на северо-западе Канады , и Нанкай - на шельфе Японии.

Месторождение Маллик

Существование природных гидратов подтверждено бурением исследовательской скважины в 1998 г. и трех скважин в 2002 г. На этом месторождении успешно проведены промысловые эксперименты по добыче газа из гидратонасыщенных интервалов. Есть все основания полагать, что оно является характерным типом континентальных гидратных месторождений, которые будут открыты в дальнейшем.

На основе геофизических исследований и изучении кернового материала выявлены три гидратосодержащих пласта (A, B, C) общей мощностью 130 м в интервале 890-1108 м. Зона вечной мерзлоты имеет мощность порядка 610 м, а зона стабильности гидрата (ЗСГ) (т.е. интервал, где термобарические условия соответствуют условиям стабильности гидратов) простирается от 225 до 1100 м. Зона стабильности гидратов определяется по точкам пересечения равновесной кривой образования гидрата пластового газа и кривой изменения температуры разреза (см. рис. 1). Верхняя точка пересечения является верхней границей ЗСГ, а нижняя точка - соответственно нижней границей ЗСГ. Равновесная температура, соответствующая нижней границе зоны стабильности гидратов, составляет 12,2°С .

Пласт А находится в интервале от 892 до 930 м, где отдельно выделяется гидратонасыщенный пропласток песчаника (907-930 м). По данным геофизики, насыщенность гидратом варьирует от 50 до 85%, остальное поровое пространство занято водой. Пористость составляет 32-38%. Верхняя часть пласта А состоит из песчаного алеврита и тонких прослоев песчаника с гидратонасыщенностью 40-75%. Визуальный осмотр поднятых на поверхность кернов выявил, что гидрат в основном занимает межзеренное поровое пространство. Данный интервал является самым холодным: разница между равновесной температурой гидратообразования и пластовой температурой превышает 4°С.

Гидратный пласт В (942-992 м) состоит из нескольких песчаных пропластков толщиной 5-10 м, разделенных тонкими прослоями (0,5-1 м) свободных от гидратов глин. Насыщенность гидратами варьирует в широких пределах от 40 до 80%. Пористость изменяется от 30 до 40%. Широкий предел изменения пористости и гидратонасыщенности объясняется слоистым строением пласта. Гидратный пласт В подстилается водоносным пропластком мощностью 10 м.

Пласт С (1070-1107 м) состоит из двух пропластков с насыщенностью гидратами в пределах 80-90% и находится в условиях, близких к равновесным. Подошва пласта С совпадает с нижней границей зоны стабильности гидратов. Пористость интервала составляет 30-40%.

Ниже зоны стабильности гидратов отмечается переходная зона газ-вода мощностью 1,4 м. После переходной зоны следует водоносный пласт мощностью 15 м.

По результатам лабораторных исследований установлено, что гидрат состоит из метана (98% и более). Изучение кернового материала показало, что пористая среда в отсутствии гидратов имеет высокую проницаемость (от 100 до 1000 мД), а при насыщении гидратами на 80% проницаемость породы падает до 0,01-0,1 мД.

Плотность запасов газа в гидратах около пробуренных разведочных скважин составила 4,15 млрд. м3 на 1 км2, а запасы в целом по месторождению - 110 млрд. м3 .

Месторождение Нанкай

На шельфе Японии уже на протяжении нескольких лет ведутся активные разведочные работы. Первые шесть скважин, пробуренных в период с 1999-2000 гг, доказали наличие трех гидратных пропластков общей мощностью 16 м в интервале 1135-1213 м от поверхности моря (290 м ниже морского дна). Породы представлены в основном песчаниками с пористостью 36% и насыщенностью гидратами порядка 80% .

В 2004 г. были пробурены уже 32 скважины при глубинах моря от 720 до 2033 м . Отдельно следует отметить успешное заканчивание в слабоустойчивых гидратных пластах вертикальной и горизонтальной (с длиной горизонтального ствола 100 м) скважин при глубине моря 991 м . Следующим этапом освоения месторождения Нанкай станет экспериментальная добыча газа из этих скважин в 2007 г. К промышленной разработке месторождения Нанкай намечается приступить в 2017 г.

Суммарный объем гидратов эквивалентен 756 млн м3 газа на 1 км2 площади в районе пробуренных разведочных скважин. В целом по шельфу Японского моря запасы газа в гидратах могут составлять от 4 трлн до 20 трлн м3 .

Гидратные месторождения в России

Основные направления поиска газовых гидратов в России сейчас сосредоточены в Охотском море и на озере Байкал . Однако наибольшие перспективы обнаружения залежей гидратов с промышленными запасами связаны с Восточно-Мессояхским месторождением в Западной Сибири . На основе анализа геолого-геофизической информации сделано предположение о том, что газсалинская пачка находится в благоприятных для гидратообразования условиях. В частности, нижняя граница зоны стабильности газогидратов находится на глубине приблизительно 715 м, т.е. верхняя часть газсалинской пачки (а в некоторых районах и вся пачка) находится в термобарических условиях, благоприятных для существования газогидратов. Опробование скважин результатов не дало, хотя по каротажу данный интервал характеризуется как продуктивный, что можно объяснить снижением проницаемости пород из-за наличия газовых гидратов. В пользу возможного существования гидратов говорит и тот факт, что газсалинская пачка является продуктивной на других рядом расположенных месторождениях. Поэтому, как отмечалось выше, необходимо бурение разведочной скважины с отбором керна. В случае положительных результатов будет открыта газогидратная залежь с запасами ~500 млрд м3.

Анализ возможных технологий разработки газогидратных залежей

Выбор технологии разработки газогидратных залежей зависит от конкретных геолого-физических условий залегания. Сейчас рассматриваются только три основных метода вызова притока газа из гидратного пласта: понижение давления ниже равновесного давления, нагрев гидратосодержащих пород выше равновесной температуры, а также их комбинация (см. рис. 2). Известный метод разложения гидратов с помощью ингибиторов вряд ли окажется приемлемым вследствие высокой стоимости ингибиторов. Другие предлагаемые методы воздействия, в частности электромагнитное, акустическое и закачка углекислого газа в пласт, пока еще мало изучены экспериментально.

Рассмотрим перспективность добычи газа из гидратов на примере задачи притока газа к вертикальной скважине, полностью вскрывшей гидратонасыщенный пласт. Тогда система уравнений, описывающих разложение гидрата в пористой среде, будет иметь вид:

а) закон сохранения массы для газа и воды:

где P - давление, T - температура, S - водонасыщенность, v - гидратонасыщенность, z - коэффициент сверхсжимаемости; r - радиальная координата; t - время; m - пористость, g, w, h - плотности газа, воды и гидрата соотвественно; k(v) - проницаемость пористой среды в присутствии гидратов; fg(S), fw(S) - функции относительных фазовых проницаемостей для газа и воды; g, w - вязкости газа и воды; - массовое содержание газа в гидрате;

б) уравнение сохранения энергии:

где Сe - теплоемкость породы и вмещающих флюидов; cg, cw - теплоемкость газа и воды соответственно; H - теплота фазового перехода гидрата; - дифференциальный адиабатический коэффициент; - коэффициент дросселирования (коэффициент Джоуля-Томсона); e - коэффициент теплопроводности породы и вмещающих флюидов.

В каждой точке пласта должно выполняться условие термодинамического равновесия:

Т = A ln P + B, (3)

где A и B - эмпирические коэффициенты.

Зависимость проницаемости породы от насыщенности гидратов принято представлять в виде степенной зависимости:

k (v) = k0 (1 - v)N, (4)

где k0 - абсолютная проницаемость пористой среды при отсутствии гидратов; N - константа, характеризующая степень ухудшения проницаемости с ростом гидратонасыщенности.

В начальный момент времени однородный и единичной мощности пласт имеет давление Р0, температуру Т0 и насыщенность гидратами v0. Метод понижения давления моделировался заданием на скважине постоянного дебита, а тепловой метод - тепловым источником постоянной мощности. Соответственно при комбинированном методе задавались постоянный расход газа и мощность теплового источника, необходимая для устойчивого разложения гидратов.

При моделировании добычи газа из гидратов рассматриваемыми методами учитывались следующие ограничения. При начальной пластовой температуре 10°С и давлении 5,74 МПа коэффициент Джоуля-Томсона составляет 3-4 градуса на 1 МПа депрессии. Таким образом, при депрессии 3-4 МПа забойная температура может достичь температуры замерзания воды. Как известно, замерзание воды в породе не только снижает проницаемость призабойной зоны, но и приводит к более катастрофическим последствиям - смятию обсадных колон, разрушению коллектора и т.д. Поэтому для метода понижения давления принималось, что за 100 суток работы скважины забойная температура не должна снизиться ниже 0°С. Для теплового метода ограничением является рост температуры на стенке скважины и самого нагревателя. Поэтому при расчетах принималось, что за 100 суток работы скважины забойная температура не должна превысить 110°С. При моделировании комбинированного метода учитывались оба ограничения.

Эффективность методов сравнивалась по максимальному дебиту вертикальной скважины, полностью вскрывшей газогидратный пласт единичной толщины, с учетом упомянутых выше ограничений. Для теплового и комбинированного методов энергетические затраты учитывались путем вычитания из дебита того количества газа, которое требуется для получения необходимой теплоты (в предположении, что теплота генерируется от сжигания части добываемого метана):

Q* = Q - E/q, (5)

где Q - дебит газа на забое, м3/сут.; E - подводимая к забою тепловая энергия, Дж/сут.; q - теплота сгорания метана (33,28.106), Дж/м3.

Расчеты проводились при следующих параметрах: P0 = 5,74 МПа; T0 = 283 К; S = 0,20; m = 0,35; h = 910кг/м3, w = 1000 кг/м3; k0 = 0,1 мкм2; N = 1 (коэффициент в формуле (4)); g = 0,014 мПа.с; w = 1 мПа.с; = 0,134; A = 7,28 К; B = 169,7 К; Сe = 1,48.106 Дж/(м3.К); cg = 2600 Дж/(кг.К), cw = 4200 Дж/(кг.К); H = 0,5 МДж/кг; e = 1,71 Вт/(м.К). Результаты расчетов сведены в табл. 1.

Анализ этих результатов расчетов показывает, что метод понижения давления является пригодным для гидратных пластов, где насыщенность гидратами невелика, а газ или вода не потеряли свою подвижность. Естественно, что при увеличении гидратонасыщенности (а значит, сокращении проницаемости согласно уравнению (4)) эффективность этого метода резко падает. Так, при насыщенности пор гидратами более 80% получить приток из гидратов за счет снижения забойного давления практически невозможно.

Другой недостаток метода снижения давления связан с техногенным образованием гидратов в призабойной зоне вследствие эффекта Джоуля-Томсона. На рис. 3 представлено распределение водо- и гидратонасыщенности, полученное в результате решения задачи притока газа к вертикальной скважине, вскрывшей газогидратный пласт. На этом рисунке отчетливо прослеживается зона незначительного разложения гидрата (I), зона вторичного гидратообразования (II) и зона фильтрации только газа (III), поскольку в этой зоне вся свободная вода перешла в гидрат.

Таким образом, разработка гидратных залежей за счет понижения давления возможна только при закачке ингибиторов в призабойную зону, что значительно увеличит себестоимость добываемого газа.

Тепловой метод разработки газогидратных месторождений пригоден для пластов, имеющих высокое содержание гидратов в порах. Однако, как показывают результаты расчетов, тепловое воздействие через забой скважины малоэффективно. Это связано с тем, что процесс разложения гидратов сопровождается поглощением тепла с высокой удельной энтальпией 0,5 МДж/кг (для примера: теплота плавления льда составляет 0,34 МДж/кг). По мере удаления фронта разложения от забоя скважины все больше энергии тратится на прогрев вмещающих пород и кровли пласта, поэтому зона теплового воздействия на гидраты через забой скважины исчисляется первыми метрами. На рис. 4 представлена динамика растепления полностью насыщенного гидратами пласта. Из этого рисунка видно, что за 100 суток непрерывного прогрева разложение гидратов произойдет в радиусе всего 3,5 метра от стенки скважины.

Наибольшие перспективы имеет комбинированный метод, состоящий в одновременном снижении давления и подводе тепла к скважине. Причем основное разложение гидрата происходит за счет снижения давления, а подводимая к забою теплота позволяет сократить зону вторичного гидратообразования, что положительно сказывается на дебите. Недостатком комбинированного метода (как и теплового) является большое количество попутно добываемой воды (см. табл. 1).

Заключение

Таким образом, при современном уровне нефтегазовых технологий трудно ожидать, что себестоимость добываемого газа из гидратов будет сопоставима с аналогичным показателем традиционных газовых месторождений. Это обусловлено большими проблемами и сложностями, возникающими перед разработчиками и исследователями. Однако уже сейчас газовые гидраты можно сравнить с другим нетрадиционным источником газа - метаном угольных пластов. Еще двадцать лет назад считалось, что добывать метан из угольных бассейнов технически сложно и невыгодно. Теперь только в США ежегодно добывается порядка 45 млрд м3 из более 10 тыс. скважин, что достигнуто за счет развития нефтегазовой науки и создания новейших технологий газодобычи. По аналогии с угольным метаном можно сделать вывод (см. табл. 2), что добыча газа из гидратов может оказаться вполне рентабельной и начнется в ближайшей перспективе.

Литература

1. Lerche Ian. Estimates of Worldwide Gas Hydrate Resources. Paper OTC 13036, presented at the 2001 Offshore Technology Conference in Houston, Texas, 30 April - 3May 2001.

2. Makogon, Y.F., Holditch, S.A., Makogon T.Y. Russian field illustrates gashydrate production. Oil&Gas Journal, Feb.7, 2005, vol. 103.5, pp. 43-47.

3. Гинсбург Г.Д., Новожилов А.А. О гидратах в недрах Мессояхского месторождения.// «Газовая промышленность», 1997 г., №2.

4. Collett, T.S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska: AAPG Bull., Vol. 77, No. 5, 1993, pp. 793-812.

5. Ali G. Kadaster, Keith K. Millheim, Tommy W. Thompson. The planning and drilling of Hot Ice # 1 - Gas Hydrate Exploration Well in the Alaskan Arctic. Paper SPE/IADC 92764 presented at the SPE/IADC Drilling Conference held in Amsterdam, The Netherlands, 23-25 February 2005.

6. Dallimore, S., Collett, T., Uchida, T. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate research Well, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, Bulletin 544, 1999, p. 403.

7. Takahashi, H., Yonezawa, T., Takedomi, Y. Exploration for Natural Hydrate in Nankai-Trough Wells Offshore Japan. Paper presented at the 2001 Offshore Technology Conference in Houston, Texas, 30 April - 3 May 2001. OTC 13040.

8. Takahashi, H., Tsuji, Y. Japan explores for hydrates in the Nankai Trough. Oil&Gas Journal, Sept.5, 2005, vol. 103.33, pp. 48-53.

9. Takahashi, H., Tsuji, Y. Japan drills, logs gas hydrate wells in the Nankai Trough. Oil&Gas Journal, Sept.12, 2005, vol. 103.34, pp. 37-42,

10. Соловьев В.А. Газогидратоносность недр Мирового Океана// «Газовая промышленность», 2001 г., №12.

11. Агалаков С.Е. Газовые гидраты в Туронских отложениях на севере Западной Сибири// «Геология нефти и газа», 1997г., №3.

Беседа с геологом, академиком НАН Украины, директором Центрального научно-природоведческого музея НАНУ Евгением Федоровичем Шнюковым

Есть разные прогнозы о том, сколько на нашей планете осталось топлива. Относительно нефти пессимисты из числа ученых говорят: ее запасы будут исчерпаны через 10-15 лет; оптимисты «успокаивают», продлевая этот срок лет до 30-40.

Угля вроде бы хватит на дольше, на несколько столетий, но добывать его все труднее и дороже: эпоха толстых, легко доступных залежей «черного золота» отходит в прошлое.

Что же нам еще остается? Электростанции солнечные, ветровые, приливные, геотермальные, - все это, честно говоря, еще в зародыше...
Так обстоят дела с энергетикой в масштабах всей Земли: что же можно сказать о будущем Украины? Здесь все просто трагично. Евгений Федорович говорит: «Сейчас мы на очень коротком поводке у поставщиков энергоносителей. Мы добываем всего 8-10 процентов потребляемой нефти и максимум 20 процентов газа, - все остальное покупаем».

Видный украинский ученый произносит слова великой надежды. Надежды, которую дает Черное море - и лежащие на его дне диковинные вещества, газогидраты.

Справка:

На непосвященный взгляд газовые гидраты представляют собой обычные грязноватые комочки льда. На самом деле это - уникальная твердая смесь, в которой молекулы газа "впаяны" в каркас из молекул воды. В природе газогидраты образуются в районах вечной мерзлоты и в глубоководных осадках морей и океанов, в условиях высокого давления и низких температур. Количество органического углерода, запасенного в виде газогидратов метана, больше, чем во всех остальных залежах планеты, вместе взятых!

Давайте для начала определим, что это такое - газогидраты?

Если популярно говорить, это своеобразный лед, для образования которого не нужен мороз. Газогидраты возникают при определенных давлении и температуре, - именно таких, какие есть на дне Черного моря, на глубине свыше 700 метров. В их составе, в связанном состоянии, находится горючий газ метан. Если его оттуда освободить, - из одного кубометра «теплого льда» выйдет до 200 кубометров метана!

И много там, на дне, этого «льда»?

Он залегает на огромной площади, слоем мощностью до 400 метров. Российские геологи выполнили большую работу по изучению черноморского дна и определили, что запасы метана, связанные в газогидратах, достигают 25 триллионов кубометров! Триллионов семь, вероятно, приходится на долю Украины...

Звучит, конечно, очень внушительно, но все-таки: можно ли сравнить эти запасы с известными газовыми месторождениями на суше, например, на Таймыре?

Таймыр беднее газом. Мало того: надо учитывать географию. Если Черное море - теплое, а потребители газа тут же рядом, то с крайнего Севера надо прокладывать через тундру, в суровейших условиях, гигантские газопроводы, тянуть их на тысячи километров, поддерживать... Если освоим черноморскую сокровищницу, метан будет и обильный, и дешевый.

А откуда они вообще берутся в море, эти газогидраты? Каким образом сложился 400-метровый слой на дне?

Думаю, они глубинного происхождения. То есть, метан выходит из недр земли через разломы в коре с больших глубин, порядка нескольких десятков километров.

Впрочем, возможно и существование промежуточных коллекторов, этаких подземных «карманов», где газы долгое время накапливаются, а потом находят себе дорогу наверх...

Если выход метана находится достаточно глубоко под водой, газ увязывается в составе «теплого льда». Но иногда толщу газогидратов прорывают свободные, очень мощные выбросы газа.

Иногда такой «метановый фонтан» бьет сутками, месяцами... а то и начинает «работать» периодически, то затихая, то опять прорываясь на поверхность моря. Такие феномены называют грязевыми вулканами, - ведь газ, устремляясь со дна ввысь, прихватывает с собой массы донного грунта, камней, воды...

Зрелище бывает просто грандиозным, взрывы темной грязи с грохотом взлетают на высоту до ста метров. Мало того, подчас газы при выбросе воспламеняются!

В Каспийском море тоже есть выходы метана, так вот: грязевые вулканы возле Баку иногда полыхали столь внушительно, что их принимали за атомные взрывы. Тем более, грибовидное облако...

Во время одного извержения было выброшено около пятисот миллионов кубометров газа! Представляете себе, что бы произошло, сколько было бы жертв, случись нечто подобное на суше?..

Мы хорошо знаем периодически действующий грязевой вулкан в Азовском море, напротив казацкой станицы Голубицкой, возле города Темрюка. Впервые его черные рокочущие выбросы еще в 1799 году увидели казаки-запорожцы, переселенные на Кубань.

По словам ученого тех времен, российского академика Петра-Симона Палласа*, вулкан создал вокруг себя круглый остров диаметром около ста метров.

Извержения Голубицкого вулкана много раз повторялись в течение ХІХ и ХХ веков. Наиболее крупный выброс пришелся на 1988 год: тогда вязкий остров возник за несколько часов и просуществовал много месяцев. Голубицкий извергается и ныне...

Бывают донные газовые выбросы, не похожие на вулканы, но тоже очень впечатляющие. Во время предпоследнего рейса нашего исследовательского судна «Профессор Водяницкий» мы нашли два таких фонтана: каждый был около 850 метров высотой и шириной до 400 метров! Интересно, что на суше это была бы экологическая катастрофа, а в море - никаких ее следов. Спокойно плавают вокруг рыбы, растут водоросли...

Во многих местах со дна поднимаются куда более скромные струи метана, расплывающиеся облаками. Мы их зовем - сипы. Одни из них выбрасывают газ ровным, постоянным потоком, иные - пульсируют, напоминая пыхтящую трубку курильщика... Сипов достаточно много и в районе Керченско-Таманском, и у берегов Кавказа, и возле побережий Грузии, Болгарии...

Кстати, о курильщике. Именно так мы называем своеобразный экспонат, находящийся у нас в музее. Это такой минеральный вырост из черноморского дна, похожий на кубок. Он сложился постепенно, за девять тысяч лет, вокруг постоянно бившей снизу метановой струи.

Газовый фонтан нес твердые частицы, они и образовали такую занятную структуру со сквозным каналом внутри. Мы этого «курильщика» добыли во время очередной экспедиции на исследовательском судне «Профессор Водяницкий».

Да, действительно, - Черное море, наверное, хранит в себе куда больше загадок и сюрпризов, чем любой другой водоем в мире.
Взять хотя бы тот факт, что, начиная с глубины в двести метров, оно вполне заслуживает названия Мертвого моря, поскольку оттуда до самого дна вода насыщена сероводородом.
Я знаю из одной вашей книги, Евгений Федорович, что еще относительно недавно существовал проект промышленного извлечения из черноморских вод громадных количеств серы, а также тяжелых металлов...
Но это - особая тема для разговора. Вернемся к газогидратам. Насколько экономически выгодна добыча метана из этих соединений? Не затратим ли мы при этом больше энергии, чем потом получим?

Нет, затея вполне оправдана с точки зрения экономики. По крайней мере, теперь. Должен вам сказать, что, вообще, честь открытия газогидратов принадлежит нашим, советским ученым, они обнаружили первые месторождения на северо-востоке Союза.

Так вот, - тогда добыча не пошла, поскольку была слишком технологически сложной.

А вот сейчас морские газогидраты признаны самым вероятным альтернативным топливом во многих странах. Над их разведкой и освоением работают во Франции, Германии, США; но особенно активны Канада и Япония.

Японцы планируют начать экспериментальную добычу метана из «горючего льда» возле своих островов, во впадине Нянхай, уже в 2007 году; а еще десять лет спустя пойдет масштабная добыча, да такая, что Япония, вечно все ввозящая, станет одним из мировых экспортеров газа!

Недавно российский «Газпром» произвел переоценку газовых запасов страны, включая и морские, связанные на дне.

Оказалось, что резервы «голубого топлива» в пятьдесят раз больше, чем считали прежде! Добывать газогидраты в промышленных объемах Россия намеревается с 2020 года.

Кстати, при газодобыче в море речь пойдет, очевидно, не только о газогидратах. Я тут вам рассказывал о вулканах и сипах, то есть, о выходах свободного газа непосредственно из дна.

Мы убеждены, что такой газ в огромных массах накапливается под шапкой «горючего льда», он там закупорен, законсервирован, - потому иногда и прорывается просто катастрофически.

Возможно, проще будет сначала пройти 400-метровую толщу «ледника» и выкачать подгидратный метан, а потом уже браться за сам слой...

И все-таки, морские глубины... Это не помеха для добычи?

Самая большая глубина Черного моря не превышает 2100 метров. Нынешняя горнодобывающая промышленность извлекает нефть и газ с глубины в четыре-пять километров. Так что здесь нет особых проблем.

Как вы думаете, когда - реально - можно у нас ожидать начала работ, подобных тем, которые ведутся в Японии или в России?

Вот это, в настоящих условиях, сказать труднее всего...
Есть известный девиз геологических конгрессов: «Умом и молотком». А по поводу наших топливных сокровищ я бы сказал иначе: умом и финансами!

Что мы можем разведать или добыть, когда тому же «Профессору Водяницкому», в лучшем случае, выделяются средства на двенадцатидневный рейс?!

Надо вложить большие деньги, создать могучую комплексную программу, привлечь специалистов разных профилей... Вообще, следует поднять эту работу на тот уровень, на котором велось в Советском Союзе освоение атомной энергии.

Тогда, и только тогда лет через десять, пятнадцать, возможно, нам удастся обеспечить энергетическое будущее Украины.

Надеюсь, что наше социальное сознание к тому времени будет идти вровень с научно-техническим, и газовые сокровища Черного моря принесут благополучие, в самом деле, всей Украине, а не отдельным (и не лучшим) ее представителям, присосавшимся к добывающей отрасли.

Только если запасы газогидратов, как и все клады, сокрытые в наших недрах, станут воистину всенародной собственностью, пользу от них сможет получить каждый наш соотечественник.

Будем на это надеяться...

Справка:

В Черном море газогидраты были обнаружены экспедициями Министерства геологии и Академии наук СССР в конце 80-х годов. В 90-е годы и начале текущего десятилетия исследования в этой области также проводились украинскими и болгарскими учеными. Полученные в итоге данные имеют приблизительный характер: по различным оценкам, запасы черноморских газогидратов, сосредоточенных, как правило, в нескольких десятках или первых сотнях метров под морским дном, могут составлять от 25 до 100 трлн куб м.

Немецко-украинская экспедиция 2010 г. обнаружила запасы газогидратов недалеко от Севастополя. Но для их более-менее точной оценки нужны будут широкомасштабные разведочные работы.

Впрочем, говорить о том, что Украина в обозримом будущем сможет достичь энергетической независимости благодаря разработке черноморских газогидратов, еще рано. Проблема в том, что газ, заключенный в ледяной ловушке, очень сложно извлечь, не потеряв по дороге.

Газогидраты существуют только благодаря низкой температуре и огромному давлению, "разрушить" их на месте залегания весьма нелегко. Даже при нормальном атмосферном давлении они начинают плавиться только при 10-20 градусах.

Сегодня существуют технологии, позволяющие добывать газ из газогидратов только на суше, причем их эффективность оставляет желать лучшего. Впервые они были опробованы еще в конце 60-х годов на Мессояхском месторождении на полуострове Таймыр, где добыча газа началась в 1967 г. Для "расплавления" газогидратов там используется депрессионный способ добычи, заключающийся в искусственном снижении пластового давления посредством откачки воды из скважины. На это приходится тратить много энергии, из-за чего значительная часть добываемого газа используется на месте, а сам газ получается весьма дорогим.

То что Мессояхское месторождение вообще стали разрабатывать, объясняется его уникальным расположением: оно является ближайшим (около 280 км) от Норильска, к которому в 1969 г. был протянут газопровод. Поставлять газ на промышленные предприятия Норильска с месторождений Ямала, до которых в несколько раз дальше, было признано экономически менее целесообразным.

За сорок с лишним лет эксплуатации на Мессояхском месторождении добыто около 12.5 млн куб м газа, что составляет около 65% от его оценочных запасов. Объемы добычи падают, в 2009 г. они составили всего 213 тыс куб м, так что большая часть поставок газа в Норильский промышленный район приходится на другие, традиционные месторождения.

Помимо Мессояхского месторождения, в мире существует еще одно место, где добывали газ из газогидратов - экспериментальная буровая станция Mallik, расположенная недалеко от устья реки Маккензи на северо-западе Канады. В 1998-2008 гг. японско-канадская группа ученых при участии специалистов из США, Германии и Индии вела там пробное бурение, обнаружив слой газогидратов на глубине около 1000-1200 м.

И сейчас на этой станции продолжается изучение различных технологий в данной области. Тестовая добыча велась в течение 6 дней зимой 2008 г. и составила около 13 тыс куб м газа. При этом использовался тот же депрессионный метод, что и на Таймыре. Ранее на Mallik был испытан и тепловой метод, заключающийся в нагревании газогидратного пласта посредством закачки пара или горячей воды, но расход энергии там оказался сравнимым с энергоемкостью высвободившегося газа.

Некоторыми специалистами предлагается технология замещения, заключающаяся в вытеснении метана из кларатов посредством заполнения их другим газом. Для этого лучше всего подходит углекислый газ, что позволило бы заодно решить и проблему его захоронения. Однако эта технология пока находится на стадии лабораторных исследований, до промышленных масштабов она дорастет, очевидно, еще не скоро.

Основная проблема добычи газа из газогидратов заключается в том, что для разрушения их структуры и извлечения газа из "клеток"-кларатов нужно затратить довольно большую энергию, что, естественно, приводит к существенному росту затрат. По оценкам исследователя из US Geological Service Тимоти Коллетта, себестоимость добычи газа из газогидратов в Арктике может составлять 100-200% затрат при разработке традиционных месторождений, а морской газогидратный газ будет еще более дорогостоящим.

Кроме того, при организации добычи с морского дна существует реальная опасность поднятия "метансодержащего льда" на поверхность, что приведет к взрывному выделению газа. По одной из наиболее вероятных версий, именно такой подъем газогидратного пласта стал причиной взрыва платформы Deepwater Horizon и ее гибели в апреле этого года. Некоторые специалисты советуют вообще не трогать газогидраты, поскольку это может привести к значительным выбросам в атмосферу содержащегося в них метана, который является в 20 раз более сильным парниковым газом, чем диоксид углерода.

Тем не менее, в ряде стран мира разрабатываются проекты добычи природного газа из газогидратов, в том числе и на морском дне. При этом эксплуатация газогидратных месторождений может стартовать уже во второй половине текущего десятилетия.

Все это не мешает и Украине включиться в "газогидратную гонку". Тем более, что уже несколько лет инновационную технологию добычи газа из газогидратов предлагает директор научно-исследовательской и внедренческой фирмы "Лед-газогидрат", профессор Одесской государственной академии холода Леонард Смирнов. Его идея (запатентованная) заключается в закачке в газогидратные пласты под давлением концентрированного соляного раствора или (летом) теплой, прогретой солнцем, морской воды.

По мнению Л.Смирнова, соль будет оказывать на газогидрат такое же действие, как и на обычный лед, т.е. снижать температуру его плавления, высвобождая заключенный в нем газ, который будет откачиваться через вытяжные скважины. Помимо газа, данная технология будет также обеспечивать получение чистой талой воды, что может быть весьма актуально в условиях Крыма.

Правда, для строительства тестового газодобывающего комплекса по технологии Л.Смирнова требуется около $500 млн. Пока ученому не удалось заинтересовать своим проектом украинский частный бизнес, а у государства нет таких средств. Кроме того, данная технология, как и многие другие возможные способы извлечения газа из газогидратов, пока не проверена на практике и не обязательно является панацеей. К сожалению, в отличие от России, США и Канады, в Украине нет сухопутного "полигона", где можно было бы проводить исследования в газогидратной области при относительно небольших затратах.

Вообще складывается впечатление, что Украина очень богата нетрадиционными источниками природного газа. У нее есть большие запасы шахтного метана, есть, очевидно, сланцевый газ, доказано наличие месторождений газогидратов… Однако всех их объединяют большая сложность и дороговизна добычи, а также отсутствие эффективных и экономически обоснованных технологий. Чтобы быть на переднем краю прогресса в этих областях, украинскому правительству нужно или самому финансировать обширные и дорогостоящие исследовательские программы, или заинтересовать частный бизнес возможностью получения солидной прибыли от многомиллионных инвестиций.

Но первый путь для Украины пока совершенно нереален из-за хронического отсутствия средств в казне, а на второй, очевидно, можно будет вступить только после появления уже зарекомендовавших себя технологий в других странах.

Газогидраты представляют собой очень перспективный источник природного газа для Украины. Но это своеобразная "заначка на будущее" - на то время, когда в мире научатся сравнительно несложно и недорого добывать такой газ. На ближайшие же годы приоритетными, очевидно, должны стать иные, более доступные источники.

Газогидратные лидеры

На сегодняшний день лидерами на газогидратном направлении являются Япония, Корея и Индия. Все три страны являются крупными импортерами энергоресурсов, и поэтому считают разработку газогидратных месторождений приемлемой альтернативой зарубежным закупкам. Правда, во всех трех странах проекты в данной области стартовали в 2007-2008 гг., во время наивысшего подъема цен как на нефть, так и на сжиженный природный газ.

В Корее реализацией проекта занимается государственная компания Korea National Oil Corp. С целью приобретения опыта она участвует в исследованиях в области добычи газа из газогидратов, которые сейчас проводятся на Аляске с участием американских федеральных организаций и ряда частных компаний. Залежи оцениваются в 600 млн т (более 1 трлн куб м) природного газа. Газогидраты залегают под морским дном в Японском море на расстоянии около 135 км от побережья страны.

Несмотря на падение цен на сжиженный газ, правительство Кореи не собирается отказываться от газогидратного проекта. Он включен в государственную программу развития нефтегазодобывающей отрасли, цель которой заключается в повышении уровня самообеспечения страны энергоресурсами (в 2009 г. 91.9% потребностей Южной Кореи в энергоносителях покрывалось за счет импорта). Начало добычи газа из газогидратов запланировано на 2015 г.

В индийских водах прогнозные резервы газогидратного газа оцениваются более чем в 55 трлн куб м, а месторождение Krishna-Godavari в Бенгальском заливе считается одним из крупнейших в мире. Еще в 1997 г. для проведения исследований в этом направлении была основана государственная компания National Gas Hydrate Program. Начать разведочные работы планировалось в 2010 г., а коммерческую добычу - в 2014-2015 гг.

Однако кризис отодвинул эти планы, а в начале 2010 г. правительство страны решило создать новую структуру с привлечением государственных агентств и частных нефтегазовых компаний с целью совместного финансирования НИОКР в данной области. Как признают индийские специалисты, в настоящее время в их распоряжении нет технологий добычи газогидратного газа с морского дна, их нужно создавать.

Затормозился, похоже, и японский проект. В 2008 г. правительство страны приняло решение о разработке залежей газогидратов, которые были найдены на юге-востоке от острова Хонсю во впадине Нанкай. Запасы газа оценивались в объеме до 50 трлн куб м, его добычу планировалось начать в 2016 г. Однако с начала кризиса никакой новой информации на эту тему не поступало.

В США исследования в области газогидратного газа осуществляются на двух направлениях. Во-первых, продолжаются разведка и отработка технологий наземной добычи на Аляске, где запасы газогидратного газа, по предварительным оценкам USGS, составляют около 16 трлн куб м. Этот проект реализуют Министерство энергетики США и ряд компаний. На лето 2010 г. намечено проведение тестовой добычи на основе разведки, проведенной тремя годами ранее компанией BP. При этом ConocoPhillips должна впервые испытать в полевых условиях технологию замещения метана, содержащегося в газогидратах, углекислым газом. Правда, по данным американских СМИ, программа этого года может быть выполнена не полностью из-за недостатка государственного финансирования.

Кроме того, в 2009 г. стартовала двухлетняя программа исследований в Мексиканском заливе, в которой партнером государства является Chevron. Состоявшаяся летом 2009 г. экспедиция обнаружила газогидраты под различными участками морского дна.

По оценкам американской Mineral Management Service (организация при Министерстве внутренних дел), запасы газогидратного газа в Мексиканском заливе могут достигать астрономического значения - 600 трлн куб м! Однако крупные нефтегазовые компании пока не слишком торопятся осваивать эти беспредельные ресурсы. Они предпочитают участвовать в программах, финансируемых государством, из-за слишком высоких затрат и риска, связанных с газогидратными проектами.

Как отмечают некоторые американские аналитики, ввод в эксплуатацию газогидратных месторождений с их гигантскими ресурсами может обрушить цены на природный газ, сделав эти проекты убыточными. Как это, похоже, уже случилось со сланцевым газом.

МОСКВА, 18 января. /ТАСС/. Российские математики создали модель для разработки залежей самого богатого источника природного газа на планете - газовых гидратов, концентрация которых высока в арктической зоне, а ученые Сколтеха предложили технологию добычи метана из гидратов. Эксперты рассказали ТАСС, как добыча такого метана поможет снизить парниковый эффект, в чем преимущества новых исследований, и есть ли перспективы у промышленной разработки газогидратов в России.

Против парникового эффекта

Газовые гидраты - это твердые кристаллические соединения льда и газа, их еще называют «горючий лед». В природе они встречаются в толще океанского дна и в вечномерзлых породах, поэтому добывать их очень сложно - на глубину в нескольких сотен метров нужно бурить скважины, а потом выделять природный газ из ледовых отложений и транспортировать его на поверхность. Сделать это удалось в Южно-Китайском море в 2017 году китайским нефтяникам, но для этого им пришлось углубиться в толщу морского дна на более чем 200 метров при том, что глубина в районе добычи превышала 1,2 км.

Исследователи считают газовые гидраты перспективным источником энергии, который может быть востребован, в частности, странами, ограниченными в других энергоресрусах, например, Японией и Южной Кореей. Оценки содержания метана, сжигание которого дает энергию, в газогидратах в мире разнятся: от 2,8 квадриллионов тонн по данным Минэнерго РФ до 5 квадриллионов тонн по данным Мирового энергетического агентства (МЭА). Даже минимальные оценки отражают огромные запасы: для сравнения, общемировой объем запасов нефти корпорация BP (British Petroleum) в 2015 году оценила в 240 млрд тонн.

"По оценкам некоторых организаций, прежде всего Газпром ВНИИГАЗ, ресурсы метана в газогидратах на территории РФ составляют от 100 до 1000 трлн кубометров, в арктической зоне, в том числе морях, - до 600-700 трлн кубометров, но это очень приблизительно", - рассказал ТАСС ведущий научный сотрудник Центра добычи углеводородов Сколковского института науки и технологий (Сколтеха) Евгений Чувилин.

Помимо собственно источника энергии, газогидраты могут стать спасением от парниковых газов, что позволит остановить глобальное потепление. Освободившиеся от метана пустоты можно заполнять углекислым газом.

"По оценкам исследователей, в гидратах метана содержится более 50% углерода от суммарных известных мировых запасов углеводородов. Это не только самый богатый на нашей планете источник углеводородного газа, но и возможное вместилище для углекислого газа, который считается парниковым. Можно убить двух зайцев - добыть метан, сжечь его для получения энергии и закачать на его место полученный при сжигании углекислый газ, который займет место метана в гидрате", - рассказал ТАСС замдиректора по научной работе Тюменского филиала Института теоретической и прикладной механики Сибирского отделения РАН Наиль Мусакаев.

В условиях вечной мерзлоты

На сегодня исследователи выделяют три основных перспективных способа добычи газовых гидратов.

"Прежде чем добыть газ из гидратов, требуется их разложить на составляющие - газ и воду или газ и лед. Можно выделить основные методы добычи газа - снижение давления на забое скважины, нагрев пласта с помощью горячей воды или пара, подача в пласт ингибиторов (веществ для разложения газогидратов - прим. ТАСС)", - пояснил Мусакаев.

Ученые из Тюмени и Стерлитамака создали математическую модель для добычи метана в вечной мерзлоте. Примечательна она тем, что учитывает процесс образования льда во время разработки месторождения.

"Образование льда имеет плюсы и минусы: он может закупорить оборудование, но, с другой стороны, разложение газогидрата на газ и лед требует в три раза меньше энергии, чем при разложении на газ и воду", - рассказал Мусакаев.

Преимущество математического моделирования - возможность спрогнозировать сценарий разработки газогидратных залежей, в том числе оценить экономическую эффективность способов добычи газа из таких месторождений. Результаты могут заинтересовать проектные организации, которые занимаются планированием и разведкой на газогидратных месторождениях, отметил ученый.

Сколтех также занимается разработкой технологий для добычи метана из гидратов. Совместно с коллегами из Университета Хериота-Уатта в Эдинбурге специалисты Сколтеха предложили извлекать метан из газогидратов путем закачки воздуха в пласт породы. «Этот метод - более экономичный по сравнению с существующими, и меньше влияет на окружающую среду», - пояснил Чувилин.

В данном методе предполагается, что в пласт закачивается углекислый газ или азот, и газогидраты из-за разницы в давлении разлагаются на составляющие. «Мы пока проводим методические исследования по опробованию метода и его эффективности. До создания технологии еще далеко, пока мы создаем физико-химические основы этой технологии», - подчеркнул ученый.

По словам Чувилина, в России пока нет полностью готовых технологий для эффективной добычи метана из гидратов, так как нет целевых программ поддержки этого научного направления. Но разработки все равно ведутся. «Может быть, газовые гидраты не станут главным энергоресурсом будущего, но их использование наверняка потребует развития новых знаний», - добавил Мусакаев.

Экономическая целесообразность

Разведку и разработку газогидратных месторождений учитывает в числе долгосрочных перспектив газодобычи прогноз развития топливно-энергетического комплекса России на период до 2035 года. В документе отмечается, что газогидраты могут стать «фактором в мировой энергетике только через 30-40 лет», но при этом не исключается прорывной сценарий. В любом случае разработка гидратов повлечет глобальный передел на мировом рынке топливных ресурсов - цены на газ будут снижаться, и сохранить доходы добывающие корпорации смогут только захватывая новые рынки и увеличивая объем продаж. Для массовой разработки таких месторождений надо создавать новые технологии, улучшать и удешевлять существующие, отмечается в стратегии.

Учитывая труднодоступность гидратов и сложность их добычи, эксперты называют их перспективным источником энергии, но отмечают, что это не тенденция ближайших лет - для гидратов нужны новые технологии, которые пока только разрабатываются. А в условиях налаженной добычи природного газа метан из гидратов находится в не самом выигрышном положении. В дальнейшем все будет зависеть от конъюнктуры рынка энергоносителей.

"Сроки промышленной добычи зависят как от экономически доступной технологии поиска, локализации и добычи газа, так и от рыночных факторов. Газодобывающие компании имеют достаточное количество запасов традиционного газа, поэтому рассматривают технологии добычи газа из газогидратов как задел на долгосрочную перспективу. По моей оценке, промышленная добыча в РФ начнется не ранее чем через 10 лет", - сказал эксперт.

По мнению Чувилина, в России есть месторождения, на которых метан из газогидратов могут начать добывать в ближайшие 10 лет, и это будет достаточно перспективно. «На некоторых газовых промыслах севера Западной Сибири при истощении традиционных газовых коллекторов возможна разработка вышележащих горизонтов, где газ может находиться и в гидратной форме. Это возможно в ближайшем десятилетии, все будет зависеть от стоимости энергоносителей», - резюмировал собеседник агентства.

Еще несколько лет назад среди экономистов, то есть людей, далеких от техники, была популярна теория «исчерпания углеводородов». Во многих изданиях, составляющих цвет глобальной финансовой элиты, обсуждалось: каким же будет мир, если вскоре на планете совсем закончится, например, нефть? А какими будут цены на нее, когда процесс «исчерпания» вступит, так сказать, в активную фазу?

Впрочем, «сланцевая революция», происходящая сейчас буквально на наших глазах, убрала эту тему как минимум на задний план. Всем стало понятно то, о чем раньше говорили лишь некоторые специалисты: углеводородов на планете еще достаточно. Говорить об их физическом исчерпании явно рано.

Реальный же вопрос – в развитии новых технологий добычи, позволяющих добывать углеводороды из источников, ранее считавшихся недоступными, а также в стоимости получаемых с их помощью ресурсов. Добыть можно почти все что угодно, просто это будет дороже.

Все это заставляет человечество искать новые «нетрадиционные источники традиционного топлива». Одним из них как раз и является упомянутый выше сланцевый газ. О различных аспектах, связанных с его добычей, «ГАЗTechnology» писал уже не раз.

Однако есть и другие такие источники. В их числе и «герои» нашего сегодняшнего материала – газовые гидраты.

Что это такое? В самом общем смысле газовые гидраты – это кристаллические соединения, образующиеся из газа и воды при определенных температуре (достаточно низкой) и давлении (довольно высоком).

Заметим: в их образовании могут принимать участие самые разные химические вещества. Речь совсем не обязательно идет именно об углеводородах. Первые гидраты газов, которые когда-либо наблюдали ученые, состояли из хлора и сернистого газа. Произошло это, кстати, еще в конце XVIII века.

Однако, поскольку нас интересуют практические аспекты, связанные с добычей природного газа, мы здесь будем говорить, прежде всего, об углеводородах. Тем более что в реальных условиях среди всех гидратов преобладают именно гидраты метана.

Согласно теоретическим оценкам, запасы подобных кристаллов буквально поражают воображение. По самым скромным подсчетам речь идет о 180 триллионах кубических метров. Более оптимистические оценки дают цифру, которая в 40 тысяч раз больше. При таких показателях, согласитесь, говорить об исчерпаемости углеводородов на Земле даже как-то неудобно.

Надо сказать, что гипотеза о наличии в условиях сибирской мерзлоты огромных залежей газовых гидратов была выдвинута советскими учеными еще в грозные 40-е годы прошлого века. Через пару десятилетий она нашла свое подтверждение. А в конце 60-х даже началась разработка одного из месторождений.

Впоследствии ученые подсчитали: зона, в которой гидраты метаны способны находится в стабильном состоянии, покрывает 90 процентов всего морского и океанского дна Земли и плюс 20 процентов суши. Выходит, что речь идет о потенциально общераспространенном полезном ископаемом.

Идея добывать «твердый газ» действительно выглядит привлекательно. Тем более что в единице объема гидрата содержится порядка 170 объемов самого газа. То есть достаточно, казалось бы, достать совсем немного кристаллов, чтобы получить большой выход углеводородов. С физической же точки зрения они находятся в твердом состоянии и представляют нечто вроде рыхлого снега или льда.

Проблема, однако, в том, что расположены газовые гидраты, как правило, в весьма труднодоступных местах. «Внутримерзлотные залежи содержат лишь незначительную часть ресурсов газа, которые связывают с природными газогидратами. Основная часть ресурсов приурочена к зоне стабильности газогидратов – тому интервалу глубин (обычно первые сотни метров), где имеют место термодинамические условия для гидратообразования. На севере Западной Сибири это интервал глубин 250-800 м, в морях – от поверхности дна до 300-400 м, в особо глубоководных участках шельфа и континентального склона до 500-600 м под дном. Именно в этих интервалах была обнаружена основная масса природных газогидратов», – сообщает «Википедия». Таким образом, речь идет, как правило, о работе в экстремальных глубоководных условиях, при большом давлении.

Добыча газовых гидратов может быть связана и с другими трудностями. Подобные соединения способны, например, детонировать даже при небольших сотрясениях. Они очень быстро переходят в газовое состояние, что в ограниченном объеме может вызвать резкие скачки давления. По сообщениям специализированных источников, именно такие свойства газовых гидратов стали источником серьезных проблем у добывающих платформ в Каспийском море.

Кроме того, метан относится к числу газов, способных создавать парниковый эффект. Если промышленная добыча будет вызывать его массовые выбросы в атмосферу, это чревато усугублением проблемы глобального потепления. Но даже если на практике этого и не произойдет, пристальное и недоброжелательное внимание «зеленых» подобным проектам практически гарантировано. А их позиции в политическом спектре многих государств сегодня весьма и весьма сильны.

Все это чрезвычайно «утяжеляет» проекты по разработке технологий добычи метановых гидратов. Фактически по-настоящему промышленных способов разработки таких ресурсов на планете пока нет. Однако соответствующие разработки ведутся. Есть даже патенты, выданные изобретателям подобных способов. Их описание порой носит настолько футуристический характер, что кажется списанным с книги какого-то фантаста.

Например, «Способ добычи газовых гидратных углеводородов со дна водных бассейнов и устройство для его реализации (патент РФ № 2431042)», изложенный на сайте http://www.freepatent.ru/: «Изобретение относится к области добычи полезных ископаемых, находящихся на морском дне. Техническим результатом является повышение добычи газовых гидратных углеводородов. Способ заключается в разрушении донного слоя острыми кромками ковшей, закрепленных на вертикальной ленте транспортера, передвигающегося по дну бассейна с помощью гусеничного движителя, относительно которого лента транспортера перемещается вертикально, с возможностью заглубления в дно. При этом газовый гидрат поднимают в зону, изолированную от воды поверхностью опрокинутой воронки, где его нагревают, а выделившийся газ транспортируют на поверхность с помощью шланга, закрепленного на вершине воронки, подвергнув его дополнительному нагреву. Также предложено устройство для реализации способа». Заметим: все это должно происходить в морской воде, на глубине в несколько сотен метров. Трудно даже представить, какую сложность имеет данная инженерная задача, и сколько может стоить добытый таким способом метан.

Есть, впрочем, и другие способы. Вот описание еще одного метода: «Известен способ добычи газов (метана, его гомологов и др.) из твердых газогидратов в донных отложениях морей, океанов, при котором в пробуренную до его подошвы скважину выявленного пласта газогидратов погружают две колонны труб – закачивающую и откачивающую. Природная вода с естественной температурой или подогретая поступает по закачивающей трубе и разлагает газогидраты на систему «газ-вода», аккумулирующуюся в образующейся в подошве пласта газогидратов сферической ловушке. По другой колонне труб осуществляют откачку из этой ловушки выделяющихся газов… Недостатком известного способа является необходимость подводного бурения, что является технически обременительным, затратным и вносящим порой непоправимые нарушения в сложившуюся подводную среду водоема» (http://www.findpatent.ru).

Можно привести и другие описания подобного рода. Но из уже перечисленного ясно: промышленная добыча метана из газовых гидратов является пока делом будущего. Она потребует сложнейших технологических решений. Да и экономика подобных проектов пока неочевидна.

Впрочем, работы в этом направлении идут, и довольно активно. Особенно ими интересуются страны, расположенные в наиболее быстрорастущем, а значит предъявляющем все новый спрос на газовое топливо регионе мира. Речь идет, конечно же, о Юго-Восточной Азии. Одним из государств, работающих в данном направлении, является Китай. Так, по сообщению газеты «Женьминь жибао», в 2014 году морские геологи провели широкомасштабные исследования одного из расположенных неподалеку от его побережья участков. Проведенное бурение показало, что там содержатся газовые гидраты большой чистоты. Всего было сделано 23 скважины. Это позволило установить, что площадь распространения газовых гидратов на участке составляет 55 квадратных километров. А его запасы, по утверждениям китайских специалистов, составляют 100-150 триллионов кубических метров. Приведенная цифра, откровенно говоря, столь велика, что заставляет задуматься, не слишком ли она оптимистична, и действительно ли такие ресурсы могут быть извлечены (китайская статистика вообще нередко вызывает у специалистов вопросы). Тем не менее очевидно: ученые Поднебесной активно работают в данном направлении, изыскивая способы обеспечения своей быстрорастущей экономики столь необходимыми ей углеводородами.

Ситуация в Японии, конечно, сильно отличается от того, что наблюдается в Китае. Однако снабжение топливом Страны Восходящего Солнца и в более спокойные времена было отнюдь не тривиальной задачей. Ведь традиционными ресурсами Япония обделена. А после трагедии на Фукусимской АЭС в марте 2011 года, заставившей власти страны под давлением общественного мнения сократить программы ядерной энергетики, данная проблема обострилась практически до предела.

Именно поэтому в 2012 году одна из японских корпораций начала пробное бурение под океанским дном на расстоянии всего нескольких десятков километров от островов. Глубина самих скважин составляет несколько сотен метров. Плюс глубина океана, которая в том месте составляет около километра.

Надо признать, что через год японским специалистам удалось получить в этом месте первый газ. Однако говорить о полном успехе пока не приходится. Промышленная добыча в данном районе, по прогнозам самих японцев, может начаться не ранее 2018 года. А главное, трудно оценить, какой же будет итоговая себестоимость топлива.

Тем не менее, можно констатировать: человечество все же потихоньку «подбирается» к залежам газовых гидратов. И не исключено, что настанет день, когда оно будет извлекать из них метан в действительно промышленных масштабах.