Лекции по разработке нефтяных месторождений. Геологические основы проектирования разработки нефтяных и газовых месторождений

ГЕОЛОГИЧЕСКИЕ ОСНОВЫ РАЗРАБОТКИ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ

ВВЕДЕНИЕ

Дисциплина "Геологические основы разработки нефтяных и газовых месторождений" базируется на науке нефтегазопромысловая геология, являясь неразрывной ее составляющей. Поэтому сначала рассматриваются методологические аспекты науки нефтегазопромысловая геология, а уже во второй части более тесная ее связь с задачами разработки залежей углеводородов.

Развитие нефтяной и газовой промышленности в последние десятилетия характеризуется рядом новых тенденций.

Для нефтяной промышленности характерно последовательное вступление многих залежей нефти в сложную позднюю фазу разработки , когда более половины запасов из них уже отобрано и извлечение оставшихся запасов требует значительно больших усилий. Объективно становится все менее благоприятной геологопромысловая характеристика вводимых в разработку новых залежей нефти. Среди них возрастает удельный вес залежей с высокой вязкостью нефти, с весьма сложным геологических строением, с низкой фильтрующей способностью продуктивных пород, а также приуроченных к большим глубинам с усложненными термодинамическими условиями, к шельфам морей и т. д. Таким образом, и на старых и на новых залежах возрастает доля так называемых трудноизвлекаемых запасов нефти . Соответственно расширяется арсенал методов разработки нефтяных залежей. Если в последние четыре десятилетия в качестве агента, вытесняющего нефть из пластов к скважинам, применялась вода и искусственное заводнение пластов было традиционным методом разработки, то в настоящее время необходимо применение и других методов на иной физико-химической основе.

По мере «старения» нефтегазовой промышленности страны и расширения ее географии задачи промыслово-геологической службы, как и родственных служб, все более усложняются; соответственно развиваются и совершенствуются методы исследований. Поэтому требования к этой службе непрерывно возрастают. Специалисты в области промысловой геологии должны; обладать большой научно-технической эрудицией, достаточными знаниями в областях геологии, подземной механики жидкостей и газа, бурения скважин, технологии и техники разработки месторождении, геофизических и гидродинамических методов исследования скважин и пластов, подсчета запасов нефти и газа, экономики, математических методов обработки геологических данных и др .

1. НЕФТЕГАЗОПРОМЫСЛОВАЯ ГЕОЛОГИЯ КАК НАУКА И ЕЁ ЗАДАЧИ

    1. ОПРЕДЕЛЕНИЕ НЕФТЕГАЗОПРОМЫСЛОВОЙ ГЕОЛОГИИ

Нефтегазопромысловая геология - отрасль геологии, занимающаяся детальным изучением месторождений и залежей нефти и газа в начальном (естественном) состоянии и в процессе разработки для определения их народнохозяйственного значения и рационального использования недр.

Таким образом, значение нефтегазопромысловой геологии состоит в обобщении и анализе всесторонней информации о месторождениях и залежах нефти и газа как объектах народнохозяйственной деятельности с целью геологического обоснования наиболее эффективных способов организации этой деятельности, обеспечения рационального использования и охраны недр и окружающей среды.

    1. СВЯЗЬ НЕФТЕГАЗОПРОМЫСЛОВОИ ГЕОЛОГИИ С ДРУГИМИ ГЕОЛОГИЧЕСКИМИ И СМЕЖНЫМИ НАУКАМИ

С точки зрения промыслового геолога залежь нефти или газа следует рассматривать как некоторую часть пространства, в которой накладываются друг на друга результаты различных геологических, физических, гидродинамических и других процессов, действовавших ранее и происходящих во время ее разработки. Поэтому залежь вследствие многообразия процессов, приведших к ее образованию и протекающих при ее разработке, можно изучать во многих аспектах.

Существуют различные науки, как геологические, так и негеологические, которые изучают те или иные из упомянутых выше процессов. Отсюда следует особенность нефтегазопромысловой геологии , заключающаяся в том , что она широко использует теоретические представления и фактические данные, получаемые методами других наук , и в своих выводах и обобщениях очень часто опирается на закономерности, установленные в рамках других наук.

Например, данные об условиях залегания продуктивных пластов в первую очередь поступают в результате полевых сейсмических исследований . При вскрытии залежи скважинами эти данные могут быть уточнены - методами структурной геологии.

Поднятые из скважин керн, пробы нефти, газа, воды исследуются методами физики пласта . Другим источником информации о свойствах пород служат данные промысловой геофизики , а также результаты гидродинамических исследований скважин . Теоретической основой этих методов являются подземная гидравлика и скважинная геофизика, играющие наиболее важную роль в решении задач нефтегазопромысловой геологии, так как с их помощью получают около 90 % информации, необходимой промысловому геологу.

Обобщая различную информацию об условиях залегания и свойствах нефтегазонасыщенных пород, промысловый геолог очень часто не создает какие-то новые принципы, законы, методы, а в значительной степени опирается на теоретические представления, законы и правила, установленные в рамках смежных наук: тектоники, стратиграфии, петрографии, гидрогеологии, подземной гидравлики и ряда других. Анализируя и обобщая количественные и качественные данные, современный промысловый геолог широко использует математические методы и ЭВМ , без чего результаты обобщения не могут считаться достаточно надежными.

Таким образом, науки, изучающие залежи нефти и газа в аспектах, отличных от тех, которыми занимается нефтегазопромысловая геология, составляют значительную часть теоретического и методического фундамента нефтегазопромысловой геологии.

Вместе с тем нефтегазопромысловая геология, имея самостоятельный объект - залежь нефти или газа , подготавливаемую к разработке или находящуюся в разработке, т. е. геолого-технологический комплекс, решает и собственные задачи, связанные с созданием методов получения, анализа и обобщения информации о строении нефтегазоносных пластов, о путях движения нефти, газа, воды внутри залежи при ее эксплуатации о текущих и конечных коэффициентах нефтеотдачи и т. п. Поэтому указанная выше связь нефтегазопромысловой геологии с другими науками не является односторонней.

Результаты промыслово-геологических исследований оказывают существенное влияние на смежные науки, способствуя их обогащению и дальнейшему развитию. На промышленно нефтегазоносных площадях всегда бурится большое количество скважин, ведутся отбор и анализ образцов пород, проб жидкостей и газа, проводятся всевозможные наблюдения и исследования. Разнообразные виды исследовательской и производственной деятельности, а также промыслово-геологический научный анализ ее результатов обязательно и в большом количестве доставляют новые факты, служащие для подтверждения и дальнейшего развития взглядов и теорий, составляющих содержание смежных наук. При этом нефтегазопромысловая геология ставит перед смежными науками новые задачи, тем самым в еще большей степени способствуя их развитию. Таковы, например, требования более углубленного петрографического изучения глинистого материала коллекторов, который может менять свой объем при контакте с водой; изучения физико-химических явлений, протекающих на контактах нефти, воды и породы; количественной интерпретации результатов геофизических исследований скважин и др.

    1. ЦЕЛИ И ЗАДАЧИ НЕФТЕГАЗОПРОМЫСЛОВОЙ ГЕОЛОГИИ

Цели нефтегазопромысловой геологии заключаются в геологическом обосновании наиболее эффективных способов организации народнохозяйственной деятельности по добыче нефти и газа, обеспечению рационального использования и охраны недр и окружающей среды . Эта основная цель достигается путем изучения внутренней структуры залежи нефти и газа и закономерностей ее изменения в процессе разработки.

Основная цель разбивается на ряд компонент , выступающих в виде частных целей нефтегазопромысловой геологии, к которым относятся:

    промыслово-геологическое моделирование залежей

    подсчет запасов нефти, газа и конденсата;

    геологическое обоснование системы разработки

    геологическое обоснование мероприятий по повышению эффективности разработки и нефте-, газо- или конденсатоотдачи;

    обоснование комплекса наблюдений в процессе разведки и разработки.

Другой вид компонент- сопутствующие цели , которые направлены на более эффективное достижение основной цели. К ним относятся:

    охрана недр нефтяных и газовых месторождений;

    геологическое обслуживание процесса бурения скважин;

    совершенствование собственной методологии и методической базы .

Задачи нефтегазопромысловой геологии состоят в решении различных вопросов, связанных: с получением информации об объекте исследований; с поисками закономерностей, объединяющих наблюденные разрозненные факты о строении и функционировании залежи в единое целое; с выработкой правил рационального проведения исследований и созданием нормативов, которым должны удовлетворять, результаты наблюдений и исследований; с созданием методов обработки, обобщения и анализа результатов наблюдений и исследований; с оценкой эффективности этих методов в различных геологических условиях и т. д.

Среди этого множества могут быть выделены задачи трех типов :

    конкретно-научные задачи нефтегазопромысловой геологии, направленные на объект познания;

    методические задачи ;

    методологические задачи .

Все множество конкретно-научных задач, можно подразделить на следующие группы.

1. Изучение состава и свойств горных пород , слагающих продуктивные отложения, как содержащие, так и не содержащие нефть и газ; изучение состава и свойств.нефти, газа и воды, геологических и термодинамических условий их залегания. Особое внимание должно уделяться вопросам изменчивости состава, свойств и условий залегания горных пород и насыщающих их флюидов, а также закономерностям, которым эта изменчивость подчиняется.

2. Задачи выделения (на основе решения задач первой группы) естественных геологических тел, определения их формы, размеров, положения в пространстве и т. п. При этом выделяются слои, пласты, горизонты, зоны замещения коллекторов и т. д. Сюда же относятся задачи изучения пликативных, дизъюнктивных и инъективных дислокаций. В общем эта группа объединяет задачи, направленные на выявление первичной структуры залежи или месторождения.

3. Задачи расчленения естественных геологических тел на условные с учетом требований и возможностей техники, технологии и экономики нефтегазодобывающей промышленности. Важнейшими здесь будут задачи установления кондиций и других граничных значений естественных геологических тел (например, для разделения высоко-, средне- и низкопродуктивных пород). В совокупности с задачами второй группы данная группа задач позволяет оценить запасы нефти и газа и их размещение в пространстве залежи. Суть задач данной группы состоит в изучении того, как изменится представление о структуре залежи, если учесть требования и возможности техники, технологии и экономики.

4. Задачи, связанные с построением классификации ГТК по множеству признаков , и в первую очередь по типам внутренних структур залежей и месторождений. Следует подчеркнуть, что имеющиеся многочисленные генетические классификации залежей и месторождений нефти и газа недостаточны для решения задач нефтегазопромысловой геологии. Здесь приобретают первостепенное значение вопросы использования при построении классификаций множества собственно геологопромысловых признаков, раскрытия механизма перестройки структур на разных уровнях иерархии в процессе разработки, явлений переноса свойств вещества с одного уровня на другой, связи структуры и функции, взаимосвязей между различными представлениями системы (множественным, функциональным, процессуальным) и т. п.

5. Задачи, связанные с изучением характера, особенностей, закономерностей взаимосвязи структуры и функции ГТК , т.е. влияния строения и свойств залежи на показатели процесса разработки и характеристику структуры и параметров технической компоненты, а также на показатели эффективности

    1. МЕТОДЫ ПОЛУЧЕНИЯ ПРОМЫСЛОВО-ГЕОЛОГИЧЕСКОЙ ИНФОРМАЦИИ

Источниками первичной информации в нефтегазопромысловой геологии служат исследования разными методами, объединенные общей решаемой задачей.

Изучение керна, шлама, проб нефти, газа и воды в лабораториях с помощью специальных приборов - основной источник прямой информации о геолого-физических свойствах пород и физико-химических свойствах УВ и пластовой воды. Получение этой информации затруднено тем, что пластовые условия (давление, температура и др.) отличаются от лабораторных и поэтому свойства образцов пород и флюидов, определенные в лабораторных условиях, существенно отличаются от тех же свойств в пластовых условиях. Отбор проб с сохранением пластовых условий весьма затруднителен. В настоящее время существуют герметичные пробоотборники только для пластовых нефтей и вод. Пересчет результатов лабораторного определения на пластовые условия может производиться с помощью графиков, построенных на основе данных специальных исследований.

Исследование скважин геофизическими методами (ГИС) осуществляется в целях изучения геологических разрезов скважин, исследования технического состояния скважин, контроля за изменением нефтегазонасыщенности пластов в процессе разработки.

Для изучения геологических разрезов скважин используются электрические, магнитные, радиоактивные, термические, акустические, механические, геохимические и другие методы, основанные на изучении физических естественных и искусственных полей различной природы. Результаты исследования скважин фиксируются в виде диаграмм либо точечной характеристики геофизических параметров: кажущегося электрического сопротивления, потенциалов собственной и вызванной поляризации пород, интенсивности гамма-излучения, плотности тепловых и надтепловых нейтронов, температуры и др. Теория геофизических методов и выявленные петрофизические зависимости позволяют проводить интерпретацию результатов исследований. В итоге решаются следующие задачи: определения литолого-петрографической характеристики пород; расчленения разреза и выявления геофизических реперов; выделения коллекторов и установления условий их залегания, толщины и коллекторских свойств; определения характера насыщения пород - нефтью, газом, водой; количественной оценки нефтегазонасыщения и др.

Для изучения технического состояния скважин применяются: инклинометрия - определение углов и азимутов искривления скважин; кавернометрия - установление изменений диаметра скважин; цементометрия - определение по данным термического, радиоактивного и акустического методов высоты подъема, характера распределения цемента в затрубном пространстве и степени его сцепления с горными породами: выявление мест притоков и затрубной циркуляции вод в скважинах электрическим, термическим и радиоактивным методами.

Контроль за изменением характера насыщения пород в результате эксплуатации залежи по данным промысловой геофизики осуществляется на основе исследований различными методами радиоактивного каротажа в обсаженных скважинах и электрического - в необсаженных .

В последние годы получают все большее развитие детальные сейсмические исследования , приносящие важную информацию о строении залежей.

Гидродинамические методы исследования скважин применяются для определения физических свойств и продуктивности пластов-коллекторов на основе выявления характера связи дебитов скважин с давлением в пластах . Эти связи описываются математическими уравнениями, в которые входят физические параметры пласта и некоторые характеристики скважин. Установив на основе гидродинамических исследований фактическую зависимость дебитов от перепадов давлений в скважинах, можно решить эти уравнения относительно искомых параметров пласта и скважин. Кроме того, эта группа методов позволяет выявлять в пластах гидродинамические (литологические) экраны, устанавливать степень связи залежи нефти и газа с законтурной областью и с учетом этого определять природный режим залежи.

Применяют три основных метода гидродинамических исследований скважин и пластов: изучение восстановления пластового давления, метод установившихся отборов жидкости из скважин, определение взаимодействия скважин.

Наблюдения за работой добывающих и нагнетательных скважин. В процессе разработки залежи получают данные об изменении дебитов и приемистости скважин и пластов, обводненности добывающих скважин, химического состава добываемых вод, пластового давления, состояния фонда скважин и другие, на основании которых осуществляются контроль и регулирование разработки.

Важно подчеркнуть, что для изучения каждого из свойств залежи можно применить несколько методов получения информации. Например, коллекторские свойства пласта в районе расположения скважины определяют по изучению керна, по данным геофизических методов и по данным гидродинамических исследований. При этом достигается разная масштабность определений этими методами - соответственно по образцу породы, по интервалам толщины пласта, по пласту в целом. Значение свойства, охарактеризованного несколькими методами, определяют, используя методику увязки разнородных данных.

Для контроля за свойствами залежи, изменяющимися в процессе ее эксплуатации, необходимые исследования должны проводиться периодически.

По каждой залежи, в зависимости от ее особенностей, должен обосновываться свой комплекс методов получения информации, в котором могут преобладать те или иные методы. Надежность получаемой информации зависит от количества точек исследования. Представления о свойствах залежи, полученные по небольшому числу разведочных скважин и по большому числу эксплуатационных, обычно существенно различны. Очевидно, что более надежна информация по большому количеству точек.

    1. СРЕДСТВА ПОЛУЧЕНИЯ ИНФОРМАЦИИ

В эмпирические средства нефтегазопромысловой геологии входят в первую очередь скважины, а затем различные инструменты, приборы и лабораторные установки. Среди этих средств следует назвать колонковые долота для отбора керна, боковые сверлящие и стреляющие грунтоносы , пластовые пробоотборники и опробователи пластов , различные геофизические зонды, инклинометры, глубинные манометры, дебитометры и расходомеры, лабораторные установки для определения геолого-геофизических свойств пород и физико-химических свойств флюидов.

Наблюдения, проводимые по скважинам в процессе эксплуатации залежей, являются важным и обильным источником информации о структуре залежи, эффективности системы разработки, позволяющим обосновывать мероприятия по ее совершенствованию.

Материальное моделирование. Средства для получения косвенной информации - специально создаваемые в лабораторных условиях искусственные модели пластов и протекающих в них процессов. Например, модель пласта в виде металлической трубы, заполненной песком, насыщенным нефтью, широко применяется для изучения процессов сжигания нефти методом создания внутрипластового очага горения. Она позволяет измерять и регулировать параметры процесса, изучать условия его устойчивости, устанавливать конечные результаты, которые затем с соблюдением требований теории подобия могут быть перенесены на реальные пласты.

Другой вид моделей - натуральная модель в виде хорошо изученной залежи или ее участка с протекающими в ней процессами или явлениями.

Метод натурального моделирования широко применяется, например при внедрении новых методов повышения нефтеотдачи пластов. Прежде чем внедрить тот или иной метод в промышленных масштабах, его применяют на небольшом опытном участке залежи, где проверяется эффективность метода и отрабатывается технология. Опытный участок выбирается таким образом, чтобы промыслово-геологическая характеристика пласта в пределах участка была типичной в целом для залежи. В этом случае часть нефтегазоносного пласта в пределах участка выступает как натурная модель, являясь природным аналогом объектов, на которых предполагается применение испытываемого метода.

Проведение производственного эксперимента в процессе разработки залежи. При этом источником необходимой информации служит сам эксплуатируемый объект. Так, на Ромашкинском месторождении проводились промысловые эксперименты по ускорению создания сплошного фронта заводнения на линии нагнетания воды; на Бавлинском месторождении осуществлен эксперимент по разрежению сетки добывающих скважин в 2 раза по сравнению с запроектированной плотностью с целью изучения влияния плотности сетки на величины текущих отборов и конечной нефтеотдачи.

    1. МЕТОДЫ КОМПЛЕКСНОГО АНАЛИЗА И ОБОБЩЕНИЯ ИСХОДНОЙ ИНФОРМАЦИИ

Обобщение информации может происходить как на эмпирическом, так и на теоретическом уровне. Как уже отмечалось, теоретические методы нефтегазопромысловой геологии в значительной мере используют теоретические положения смежных геологических и технических наук, таких как тектоника, стратиграфия, петрография, геохимия, подземная гидромеханика, физика пласта и другие, а также экономика. Вместе с тем недостаточное развитие теоретических методов вызывает широкое использование эмпирических зависимостей. Основным методом обобщения эмпирического материала в нефтегазопромысловой геологии служит метод моделирования.

Реальное геологическое пространство , содержащее бесконечное множество точек, является непрерывным. На практике же геологическое пространство представляется конечным множеством точек, т.е. является дискретным, неполноопределенным,

Неполноопределенное дискретное пространство используется для построения непрерывного геологического пространства, в котором значения представляющих интерес признаков каким-либо способом (путем интерполяции, экстраполяции, корреляции и т.п.) определены для каждой точки. Такое пространство будет полноопределенным. Переход от неполноопределенного пространства к полноопределенному есть процедура моделирования реального геологического пространства.

Следовательно, полученная модель является всего лишь представлением исследователя о реальном геологическом пространстве, составленным по ограниченному числу точек наблюдения.

Процедура моделирования реального геологического пространства является основной частью промыслово-геологического моделирования залежей, отражающего все их особенности, влияющие на разработку.

Различают два вида промыслово-геологических моделей залежей. Это статические и динамически е модели.

Статическая модель отражает все промыслово-геологические свойства залежи в ее природном виде, не затронутом процессом разработки: геометрию начальных внешних границ залежи; условия залегания пород коллекторов в пределах залежи; границы залежи с разным характером нефтегазоводонасыщенности коллекторов; границы частей залежи с разными емкостно-фильтрационными параметрами пород-коллекторов в пластовых условиях.

Эти направления моделирования, составляющие геометризацию залежей, дополняются данными о свойствах в пластовых условиях нефти, газа, воды, о термобарических условиях залежи, о природном режиме и его потенциальной эффективности при разработке (энергетическая характеристика залежи) и др.

Статическая модель постепенно уточняется и детализируется на базе дополнительных данных, получаемых при разведке и разработке залежи.

Динамическая модель характеризует промыслово-геологические особенности залежи в процессе ее разработки . Она составляется на базе статической модели, но отражает изменения, произошедшие в результате отбора определенной части запасов углеводородов, при этом фиксируются: текущие внешние границы залежи ; соответственно границы "промытого" водой или другими агентами объема залежи (при системах разработки с искусственным воздействием на пласты); границы участков залежи, не включенных в процесс дренирования ; фактическая динамика годовых показателей разработки за истекший период; состояние фонда скважин; текущие термобарические условия во всех частях залежи; изменения коллекторских свойств пород.

При статическом моделировании большое место занимает графическое (образно-знаковое) моделирование , называемое геометризацией залежи . В область графического моделирования входит моделирование формы и внутреннего строения залежи. Форма залежи наиболее полно отображается на картах в изогипсах, получивших название структурных, на которых находят положение внешнего и внутреннего контура нефтеносности, а также при их наличии - положение литологических и дизъюнктивных границ залежи.

Внутреннее строение залежи отражают путем составления детальных корреляционных схем, детальных геологических разрезов (профилей) различных карт в изолиниях или условных обозначениях. и газовых месторождений Понятие о системе разработки . Рациональная система разработки .Системы разработки месторождений . Геологические особенности разработки газовых и газоконденсатных месторождений ...

  • Геология геофизика и разработка нефтяных и газовых месторождений

    Документ

    Проблемы их разработ­ки имеют в основе неправильную геологическую мо­дель. Такие месторождения нуждаются в... породооб­разующих минералов Геологического института РАН. 16 Геология, геофизика и разработка нефтяных и газовых месторождений , 3/2010 ...

  • Контроль освоения материала по дисциплине «бурение и разработка нефтяных и газовых месторождений » основная литература

    Методические рекомендации

    М.: Недра, 1968. 20. Пермяков И.Г. Геологические основы поисков, разведки и разработки нефтяных и газовых месторождений . - М.: Недра, 1976. 21. Экономика...

  • Паспорт специальности 25 00 12 – геология поиски и разведка нефтяных и газовых месторождений i отрасль науки по которой присуждаются ученые степени

    Документ

    Также геологических структур для подземного хранения газа. 3. Геологическое обеспечение разработки нефтяных и газовых месторождений и... Я. Поиски и разведка нефтяных и газовых месторождений . М., Недра, 1984. Теоретические основы и методы поисков и...

  • Научный совет по геологии и разработке нефтяных и газовых месторождений

    Документ

    ГЕОЛОГИИ И РАЗРАБОТКЕ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ СИБИРСКОЕ ОТДЕЛЕНИЕ... ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ НА ОСНОВЕ ОГРАНИЧЕНИЯ ДВИЖЕНИЯ... г. Багульма, р. Татарстан ГЕОЛОГИЧЕСКИЕ ПРИЧИНЫ ПРЕЖДЕВРЕМЕННОГО ОБВОДНЕНИЯ СКВАЖИН...

  • ГЕОЛОГИЧЕСКИЕ ОСНОВЫ РАЗРАБОТКИ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ

    С древнейших времен люди использовали нефть и газ там, где наблюдались их естественные выходы на поверхность земли. Такие выходы встречаются и сейчас. В нашей стране - на Кавказе, в Поволжье, Приуралье, на острове Сахалин. За рубежом - в Северной и Южной Америке, в Индонезии и на Ближнем Востоке.

    Все поверхностные проявления нефти и газа приурочены к горным районам и межгорным впадинам. Это объясняется тем, что в результате сложных горообразовательных процессов нефтегазоносные пласты, залегавшие ранее на большой глубине, оказались близко к поверхности или даже на поверхности земли. Кроме того, в горных породах возникают многочисленные разрывы и трещины, уходящие на большую глубину. По ним выходят на поверхность нефть и природный газ.

    Наиболее часто встречаются выходы природного газа - от едва заметных пузырьков до мощных фонтанов. На влажной почве и на поверхности воды небольшие газовые выходы фиксируются по появляющимся на них пузырькам. При фонтанных же выбросах, когда вместе с газом извергаются вода и горная порода, на поверхности остаются грязевые конусы высотой от нескольких до сотен метров. Представителями таких конусов на Апшеронском полуострове являются грязевые «вулканы» Тоурагай (высота 300 м) и Кянизадаг (490 м). Конусы из грязи, образовавшиеся при периодических выбросах газа, встречаются также на севере Ирана, в Мексике, Румынии, США и других странах.

    Естественные выходы нефти на дневную поверхность происходят со дна различных водоемов, через трещины в породах, через пропитанные нефтью конусы (подобные грязевым) и в виде пород, пропитанных нефтью.

    На реке Ухте со дна через небольшие промежутки времени наблюдается всплытие небольших капель нефти. Нефть постоянно выделяется со дна Каспийского моря недалеко от острова Жилого.

    В Дагестане, Чечне, на Апшеронском и Таманском полуострове, а также во многих местах земного шара имеются многочисленные нефтяные источники. Такие поверхностные нефтепроявления характерны для горных регионов с сильно изрезанным рельефом, где балки и овраги врезаются в нефтеносные пласты, расположенные вблизи поверхности земли.

    Иногда выходы нефти происходят через конические бугры с кратерами. Тело конуса состоит из загустевшей окисленной нефти и породы. Подобные конусы встречаются на Небит-Даге (Туркмения), в Мексике и других местах. На острове Тринидат высота нефтяных конусов достигает 20 м, а площадь «нефтяных озер» вокруг них - 50 га. Поверхность таких «озер» состоит из загустевшей и окисленной нефти. Поэтому даже в жаркую погоду человек не только не проваливается, но даже не оставляет следов на их поверхности.

    Породы, пропитанные окисленной и затвердевшей нефтью, именуются «кирами». Они широко распространены на Кавказе, в Туркмении и Азербайджане. Встречаются они, хотя и реже, на равнинах: на Волге, например, имеются выходы известняков, пропитанных нефтью.

    В течение длительного времени естественные выходы нефти и газа полностью удовлетворяли потребности человечества. Однако развитие хозяйственной деятельности человека требовало все больше источников энергии.

    Стремясь увеличить количество потребляемой нефти, люди стали рыть колодцы в местах поверхностных нефтепроявлений, а затем бурить скважины.

    Сначала их закладывали там, где нефть выходила на поверхность земли. Но количество таких мест ограничено. В конце прошлого века был разработан новый перспективный способ поиска. Бурение стали вести на прямой, соединяющей две скважины, уже дающие нефть.

    В новых районах поиск месторождений нефти и газа велся практически вслепую, шарахаясь из стороны в сторону. Любопытные воспоминания о закладке скважины оставил английский геолог К. Крэг.

    «Для выбора места съехались заведующие бурением и управляющие промыслами и сообща определили ту площадь, в пределах которой должна быть заложена скважина. Однако с обычной в таких случаях осторожностью никто не решался указать ту точку, где следовало начинать бурение. Тогда один из присутствующих, отличавшийся большой смелостью, сказал, указывая на кружившую над ними ворону: «Господа, если вам все равно, давайте начнем бурить там, где сядет ворона...» Предложение было принято. Скважина оказалась необыкновенно удачной. Но если бы ворона пролетела на сотню ярдов дальше к востоку, то встретить нефть не было бы никакой надежды...» Понятно, что так не могло долго продолжаться, ведь бурение каждой скважины стоит сотни тысяч долларов. Поэтому остро встал вопрос о том, где бурить скважины, чтобы безошибочно находить нефть и газ.

    Это потребовало объяснить происхождение нефти и газа, дан мощный толчок развитию геологии - науки о составе, строении и истории Земли, а также методов поиска и разведки нефтяных и газовых месторождений.

    1.1 ЗАЛЕЖИ УГЛЕВОДОРОДОВ В ПРИРОДНОМ СОСТОЯНИИ

    Природный резервуар - естественное вместилище нефти, газа и воды (внутри которого может происходить циркуляция подвижных веществ) форма которого обусловливается соотношением коллектора с вмещающими его плохо проницаемыми породами.

    Виды: пластовый, массивный, линзовидный (литологически ограниченный со всех сторон).

    Пластовый резервуар (Рисунок 1.1) представляет собой коллектор, ограниченный на значительной площади в кровле и подошве плохо проницаемыми породами. Особенностями такого резервуара является сохранение мощности и литологического состава на большой площади.

    Рисунок 1.1 - Принципиальная схема пластового резервуара

    1 - коллектор (песок); 2 - плохо проницаемые породы

    Под массивным резервуаром понимают мощные толщи пород, состоящие из многих проницаемых пластов, не отделенных один от другого плохо проницаемыми породами.

    Большинство массивных резервуаров особенно широко распространенных на платформах, представлено известняково-доломитизированными толщами.

    Слабо проницаемые породы покрывают всю эту толщу сверху. По характеру слагающих их пород массивные резервуары подразделяются на две группы:

    1. однородные массивные резервуары - сложены сравнительно однородной толщей пород, большей частью карбонатных (Рисунок 1.2а).

    Рисунок 1.2а - Схема однородного массива

    2. неоднородные массивные резервуары - толща пород неоднородна. Литологически она может быть представлена, например, чередованием известняков, песков и песчаников, сверху перекрытых глинами. (Рисунок 1.2б)

    Рисунок 1.2б - Схема неоднородного массива



    Резервуары неправильной формы, литологически ограниченные со всех сторон (Рисунок 1.3).В эту группу объединены природные резервуары всех видов, в которых насыщающие их газообразные и жидкие углеводороды окружены со всех сторон либо практически непроницаемыми породами, либо породами, насыщенными слабоактивной водой.

    Рисунок 1.3 - Резервуар, литологически ограниченный со всех сторон практически непроницаемыми породами

    Каким бы ни был механизм образования углеводородов для формирования крупных скоплений нефти и газа необходимо выполнение ряда условий:

    ü наличие проницаемых горных пород (коллекторов);

    ü непроницаемых горных пород, ограничивающих перемещение нефти и газа по вертикали (покрышек);

    ü а так же пласта особой формы, попав в который нефть и газ оказываются как бы в тупике (ловушке).

    Ловушка - часть природного резервуара, в котором благодаря различного рода структурным дислокациям, стратиграфическому или литологическому ограничению, а так же тектоническому экранированию создаются условия для скопления нефти и газа.

    Гравитационный фактор вызывает в ловушке распределение газа, нефти и воды по удельным весам.

    Типы ловушек (Рисунок 1.4):

    Структурная (сводовая) - образованная в результате изгиба слоев;

    Стратиграфическая - сформированная в результате эрозии пластов - коллекторов и перекрытия их затем непроницаемыми породами;

    Тектоническая - образованная в результате вертикального перемещения мест обрыва относительно друг друга, пласт-коллектор в месте тектонического нарушения может соприкасаться с непроницаемой горной породой.

    Литологическая - образованная в результате литологического замещения пористых проницаемых пород непроницаемыми.

    Около 80% залежей в мире связано с ловушками структурного типа.

    Рисунок 1.4 - Типы ловушек

    Скопление нефти, газа, конденсата и других полезных сопутствующих компонентов, сосредоточенные в ловушке, ограниченные поверхностями разного типа, в количестве, достаточном для промышленной разработки, называется залежью.

    Типы: пластовая, массивная, литологически ограниченная, стратиграфически ограниченная, тектонически экранированная (Рисунок 1.5а - д).

    Рисунок 1.5а - Пластовый тип залежи

    Рисунок 1.5г - Залежь тектонически экранированного типа

    Рисунок 1.5д - Залежь массивного типа

    Поверхность, разделяющая нефть и воду или нефть и газ, называется соответственно водонефтяным или газонефтяным контактом. Линия пересечения поверхности контактов с кровлей пласта называется соответственно внешним контуром нефтеносности или газоносности, а с подошвой пласта - внутренним контуром нефтеносности или газоносности (Рисунок 1.6). Кратчайшее расстояние между кровлей и подошвой нефтегазаносного пласта называют его толщиной.


    Рисунок 1.6 - Схема залежи пластового типа

    Части пласта: 1 - водяная, 2 - водонефтяная, 3 - нефтяная, 4 - газонефтяная, 5 - газовая; 6 - породы-коллекторы; Н - высота залежи; h г, h н - высоты соответственно газовой шапки и нефтяной части залежи.

    Под месторождением нефти и газа понимается совокупность залежей, приуроченных территориально к одной площади и сведенных с благоприятной тектонической структурой. Понятия месторождение и залежь равнозначны, если на одной площади имеется всего одна залежь, такое месторождение называется однопластовым. Месторождение, имеющее залежи в пластах (горизонтах) разной стратиграфической принадлежности, принято называть многопластовыми .

    В зависимости от фазового состояния и основного состава углеводородных соединений в недрах залежи нефти и газа подразделяются на нефтяные, содержащие только нефть, в различной степени насыщенную газом:газовые , если оно содержит только газовые залежи, состоящие более чем на 90 % из метана, газонефтяные и нефтегазовые (двухфазные). В газонефтяных залежах основная по объему часть нефтяная и меньшая - газовая, в нефтегазовых - газовая шапка превышает по объему нефтяную часть. К нефтегазовым, относятся так же залежи с крайне незначительной по объему нефтяной частью - нефтяной оторочкой. Газоконденсатнонефтяные и нефтегазоконденсатные : в первых - основная по объему нефтяная часть, а во вторых газоконденсатная (Рисунок 1.7).

    К газоконденсатным относят такие месторождения, из которых при снижении давления до атмосферного выделяется жидкая фаза - конденсат.

    Рисунок 1.7 - Классификация залежей по фазовым состояниям углеводородов

    1.2 ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ВНУТРЕННЕЕ СТРОЕНИЕ ЗАЛЕЖЕЙ

    Введение …...................................................................................................................................3

    1. Основы разаработки нефтяных и газовых местрождении …................................................5

    1.1. Паспеределение углеводородоы по высоте залежеи ….........................................5

    1.2. Понятие о контурах нефтеносности и водонефтянои зоны залежеи.....................7

    1.3. Режимы разработки нефтяных месторождении …..................................................8

    1.4. Технологии воздеиствия на залежь нефти …..........................................................11

    1.5. Вытеснения нефти из пластов-коллекторов различными агентами.....................14

    2. Дебитометрия и расходометрия ….........................................................................................17

    2.1. Барометрия …............................................................................................................19

    2.2. Термометрия …..........................................................................................................20

    3. Определение эксплуатационных характеристик продуктивных пластов ….......................22

    3.1. Определение дебита и приемистости скважин …...................................................22

    3.2. Определение работающих мощностеи пласта …...................................................23

    3.3. Определение коэффициента продуктивности и пластового давления................24

    4. Изучения технического состояния скважин ….......................................................................26

    Список литературы ….................................................................................................................27

    Введение

    Успешная разработка нефтяных и газовых месторождений определяется тем, насколько будет выбрана система разработки. В процессе разработки возникает необходимость контролировать и уточнять состояние залежей с учетом новых сведений о геологическом строении, получаемых при их разбуривании и эксплуатации. Высокая эффективность систем заводнения обусловлена тем, что при помощи закачки воды повышают пластовое давление, в результате чего нефть эффективнее выжимается из порового пространства к эксплуатационным скважинам. Главное преимущество таких систем заключается в том, что при заводнении повышается интенсивность отбора нефти из пласта. С другой стороны такие методы поддерживания пластового давления представляют опасность заводнения продуктивных пластов. Может возникнуть такая ситуация, когда закачиваемая вода «опередит» нефть, продвигаясь по наиболее проницаемым участкам. В этом случае часть нефти в пласте изолируется в так называемых «целиках», что в свою очередь затруднит ее извлечение. Очень важно иметь возможность регулирования процессов заводнения. Способы регулирования, основанные на изменении дебетов закачки воды и отбора нефти, требуют информации о текущих изменениях в пласте. Контроль за заводнением - одна из важнейших и самых сложных проблем разработки нефтяных месторождений. В настоящее время более 70% нефти добывается из месторождений, которые эксплуатируются с поддержанием пластового давления путем заводнения. Одним из главных вопросов рациональной разработки нефтяных месторождений с естественным упруговодонапорным режимом, а также с применением законтурного и внутриконтурного заводнений является контроль и регулирование продвижения контуров нефтеносности.

    Целью геофизического контроля является получение информации о состоянии и изменениях, происходящих в продуктивных пластах в процессе их эксплуатации. При этом под геофизическими методами понимают все методы, проводимые когда-либо на территории месторождения. В настоящее время контроль за разработкой развился в отдельное направление со своей методикой, методами и аппаратурой. Использование этих методов позволяет решать следующие задачи:

    1. Определять положение и наблюдать за продвижением ВНК и ГНК в процессе вытеснения нефти из пласта;

    2. Контролировать перемещение фронта нагнетательных вод по пласту;

    3. Оценивать коэффициенты текущей и конечной нефтенасыщенности и нефтеотдачи пластов;

    4. Изучать отдачу и приемистость (способность пласта принимать закачиваемую воду) скважин;

    5. Устанавливать состояние флюидов в стволе скважины;

    6. Выявлять места поступления в скважину вод и перетоков нефти и воды в затрубном пространстве;

    7. Оценивать техническое состояние эксплуатационных и нагнетательных скважин;

    8. Изучать режим работы технологического оборудования эксплуатационных скважин;

    9. Уточнять геологическое строение и запасы нефти.

    До конца 40-х годов XX века ВНК изучался преимущественно по данным электрокаротажа. Это, естественно, накладывало свои ограничения: исследования проводились только в необсаженных скважинах, следовательно, геологи получали информацию о первоначальном положении ВНК, начальном контуре нефтеносности, нефтенасыщенности, интервалах перфорации. Перемещение внутреннего контура нефтеносности можно было проследить только по появлению воды в эксплуатационных скважинах.

    В 50-х годах XX века с внедрением радиоактивного каротажа появилась реальная возможность создавать способы разделения нефтеносных и водоносных коллекторов в обсаженных скважинах. Однако результаты этих методов достоверны только в том случае, если установлено, что вода не поступает в скважину из других пластов вследствие нарушения колонны или тампонажа скважин. При контроле за разработкой основным является различие по нейтронным свойствам минерализованной пластовой воды. Наиболее благоприятные условия существуют на местах с минерализацией пластовой воды более 100 г/л (пласты девона и карбона Волго-Уральской нефтегазоносной провинции ~300 г/л). Хуже обстоит дело при минерализации 20-30 г/л (Зап. Сибирь). В этом случае прибегают к помощи импульсных нейтронных методов (ИННК), которые существенно повышают чувствительность к нейтронным свойствам пласта. Наряду со стационарными и импульсными методами при контроле за разработкой широкое распространение получили методы радио-, термометрии, акустического каротажа, дебитометрии, а также специальные методики интерпретации.

    100 р бонус за первый заказ

    Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

    Узнать цену

    С древнейших времен люди использовали нефть и газ там, где наблюдались их естественные выходы на поверхность земли. Такие выходы встречаются и сейчас. В нашей стране - на Кавказе, в Поволжье, Приуралье, на острове Сахалин. За рубежом - в Северной и Южной Америке, в Индонезии и на Ближнем Востоке.

    Все поверхностные проявления нефти и газа приурочены к горным районам и межгорным впадинам. Это объясняется тем, что в результате сложных горообразовательных процессов нефтегазоносные пласты, залегавшие ранее на большой глубине, оказались близко к поверхности или даже на поверхности земли. Кроме того, в горных породах возникают многочисленные разрывы и трещины, уходящие на большую глубину. По ним выходят на поверхность нефть и природный газ.

    Наиболее часто встречаются выходы природного газа - от едва заметных пузырьков до мощных фонтанов. На влажной почве и на поверхности воды небольшие газовые выходы фиксируются по появляющимся на них пузырькам. При фонтанных же выбросах, когда вместе с газом извергаются вода и горная порода, на поверхности остаются грязевые конусы высотой от нескольких до сотен метров. Представителями таких конусов на Апшеронском полуострове являются грязевые «вулканы» Тоурагай (высота 300 м) и Кянизадаг (490 м). Конусы из грязи, образовавшиеся при периодических выбросах газа, встречаются также на севере Ирана, в Мексике, Румынии, США и других странах.

    Естественные выходы нефти на дневную поверхность происходят со дна различных водоемов, через трещины в породах, через пропитанные нефтью конусы (подобные грязевым) и в виде пород, пропитанных нефтью.

    На реке Ухте со дна через небольшие промежутки времени наблюдается всплытие небольших капель нефти. Нефть постоянно выделяется со дна Каспийского моря недалеко от острова Жилого.

    В Дагестане, Чечне, на Апшеронском и Таманском полуострове, а также во многих местах земного шара имеются многочисленные нефтяные источники. Такие поверхностные нефтепроявления характерны для горных регионов с сильно изрезанным рельефом, где балки и овраги врезаются в нефтеносные пласты, расположенные вблизи поверхности земли.

    Иногда выходы нефти происходят через конические бугры с кратерами. Тело конуса состоит из загустевшей окисленной нефти и породы. Подобные конусы встречаются на Небит-Даге (Туркмения), в Мексике и других местах. На острове Тринидат высота нефтяных конусов достигает 20 м, а площадь «нефтяных озер» вокруг них - 50 га. Поверхность таких «озер» состоит из загустевшей и окисленной нефти. Поэтому даже в жаркую погоду человек не только не проваливается, но даже не оставляет следов на их поверхности.

    Породы, пропитанные окисленной и затвердевшей нефтью, именуются «кирами». Они широко распространены на Кавказе, в Туркмении и Азербайджане. Встречаются они, хотя и реже, на равнинах: на Волге, например, имеются выходы известняков, пропитанных нефтью.

    В течение длительного времени естественные выходы нефти и газа полностью удовлетворяли потребности человечества. Однако развитие хозяйственной деятельности человека требовало все больше источников энергии.

    Стремясь увеличить количество потребляемой нефти, люди стали рыть колодцы в местах поверхностных нефтепроявлений, а затем бурить скважины.

    Сначала их закладывали там, где нефть выходила на поверхность земли. Но количество таких мест ограничено. В конце прошлого века был разработан новый перспективный способ поиска. Бурение стали вести на прямой, соединяющей две скважины, уже дающие нефть.

    В новых районах поиск месторождений нефти и газа велся практически вслепую, шарахаясь из стороны в сторону. Любопытные воспоминания о закладке скважины оставил английский геолог К. Крэг.

    «Для выбора места съехались заведующие бурением и управляющие промыслами и сообща определили ту площадь, в пределах которой должна быть заложена скважина. Однако с обычной в таких случаях осторожностью никто не решался указать ту точку, где следовало начинать бурение. Тогда один из присутствующих, отличавшийся большой смелостью, сказал, указывая на кружившую над ними ворону: «Господа, если вам все равно, давайте начнем бурить там, где сядет ворона...» Предложение было принято. Скважина оказалась необыкновенно удачной. Но если бы ворона пролетела на сотню ярдов дальше к востоку, то встретить нефть не было бы никакой надежды...» Понятно, что так не могло долго продолжаться, ведь бурение каждой скважины стоит сотни тысяч долларов. Поэтому остро встал вопрос о том, где бурить скважины, чтобы безошибочно находить нефть и газ.

    Это потребовало объяснить происхождение нефти и газа, дан мощный толчок развитию геологии - науки о составе, строении и истории Земли, а также методов поиска и разведки нефтяных и газовых месторождений.

    Проектирование разработки, процесс разработки носит стадийный характер. Технологическими проектными документами являются следующие:

    1. проект пробной эксплуатации залежи, скважин.

    2. технологические схемы опытно - промышленной разработки (для газа - эксплуатации).

    3. технологические схемы разработки.

    4. проекты разработки.

    5. уточненные проекты разработки (до разработки).

    6. анализ разработки.

    Нефтяные и газовые месторождения вводятся в разработку на основе вышеперечисленных документов. Условия и порядок ввода месторождений в разработку определяются «Правилами разработки нефтяных, газовых и газоконденсатных месторождений».

    Первым проектным документом при разработке залежей УВ является проект пробной эксплуатации (ПЭ). Пробная эксплуатация проводится для получения исходных данных для составления технологической схемы опытно- промышленной разработки (для нефтяных залежей) и опытно-промышленной эксплуатации (для газовых залежей). Они составляются на 10-15 лет. В них обосновываются технологические и технико-экономические показатели разработки залежи.

    После получения дополнительной информации о залежи и пласте, на базе пересчета запасов составляется проект разработки залежи.

    В проекте обосновываются все показатели разработки залежи до конца жизни месторождения.

    Когда фактические показатели разработки существенно откланяются от проектных, то составляется уточненный проект разработки.

    На последней стадии разработки месторождения составляется проект до-разработки. Основная его цель: обоснование мероприятий по увеличению нефтеотдачи пласта.

    Выделяются 4 стадии (см.рис 40), а при газовом режиме-3 стадии.

    1. Освоение объекта (залежи) - характеризуется ростом добычи нефти, ростом числа скважин и заканчивается при достижении проектной добычи нефти.

    2. Основная стадия - характеризуется высоким стабильным уровенем добычи нефти. К концу стадии отмечается рост обводненности продукции, при этом извлекается 40-60% извлекаемых запасов.

    3. Резкое снижения добычи нефти - снижается количество добывающих скважин (по причине их обводнения), дебиты падают, увеличивается количество добываемой воды. В конце стадии добывается 80-90% извлекаемых запасов.

    4. Завершающая стадия - характеризуется низкими дебитами скважин и высокой обводненности скважин и продукции в целом.

    Рис. 40.

    Геолого-промысловый контроль за процессом разработки залежей УВ

    Цель контроля: необходимо получить достаточное количество информации для принятия решения о необходимости регулирования разработки.

    Различают следующие методы контроля:

    1. Гидродинамические методы - позволяют изучать продуктивность пластов и другие геолого-физические параметры с использованием глубинной аппаратуры.

    2. Геофизические методы - позволяют контролировать положение контактов и характер текущей флюидонасыщенности пласта.

    3. Физико-химические методы, позволяющие контролировать химический состав и физические свойства нефти, газа и воды.

    В процессе контроля за разработкой получают исходную информацию для анализа разработки. Основная цель анализа - сопоставление проектных и фактических показателей разработки. Анализ разработки выполняют нефте-газодобывающие управления (НГДУ) и газопромысловые управления (ГПУ). Крупные и средние месторождения подвергаются анализу 1 раз в 5 лет с привлечением научно-исследовательских институтов (НИИ). При этом изучается изменение во времени следующих показателей:

    Добыча нефти

    Добыча жидкости

    Добыча газа

    Закачка воды и газа

    Фонд скважин (различного назначения)

    Пластовое давление

    Положение контактов.

    При проведении анализа разработки составляются следующие графические документы:

    Карта разработки (карта суммарной добычи) - составляется на основе структурной карты, на которой показаны положения контуров нефтегазоносности, положения скважин различных категории. Для каждой скважины составляется круговая диаграмма суммарной (накопленной) добычи нефти, газа, воды.

    Карта текущего состояния разработки (текущих отборов) - в виде круговых диаграмм показывается текущей дебит скважин на дату составления карты. В остальном она аналогична карте разработки.

    График разработки - изменение во времени показателей разработки.

    Графики эксплуатации - динамика основных показателей разработки отдельной скважины.

    Карта изобар - контроль за изменением давления в пределах залежи.

    Карта обводненности продукции - изучение обводнения залежи и перемещения ВНК, составляется в изолиниях процентного содержания воды в добываемой жидкости.

    Карта газовых факторов - когда залежь работает на режиме растворенного газа или газонапорном режиме. Они позволяет контролировать процесс разработки. Увеличение газового фактора отмечается в зонах резкого снижения пластового давления.

    При выявлении отклонений фактических показателей от проектных, осуществляется регулирование процесса разработки залежи.