Общие сведения о топливе, основные характеристики топлива, определяющие его качество. Состав и основные характеристики различных видов топлива

Топливом называется горючее вещество, используемое в качестве источника получения теплоты в энергетических, промышленных и отопительных установках.

В зависимости от типа реакций, в результате которых выделяется теплота из топлива, различают органическое и ядерное топливо. В настоящее время и по прогнозам до 2030 г. органическое топливо является основным источником энергии (теплоты) для промышленного использования.

В органических топливах теплота выделяется в результате химической реакции окисления его горючих частей при участии кислорода, а в ядерных топливах - в результате распада деления ядер тяжелых элементов (урана, плутония и т.д.).

Классификация органического топлива.

Топливо подразделяется на природное и искуственное. Среди них различают три агрегатных состояния.

Природные:

  • твердое - дрова, торф, бурые и каменные угли, антрацит, горючие сланцы
  • жидкое - нефть
  • газообразное - природный газ

Искусственные:

  • твердое - древесный уголь, полукокс, кокс, угольные и торфяные брикеты, пеллеты
  • жидкое - мазут, керосин, бензин, содяровое масло, газойль, печное топливо
  • газообразное - газ нефтяной, газ коксовый и генераторный, газ доменный, газ подземной газификации.

Твердые и жидкие топлива состоят из горючих (углерода - С, водорода - Н, летучей серы - Sл == Sор + Sк) и негорючих (азота - N и кислорода - О) элементов и балласта (золы - А, влаги - W). Элементарный состав твердого и жидкого топлива дается в процентах к массе 1 кг топлива. При этом различают рабочую, сухую, горючую и органическую массу топлива. Рабочая масса - это масса и состав топливо, в котором поступает к потребителю и подвергается сжиганию.

Газообразное топливо представляет собой смесь горючих и негорючих газов. Горючая часть состоит из предельных и непредельных углеводородов, водорода Н2, окиси углерода СО, и сернистого водорода (Н2S). В состав негорючих элементов входит азот (N2), углекислый газ (СO2) и кислород (О2). Составы природного и искусственного газообразных топлив различны. Природный газ характеризуется высоким содержанием метана (СH4), а также небольшого количества других углеводородов: этана (С2H6), пропана (С3H8), бутана (С4H10), этилена (С2H4), и пропилена (С3H6). В искусственных газах содержание горючих составляющих (водорода и окиси углерода) достигает 25-45%, в балласте преобладают азот и углекислота - 55-75%.

Характеристика топлива

Влажность воздуха. Средняя влажность топлива в рабочем состоянии составляет в %: для торфа 50; сланцев 13-17; каменного угля 5-14 и антрацита 5-8. Бурые угли в зависимости от влажности делят на 3 группы: группа Б1 - более 40% влажности; группа Б2 - 30-40%;
группа Б3 - менее 30%.

Зола топлива. В состав золы входят преимущественно соли щелочных и щелочно-земельных металлов, окислы железа, алюминия, а также сульфатная сера. Минеральные остатки, образующиеся после сгорания топлива, имеют вид либо сыпучей массы (зола), либо сплавленных кусков (шлак). При высоких температурах зола размягчается, а затем плавится. Размягченная зола и шлак прилипают к стенкам обмуровки топки, уменьшая сечение газоходов откладываются на поверхностях нагрева, увеличивая тем самым термическое сопротивление в процессе теплопередачи о газов к нагреваемой среде, забивают отверстия для прохода воздуха в колосниковой решетке, обволакивают частицы топлива, затрудняя их сжигание. Различные виды топлива содержат разное количества золы. Например, в %: древесина - 1; торф - 10; кузнецкий уголь - 10-20; подмосковный бурый уголь - 30; сланцы - 60. Жидкое топливо (мазут) содержит 0,2-1% минеральных примесей.

Летучие вещества. При нагревании твердого топлива до 870-1100 К без доступа окислителя, выделяются парогазообразные вещества, которые называются летучими. Они являются продуктами распада сложных органических веществ, содержащихся в органической массе топлива. В состав летучих веществ входят: азот N2, кислород О2, водород Н2, окись углерода СО, углеводородные газы СH4, С2H4 и т.д, а также водяные пары.

Кокс. Твердый остаток, который получается после нагревания топлива (без доступа окислителя) и выхода летучих веществ. В состав кокса входят остаточный углерод и зола. При низких температурах в твердом остатке кроме золы может оказаться часть элементов (C, H, Sл, N). Тогда твердый остаток называется полукоксом. По своим механическим свойствам кокс может быть порошкообразным, слабоспекшимся и спекшимся. В зависимости от выхода летучих веществ и характеристики кокса каменные угли разделяются на 10 марок: длиннопламенный - Д, газовый - Г, газовый жирный - ГЖ, жирный - Ж, коксовый жирный = КЖ, коксовый - К, коксовый второй - К2, отощенный спекающийся - ОС, слабоспекающийся - СС, тощий - Т.

ВИДЫ ТОПЛИВА. КЛАССИФИКАЦИЯ ТОПЛИВА

По определению Д.И.Менделеева, «топливом называется горючее вещество, умышленно сжигаемое для получения теплоты».

В настоящее время термин «топливо» распространяется на все материалы, служащие источником энергии (например, ядерное топливо).

Топливо по происхождению делят на:

Природное топливо (уголь, торф, нефть, горючие сланцы, древесина и др.)

Искусственное топливо (моторное топливо, генераторный газ, кокс, брикеты и др.).

По своему агрегатному состоянию его делят на твёрдое, жидкое и газообразное топливо, а по своему назначению при использовании – на энергетическое, технологическое и бытовое. Наиболее высокие требования предъявляются к энергетическому топливу, а минимальные требования – к бытовому.

Твёрдое топливо – древесно-растительная масса, торф, сланцы, бурый уголь, каменный уголь.

Жидкое топливо – продукты переработки нефти (мазут).

Газообразное топливо – природный газ; газ, образующийся при переработке нефти, а также биогаз.

Ядерное топливо – расщепляющиеся (радиоактивные) вещества (уран, плутоний).

Органическое топливо, т.е. уголь, нефть, природный газ, составляет подавляющую часть всего энергопотребления. Образование органического топлива является результатом теплового, механического и биологического воздействия в течение многих столетий на останки растительного и животного мира, откладывающиеся во всех геологических формациях. Всё это топливо имеет углеродную основу, и энергия высвобождается из него, главным образом, в процессе образования диоксида углерода.

ТВЁРДОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Твёрдое топливо. Ископаемое твёрдое топливо (за исключением сланцев) является продуктом разложения органической массы растений. Самое молодое из них – торф – представляет собой плотную массу, образовавшуюся из перегнивших остатков болотных растений. Следующими по «возрасту» являются бурые угли – землистая или чёрная однородная масса, которая при длительном хранении на воздухе частично окисляется («выветривается») и рассыпается в порошок. Затем идут каменные угли, обладающие, как правило, повышенной прочностью и меньшей пористостью. Органическая масса наиболее старых из них – антрацитов – претерпела наибольшие изменения и на 93 % состоит из углерода. Антрацит отличается высокой твёрдостью.

Мировые геологические запасы угля, выраженные в условном топливе, оцениваются в 14000 млрд.тонн, из которых половина относится к достоверным (Азия – 63%, Америка – 27%). Наибольшими запасами угля располагают США и Россия. Значительные запасы имеются в ФРГ, Англии, Китае, на Украине и в Казахстане.

Всё количество угля можно представить в виде куба со стороной 21 км, из которого ежегодно изымается человеком «кубик» со стороной 1,8 км. При таких темпах потребления угля хватит примерно на 1000 лет. Но уголь – тяжёлое неудобное топливо, имеющее много минеральных примесей, что усложняет его использование. Запасы его распределены крайне неравномерно. Известнейшие месторождения угля: Донбасский (запасы угля 128 млрд.т.), Печорский (210 млрд.т.), Карагандинский (50 млрд.т.), Экибастузский (10 млрд.т.), Кузнецкий (600 млрд.т.), Канско-Ачинский (600 млрд.т.). Иркутский (70 млрд.т.) бассейны. Самые крупные в мире месторождения угля – Тунгусское (2300 млрд.т. – свыше 15% от мировых запасов) и Ленское (1800 млрд.т. – почти 13% от мировых запасов).

Добыча угля ведётся шахтным методом (глубиной от сотен метров до нескольких километров) или в виде открытых карьерных разработок. Уже на этапе добычи и транспортировки угля, применяя передовые технологии, можно добиться снижения потерь при транспортировке. Уменьшения зольности и влажности отгружаемого угля.

Возобновляемым твёрдым топливом является древесина. Доля её в энергобалансе мира сейчас чрезвычайно невелика, но в некоторых регионах древесина (а чаще её отходы) также используется в качестве топлива.

В качестве твёрдого топлива могут быть также использованы брикеты – механическая смесь угольной и торфяной мелочи со связующими веществами (битум и др.), спрессованная под давлением до 100 МПа в специальных прессах.

ЖИДКОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Жидкое топливо. Практически всё жидкое топливо пока получают путём переработки нефти. Нефть, жидкое горючее полезное ископаемое, представляет собой бурую жидкость, содержащую в растворе газообразные и легколетучие углеводороды. Она имеет своеобразный смоляной запах. При перегонке нефти получают ряд продуктов, имеющих важное техническое значение: бензин, керосин, смазочные масла, а также вазелин, применяемый в медицине и парфюмерии.

Сырую нефть нагревают до 300-370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре tª: сжиженный газ (выход около 1%), бензиновую (около 15%, tª=30 - 180°С). Керосиновую (около 17 %, tª=120 - 135°С), дизельную (около 18 %, tª=180 - 350°С). Жидкий остаток с температурой начала кипения 330-350°С называется мазутом. Мазут, как и моторное топливо, представляет собой сложную смесь углеводородов, в состав которых входят, в основном, углерод (84-86 %) и водород (10-12%).

Мазут, получаемый из нефти ряда месторождений, может содержать много серы (до 4.3%), что резко усложняет защиту оборудования и окружающей среды при его сжигании.

Зольность мазута не должна превышать 0,14 %, а содержание воды должно быть не более 1,5 %. В состав золы входят соединения ванадия, никеля, железа и других металлов, поэтому её часто используют в качестве сырья для получения, например, ванадия.

В котлах котельных и электростанций обычно сжигают мазут, в бытовых отопительных установках – печное бытовое топливо (смесь средних фракций).

Мировые геологические запасы нефти оцениваются в 200 млрд. т., из которых 53 млрд.т. составляют достоверные запасы. Более половины всех достоверных запасов нефти расположено в странах Среднего и Ближнего Востока. В странах Западной Европы, где имеются высокоразвитые производства, сосредоточены относительно небольшие запасы нефти. Разведанные запасы нефти всё время увеличиваются. Прирост происходит в основном за счёт морских шельфов. Поэтому все имеющиеся в литературе оценки запасов нефти являются условными и характеризуют только порядок величин.

Общие запасы нефти в мире ниже, чем угля. Но нефть более удобное для использования топливо. Особенно в переработанном виде. После подъёма через скважину нефть направляется потребителям в основном по нефтепроводам, железной дорогой или танкерами. Поэтому в себестоимости нефти существенную часть имеет транспортная составляющая.


ГАЗООБРАЗНОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Газообразное топливо. К газообразному топливу относится, прежде всего, природный газ. Это газ, добываемый из чисто газовых месторождений, попутный газ нефтяных месторождений, газ конденсатных месторождений, шахтный метан и т.д. Основным его компонентом является метан СН 4 ; кроме того, в газе разных месторождений содержатся небольшие количества азота N 2 , высших углеводородов СnНm , диоксида углерода СО 2 . В процессе добычи природного газа его очищают от сернистых соединений, но часть их (в основном сероводород) может оставаться.

При добыче нефти выделяется так называемый попутный газ, содержащий меньше метана, чем природный, но больше высших углеводородов и поэтому выделяющий при сгорании больше теплоты.

В промышленности и особенно в быту находит широкое распространение сжиженный газ, получаемый при первичной обработке нефти и попутных нефтяных газов. Выпускают технический пропан (не менее 93% С 3 Н 8 + С 3 Н 6), технический бутан (не менее 93% С 4 Н 10 + С 4 Н 8) и их смеси.

Мировые геологические запасы газа оцениваются в 140-170 триллионов м³.

Природный газ располагается в залежах, представляющих собой «купола» из водонепроницаемого слоя (типа глины), под которым в пористой среде (песчаник) под давлением находится газ, состоящий в основном из метана СН 4 . На выходе из скважины газ очищается от песчаной взвеси, капель конденсата и других включений и подаётся на магистральный газопровод диаметром 0,5 – 1,5 м длиной несколько тысяч километров. Давление газа в газопроводе поддерживается на уровне 5 МПа при помощи компрессоров, установленных через каждые 100-150 м. Компрессоры вращаются газовыми турбинами, потребляющими газ. Общий расход газа на поддержание давления в газопроводе составляет 10-12% от всего прокачиваемого. Поэтому транспорт газообразного топлива весьма энергозатратен.

В последнее время в ряде мест всё большее применение находит биогаз – продукт анаэробной ферментации (сбраживания) органических отходов (навоза, растительных остатков, мусора, сточных вод и т.д.). В Китае на самых разных отбросах работают уже свыше миллиона фабрик биогаза (по данным ЮНЕСКО – до 7 млн.). В Японии источниками биогаза служат свалки предварительно отсортированного бытового мусора. «Фабрика», производительностью до 10-20 м³ газа в сутки. Обеспечивает топливом небольшую электростанцию мощностью 716 кВт.

Анаэробное сбраживание отходов крупных животноводческих комплексов позволяет решить чрезвычайно острую проблему загрязнения окружающей среды жидкими отходами путём превращения их в биогаз (примерно 1 куб.м в сутки на единицу крупного рогатого скота) и высококачественные удобрения.

Весьма перспективным видом топлива, обладающим в три раза большей удельной энергоёмкостью по сравнению с нефтью, является водород, научно-экспериментальные работы по изысканию экономичных способов промышленного преобразования которого активно ведутся в настоящее время как в нашей стране, так и за рубежом. Запасы водорода неистощимы и не связаны с каким-то регионом планеты. Водород в связанном состоянии содержится в молекулах воды (Н 2 О). При его сжигании образуется вода, не загрязняющая окружающую среду. Водород удобно хранить, распределять по трубопроводам и транспортировать без больших затрат.

В настоящее время водород в основном получают из природного газа, в ближайшем будущем его можно будет получать в процессе газификации угля. Для получения химической энергии водорода используется также процесс электролиза. Последний способ имеет значительное преимущество, так как приводит к обогащению кислородом окружающей среды. Широкое применение водородного топлива может решить три актуальные проблемы:

Уменьшить потребление органического и ядерного топлива;

Удовлетворить возрастающие потребности в энергии;

Снизить загрязнение окружающей среды.

ЯДЕРНОЕ ТОПЛИВО. КЛАССИФИКАЦИЯ И ПРИМЕНЕНИЕ

Ядерное топливо. Единственный природный вид ядерного топлива – тяжёлые ядра урана и тория. Энергия в виде теплоты высвобождается под действием медленных нейтронов при делении изотопа 235 U, который составляет в природном уране 1/140 часть. В качестве сырья могут использоваться 238 U и 239 Th, которые при облучении нейтронами превращаются в новое ядерное топливо – соответственно 239 Pu и 239 U. При делении всех ядер, содержащихся в 1 кг урана, выделяется энергия 2·10 7 кВт·ч, что эквивалентно 2,5 тыс.т высококачественного каменного угля с теплотой сгорания 35 МДж/кг (8373 ккал/кг).

Ядерное топливо делится на два вида:

  • Природное урановое, содержащее делящиеся ядра 235 U, а также сырьё 238 U, способное при захвате нейтрона образовывать плутоний 239 Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239 Pu, получаемый из топлива первого вида, а также изотопы 233 U, образующиеся при захвате нейтронов ядрами тория 232 Th.

По химическому составу, ядерное топливо может быть:

  • Металлическим, включая сплавы;
  • Оксидным (например, UO 2);
  • Карбидным (например, PuC 1-x)
  • Нитридным
  • Смешанным (PuO 2 + UO 2)

Применение. Ядерное топливо используется в ядерных реакторах, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах) в виде таблеток размером в несколько сантиметров.

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200-500°С уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в полтора раза.

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов - осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа - с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает выгорание, которое является одной из главных оценок экономики атомной энергетики.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика - двуокись урана UO 2 . Её температура плавления равна 2800 °C, плотность - 10,2 т/м 3 . У двуокиси урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Двуокись урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики - низкая теплопроводность - 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на двуокиси урана не превышает 1,4·10 3 кВт/м 2 , при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется ещё токсичностью плутония. Для приготовления ядерного топлива обычно идут двуокись плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.

Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO 2 , UC, PuO 2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.

УСЛОВНОЕ ТОПЛИВО

Условное топливо. Различные виды энергетических ресурсов обладают разным качеством, которое характеризуется энергоёмкостью топлива. Удельной энергоёмкостью называется количество энергии, приходящееся на единицу массы физического тела энергоресурса.

Для сопоставления различных видов топлива, суммарного учёта его запасов, оценки эффективности использования энергетических ресурсов, сравнения показателей теплоиспользующих устройств, принята единица измерения – условное топливо. Условное топливо – это такое топливо, при сгорании 1 кг которого выделяется 29309 кДж, или 700 ккал энергии. Для сравнительного анализа используется 1 тонна условного топлива.

1 ту.т = 29309 кДж = 7000 ккал = 8120 кВт·ч.

Этот показатель соответствует хорошему малозольному углю, который иногда называют угольным эквивалентом.

За рубежом для анализа используется условное топливо с теплотой сгорания 41900 кДж/кг (10000 ккал/кг). Этот показатель называется нефтяным эквивалентом. В нижеследующей таблице приведены значения удельной энергоёмкости для ряда энергетических ресурсов в сравнении с условным топливом.

ЗАКЛЮЧЕНИЕ

Таким образом, на основе вышеизложенного материала можно сделать следующие выводы:

Топливо – это горючее вещество, применяемое для получения теплоты.

По происхождению топливо бывает природное и искусственное.

По агрегатному состоянию выделяют твёрдое, жидкое и газообразное топливо.

По назначению при использовании топливо может быть энергетическим, технологическим и бытовым.

Как самостоятельный вид выделяют ещё ядерное топливо.

Для сравнения различных видов топлива по их теплотворной способности используют единицу измерения «условное топливо».

Условное топливо – условно принятое топливо с теплотворной способностью 7000 ккал/кг (для жидких и твёрдых видов топлива) и 7000 ккал/нм 3 (для газообразных видов топлива).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Охрана труда и основы энергосбережения: Учеб. пособие /

Э.М. Краченя, Р.Н. Козел, И.П.Свирид. – 2-е изд. – Мн.: ТетраСистемс, 2005. – 156-161,166-167 с.

2. Википедия – свободная энциклопедия [Электронный ресурс] / Ядерное топливо. Режим доступа: http://ru.wikipedia.org/ Дата доступа: 04.10.2009.

3. Департамент по энергоэффективности Государственного комитета по стандартизации Республики Беларусь [Электронный ресурс] / Нормативные документы. Методические рекомендации по составлению технико-экономических обоснований для энергосберегающих мероприятий. Режим доступа: http://energoeffekt.gov.by/doc/metodika_1.asp. Дата доступа: 03.10.2009

ПРИЛОЖЕНИЕ А

Таблица 1: Удельная энергоёмкость энергетических ресурсов

Состав топлива. Условное топливо.

Все существующие виды топлива разделяются на твёрдые, жидкие, газообразные. Для нагрева используются также тепловое действие электрического тока и пылевидное топливо. Некоторые группы топлива, в свою очередь, делятся на две подгруппы, из которых одна представляет собой топливо в том виде, в каком оно добывается, и это естественное топливо; другая подгруппа – топливо, которое получается путём переработки естественного топлива, и оно называется искусственным.

Твёрдое топливо:

А). естественное – дрова, каменный уголь, антрацит, торф.

Б). искусственное – древесный уголь, кокс и пылевидное, которое получается из измельчённых частей.

Жидкое топливо:

А). естественное – нефть.

Б). искусственное – бензин, керосин, мазут, смола.

Газообразное топливо:

А). естественное – природный газ.

Б). искусственное – генераторный газ, получаемый при газификации различных видов топлива (торфа, дров, каменного угля и другого), коксовальный и другие газы.

Все виды топлива состоят из одних и тех же элементов. Разница между видами топлива заключается в том, что эти элементы содержатся в топливе в различных количествах. Элементы делятся на две группы. К первой группе относятся те элементы, которые горят сами или поддерживают горение. К таким относятся углерод, водород, кислород. Ко второй группе принадлежат те, которые сами не горят и не способствуют горение; к ним относятся азот и вода. Особо от названных элементов стоит сера. Она является горючим веществом и при горении выделяет тепло, но её присутствие в топливе нежелательно, так как при горении серы выделяется сернистый газ, который переходит в нагреваемый металл и ухудшает его механические свойства.

Количество тепла, выделяемое топливом при сгорании, измеряется калориями. Каждое топливо при горении выделяет неодинаковое количество тепла. Количество тепла, которое выделяется при полном сгорании 1кг твёрдого или жидкого топлива или при сгорании 1м³ газообразного, называется теплотворной способностью. Теплотворная способность имеет широкие пределы. Например, для мазута теплотворная способность составляет около 10000 ккал/кг, для качественного каменного угля – 7000 ккал/кг. Чем выше теплотворная способность топлива, тем оно ценнее, так как для получения одного и того же количества тепла его потребуется меньше. Для сравнения тепловой ценности топлива применяется общая единица измерения. В качестве такой единицы принято топливо, имеющее теплотворную способность 7000ккал/кг (29,31 МДж/кг). Эта единица называется условным топливом. В некоторых странах применяется другие единицы. Например, во Франции это топливо, имеющее либо низшую теплоту сгорания 27,3МДж/кг (6500 ккал/кг), либо высшую 28,3 МДж/кг (6750 ккал/кг).

Твердое топливо.

1. Дрова обладают сравнительно небольшой теплопроизводительностью (удельная теплота сгорания 10,2МДж/кг), повышенной влажностью и лёгким весом. Перевозить их на большое расстояние невыгодно, поэтому дрова являются преимущественно местным топливом.

Дрова удобны тем, что они содержат мало золы (1-2%), легко загораются и дают длинное пламя. Это делает их одним из самых подходящих видов топлива для обжига кирпича во всех периодических, в частности в напольных, печах, в которых длинное пламя способствует более равномерному обжигу по высоте камеры.

Влажность свежесрубленных дров, равная примерно 45-46%, зависит от породы дерева, его возраста и времени рубки. Чем моложе дерево, тем больше оно содержит влаги. Зимой и осенью деревья содержат меньше влаги, чем весной и летом, поэтому лес нужно рубить в это время.

Плотные тяжёлые породы дров горят медленнее, выделяя большое количество тепла и развивая в топках более высокую температуру. Лёгкие же породы дров сгорают быстро и дают более длинное пламя, поэтому они более пригодны для равномерного обжига.

Дрова – единственный источник энергии, который полностью поглощает собственные газообразные продукты горения и не приводит к возникновению парникового эффекта.

2. Торф – это ценный природный биологический материал. Это самое молодое из всех видов топлива отложение, которое образовалось естественным образом: разложением отмерших частей деревьев, кустарников, трав. Это происходит при повышенной влажности и ограниченном доступе кислорода.

Торф как биотопливо применяется чаще всего в сельском хозяйстве, животноводстве, медицине, биохимии и энергетике. Благодаря современным технологиям развития производства стали получать высокопродуктивные почвы, как для выращивания продуктов питания, так и для удобрений, изоляционных и упаковочных материалов, углеродного восстановителя металла и др.

Торф в качестве топлива используется благодаря его составу. Сюда входят большое содержание углерода (50-60%), малое содержание серы, вредные негорючие остатки и примеси. По сути, торф и есть молодой уголь.

Но также у торфа есть и недостатки. Это более низкая, чем у угля энергетическая калорийность и трудности сжигания из-за высокого содержания влаги (до 65%). Зато преимущества торфа это не что иное как экологическая чистота сгорания и низкая себестоимость производства.

Торф содержит:

Растительные волокна, улучшающие водно-воздушное состояние почвы;

Гуминовые кислоты, активирующие рост растений;

Микроэлементы – азот, калий, фосфор, кальций, железо, магний.

Важнейшей характеристикой является зольность, определяемая при его сжигании и показывающая процент содержания минеральных компонентов. Чем выше их содержание, тем плодороднее торф. Зольность может варьироваться от 1% в верховом торфе и до 50% - в низинном.

По происхождению торф бывает:

Низинный и переходной. Они состоят из перепревших остатков древесной травянистой растительности. Характеризуются высокой зольностью, малой теплотворной способностью, средне и слабокислой реакцией среды, высоким содержанием питательных веществ, богатством микроэлементов;

Верховой. Состоит из остатков сфагновых мхов, пушицы, багульников. Характеризуется низкой зольностью, высокой теплотворной способностью, высокой влагоёмкостью (от 600 до 1200%), повышенной кислотностью, низкой степенью разложения.

Теплота сгорания торфа 24 МДж/кг.

3. Каменный уголь имеет лучшие теплоэнергетические характеристики, поэтому является фаворитом потребительского спроса. Каменный уголь содержит: углерода 75-95%, водорода 1,5-5,7%, кислорода 1,5-15%, азота до1,5%, серы 0,5-4%, золы 3-4,5%, влаги до 12%, а также до 32% летучих веществ. Теплотворная способность достигает 7000 ккал/кг, а 1кг каменного угля позволяет получить 6,67 кВт/час тепловой энергии.

Каменный уголь относится к наименее экологичным видам топлива, так как при его сжигании в атмосферу выбрасывается большое количество вредных выбросов.

Применение угля очень разнообразно и широко. Его используют для выработки электроэнергии на тепловых электростанциях, а также сжигают и для других энергетических целей; из него получают кокс для металлургического производства, а при химической переработке делают ещё около 300 различных продуктов промышленности.

Теплота сгорания 29,3 МДж/кг.

4. Антрацит – это самый древний ископаемый уголь. По своим характеристикам и свойствам он более похож на каменный уголь. Их разница заключается в том, что в составе антрацита больше углерода (более 90%). То есть, это значит, что антрацит более горючее вещество, чем используемый обычно уголь.

Горит антрацит только при сильной тяге воздуха. Причём горит либо почти без пламени, либо вообще без пламени. А также без запаха и без дыма.

Антрацит твёрже каменного угля и имеет следующую характеристику: плотность 1500-1700 кг/м², теплота сгорания 33,8-35,2 МДж/кг, в составе в горючей массе 9% летучих веществ.

5. Древесный уголь – твёрдый, пористый, высокоуглеродистый продукт (84% углерода), образующийся при нагревании древесины без доступа (или при незначительном доступе) воздуха в печах и ретортах (иногда даже в кострах). В зависимости от вида древесины из 1м³ получают 140-180 кг угля, 280-400 кг жидких продуктов и около 80 кг горючих газов. Теплота сгорания 31 МДж/кг (7000-8100 ккал/кг). Плотность берёзового угля 380 кг/м³, менее плотные угли дают сосна (300 кг/м³) и ель (260 кг/м³). Большая пористость древесного угля обуславливает его высокие адсорбционные свойства. Древесный уголь обладает способностью при обычной температуре соединяться с кислородом воздуха; этим объясняются случаи его самовозгорания. При выгрузке из печей и реторт его влажность составляет 2-4%, при хранении она повышается до 7-15%. Зольность угля должна быть не более 3%, содержание летучих веществ – не более 20%. Особенность древесного угля – низкое содержание таких примесей, как фосфор и сера, что делает его необходимым для некоторых металлургических процессов.

6. Кокс – искусственное твёрдое топливо повышенной прочности; получается при нагревании до высоких температур без доступа воздуха природных топлив или продуктов их переработки. В зависимости от вида сырья различают каменноугольный, электродный пековый и нефтяной кокс. Основное количество кокса производится из каменного угля.

Каменноугольный кокс представляет собой удлинённые куски серого цвета.

Относительная плотность 1,8-1,95 г/м³, пористость в среднем около 50%. Насыпная масса кокса 400-500 кг/м³. теплота сгорания около 29МДж/кг (около 7000 ккал/кг), а его горючей массы около 33МДж/кг (около 8000 ккал/кг).

7. Пылевидное топливо . В настоящее время всё шире применяется для отопления нагревательных, в частности кузнечных печей, пылеугольное отопление. Его особенно выгодно применять на тех заводах, где нет газа, а имеется местное топливо (угли), которое нельзя газифицировать.

Уголь, сжигаемый в кузнечных печах в виде пыли, должен иметь золы не более 15-20%, летучих не менее 20%. Чем меньше уголь имеет золы, тем его пыль горит лучше. Важным фактором, который необходимо учитывать при использовании пылеугольного топлива, является температура плавления золы. Наилучший уголь тот, у которого зола тугоплавкая (выше 1300°С).

Чем больше летучих содержит уголь, тем лучше загорается пыль, приготовляемая из него; факел горения пыли получается короче. При содержании летучих менее 17% пыль сжигается неустойчиво, происходит затухание факела, печь работает с перебоями. Поэтому пыль из кокса и антрацита непригодна для нагревательных печей.

Жидкое топливо

Технологические свойства жидкого топлива, так же, как и природного газа, существенно лучше, чем твёрдого топлива: в нём отсутствуют зола и шлаки, не требуются специальные устройства для подготовки его к сжиганию, оно имеет высокую теплоту сгорания и позволяет получить высокую температуру в топке.

Жидкое топливо почти целиком состоит из углеводородов (96-98%), причём массовое содержание углевода составляет 80-90%, а водорода 8-14%. Также жидкое топливо часто содержит свободную и связанную серу 0,5-3%, небольшое количество связанного кислорода и азота, воду.

1. Нефть – это природная маслянистая горючая жидкость, состоящая из сложной смеси углеводорода и других органических соединений. Сегодня нефть является одним из важнейших для человечества полезных ископаемых.

Плотность нефти составляет 0,65-1,05 г/см³ и зависит от температуры и давления. Она содержит большое число разных органических веществ и поэтому характеризуется не температурой кипения, а температурой начала кипения жидких углеводородов (обычно > 28°С, реже ≥ 100°С) и фракционным составом – выходом отдельных фракций, перегоняющихся сначала при атмосферном давлении, а потом под вакуумом в определённых температурных пределах.

Удельная теплоёмкость 1,7-2,1 кДж/кг.

Удельная теплота сгорания 43,7-46,2 МДж/кг.

Нефть представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть – жидкие углеводороды (80-90%) и гетероатомные органические соединения (4-5%), преимущественно сернистые (≈ 250 веществ), азотистые (> 30 веществ) и кислородные (≈ 85 веществ), а также металлоорганические соединения; остальные компоненты – растворённые углеводородные газы, вода, минеральные соли, растворы солей органических кислот и другие механические примеси (частицы песка, известняка).

Нефть уникальна своей комбинацией качеств: высокая плотность энергии, легко транспортировать, из неё легко получить массу продуктов (моторное топливо, растворитель, сырьё для химической промышленности и т.д.). Истощение ресурсов нефти, рост цен на неё и другие причины вызвали интенсивный поиск заменителей жидких топлив.

2. Бензин – горючая смесь лёгких углеводородов с температурой кипения от 30 до 200°С. Плотность ≈ 0,75 г/см³. Теплотворная способность ≈ 10500 ккал/кг. Температура замерзания ниже -60°С.

Бензин получают путём разгонки и отбора фракций нефти, выкипающих в определённых температурных пределах.

Пары бензина очень токсичны для человека, и их вдыхание может вызвать как острое, так и хроническое отравление.

3. Керосин – смеси углеводородов, выкипающие в интервале температур 150-250°С, прозрачная, слегка маслянистая на ощупь, горючая жидкость, получаемая путём прямой перегонки или ректификации нефти.

Плотность 0,78-0,85 г/см³ (при20°С), вязкость 1,2-4,5 мм²/с (при 20°С), температура вспышки 28-72°С; теплота сгорания около 43 МДж/кг.

Керосин применяют как реактивное топливо, горючий компонент жидкого ракетного топлива, горючее при обжиге стеклянных и фарфоровых изделий, для бытовых нагревательных и осветительных приборов, в аппаратах для резки металлов, как растворитель, сырьё для нефтеперерабатывающей промышленности. Допускается добавление до 20% керосина в летнее дизельное топливо для снижения температуры застывания, при этом не ухудшаются эксплуатационные характеристики.

4. Мазут – это жидкий продукт тёмно-коричневого цвета, остаток после выделения из нефти или продуктов её вторичной переработки бензиновых, керосиновых или газойлевых фракций, выкипающих до 350-360°.

Мазут это смесь углеводородов, нефтяных смол, асфальтенов, карбенов, карбоидов и органических соединений, содержащих металлы (V,Ni,Fe,Mg,Na,Ca). Физико-химические свойства зависят от химического состава исходной нефти и характеризуются следующими данными:

Вязкость 8-80 мм²/с (при 100°С);

Плотность 0,89-1 г/см³ (при 20°С);

Температура застывания 10-40°С;

Низшая теплота сгорания 39,4-40,7 МДж/моль.

Мазуты применяются в качестве топлива для паровых котлов, котельных установок и промышленных печей, для производства флотского мазута, тяжёлого моторного топлива для крейцкопфных дизелей и бункерного топлива.

Выход мазута составляет около 50% по массе в расчёте на исходную нефть.

Газообразное топливо

По сравнению с другими видами газообразное топливо обладает следующими преимуществами:

Сгорает в теоретическом количестве воздуха, что обеспечивает высокие тепловые кпд и температуру кипения;

При сгорании не образует нежелательных продуктов сухой перегонки и сернистых соединений, копоти и дыма;

Сравнительно легко подводится по газопроводам к удалённым объектам потребления и может храниться централизованно;

Легко зажигается при любой температуре окружающего воздуха;

Требует значительно небольших затрат при добыче, а значит, является по сравнению с другими более дешёвым видом топлива;

Может быть использовано в сжатом и сжиженном виде для двигателей внутреннего сгорания;

При сгорании не образует конденсата, что обеспечивает значительное уменьшение износа деталей двигателей и др.;

Вместе с тем газообразное топливо имеет также определённые отрицательные свойства, к которым относятся: отравляющее действие, образование взрывчатых смесей при смешении с воздухом, лёгкое протекание через неплотности соединений и др. Поэтому при работе с газообразным топливом требуется тщательное соблюдение соответствующих правил техники безопасности.

1. Природный газ – смесь газов, образовавшаяся в недрах земли при анаэробном разложении органических веществ (метановое брожение).

Природный газ относится к полезным ископаемым. В пластовых условиях (условиях залегания в зелёных недрах) он находится в газообразном состоянии – в виде отдельных скоплений (газовые залежи) или в виде газовой шапки нефтегазовых месторождений, либо в растворённом состоянии в нефти или воде. Также он может находиться в кристаллическом состоянии в виде естественных газогидратов.

Основную часть природного газа составляет метан – от 92 до 98%. В состав могут также входить более тяжёлые углеводороды: этан – до 6%, пропан – до 1,5%, бутан – до 1%; а также другие неуглеводные вещества: водород, сероводород, диоксид углерода, азот, гелий.

Чистый природный газ не имеет цвета и запаха. Чтобы можно было определить утечку по запаху, в газ добавляют небольшое количество веществ, имеющих сильный неприятный запах – одорантов. Чаще всего в качестве одоранта применяется этилмеркаптан.

Для облегчения транспортировки и хранения природного газа его сжижают, охлаждая при повышенном давлении.

Ориентировочные физические характеристики:

Плотность - от 0,68 до 0,85 кг/м³ относительного воздуха (сухой, газообразный), от 400 кг/м³ (жидкий);

Температура самовозгорания 650°С;

Взрывоопасные концентрации смеси газа с воздухом – от 5 до 15% объёмных;

Удельная теплота сгорания 28-46 МДж/м³;

Октановое число при использовании в двигателях внутреннего сгорания 120-130;

Легче воздуха в 1,8 раз, поэтому при утечке не собирается в низинах, а поднимается вверх.

2. Генераторный газ – газовая смесь, содержащая окись углерода (СО) и молекулярный водород (Н₂).

Получают его путём пропускания воздуха над раскалённым каменным углём или коксом в специальных печах – газогенераторах. Выход из кокса 4,65 м³/кг. Далее окись углерода смешивается с водяным паром и получается водородная составляющая генераторного газа СО+Н₂О= =Н₂+СО₂.

Теплотворная способность составляет 800-1000 ккал/м³, причём замена воздуха на кислород при его получении ведёт к значительному увеличению доли монооксида углерода и, соответственно, к увеличению теплотворной способности.

Генераторный газ применяется как топливо в металлургической, стекольной, керамической промышленности, для двигателей внутреннего сгорания.

3. Коксовый газ – горючий газ, образующийся в процессе коксования каменного угля, то есть при нагревании его без доступа воздуха до 900-1100°С. Содержит множество ценных веществ. Кроме водорода, метана, оксидов углерода в его состав входят пары каменно - угольной смолы, бензол, аммиак, сероводород и др.

Сырой коксовый газ последовательно очищают от аммиака и сероводорода, промывают поглотительным маслом, серной кислоты. Очищенный газ (14-15% от массы угля) используют в качестве топлива для обогрева батареи коксовых печей и для других целей.

Типичные показатели:

Водород 50%, метан 35%, окись углерода 10%, этилен 5%;

Количество лету3чих продуктов до 25% от массы угля;

Теплота сгорания 10000-20000 кДж/м³.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

ТВЕРДОЕ ТОПЛИВО И ЕГО КЛАССИФИКАЦИЯ

Происхождение топлива .
Все виды твердого топлива нашей планеты своим происхождением обязаны солнечной энергии и хлорофиллу - особому веществу, содержащемуся в листьях и других зеленых частях растений, которые создают сложные органические вещества, а в дальнейшем превращаются в топливо. В своих превращениях вещество топлива последовательно проходит стадии образования торфа, бурого угля, каменного угля, антрацита.
В природе существуют различные виды твердого топлива, отличающиеся разнообразными составом и свойствами. Твердое топливо в основном образуется из высокоорганизованных растений - древесины, листьев, хвои и т. п. Отмершие части высокоорганизованных растений разрушаются грибками при свободном доступе воздуха и превращаются в торф - рыхлую, расплывчатую массу перегноя, так называемых гуминовых кислот. Скопление торфа переходит в бурую массу, а затем в бурый уголь. В дальнейшем под воздействием высокого давления и повышенной температуры бурые угли подвергаются последующим превращениям, переходя в каменные угли, а затем в антрацит.
Состав топлива. Топливо в том виде, в котором оно добыто, включает в себя органическую массу и балласт. Органической массой топлива считают ту часть, которая произошла из органических веществ: углерода, водорода, кислорода и азота; в балласт включают серу, минеральные примеси - золу и влагу топлива:
Со + н° + 0° + № + 8° = 100%. (12)
Твердое и жидкое топливо состоит из углерода С, водорода И, органической серы S и горючей колчеданной серы S кислорода О и азота К, находящихся в виде сложных соединений. Кроме указанных элементов, составляющих горючую массу топлива, в состав топлива входит еще балласт - зола А и влага
Б = (13)
Летучей, или горючей, серой называется
8л = 8о + 8,. (14)
Состав топлива выражают в процентах по массе.
В топочной технике различают рабочую, сухую и горючую массы топлива. В связи с этим при буквенном обозначении вещества, входящего в состав топлива, вверху ставят буквы р, с, или г. Под рабочей массой топлива понимают топливо в том виде, в каком оно поступает к потребителю. Состав рабочей массы топлива выражают так:
СР + НР + ОР + ^ + Б^ + ЗР-Н АР + \УР = 100%. (15)

Углерод и водород - самые ценные части топлива.
Углерод содержится в значительном количестве в топливе всех видов: древесине и торфе 50-58%, в бурых и каменных углях 65-80%, в тощих углях и антрацитах 90-95%, в сланцах 61-73%, в мазуте 84-87% (цифры даны в процентах на горючую массу топлива). Чем больше углерода в топливе, тем больше оно выделяет тепла при сгорании.
Состав рабочей массы топлива значительно зависит от величины балласта, поэтому чаще всего приводятся данные по составу горючей массы топлива, которая более стабильна для топлива каждого вида и месторождения.
Водород является второй важнейшей частью каждого топлива. в топливе водород частично находится в связанном с кислородом выше, составляя внутреннюю влагу топлива, вследствие чего понижается тепловая ценность топлива. Водород играет большую роль в образовании летучих веществ, выделяющихся при нагревании топлива без доступа воздуха. В состав летучих водород входит в чистом виде и в виде углеводородных и других органических соединении.
Содержание водорода в процентах от горючей массы топлива составляет: в дровах и торфе до 6, бурых каменных углях 3,8 - 5,8, горючих сланцах до 9,5, в антраците 2 и в мазуте 10,6 - 11,1.
Кислород, содержащийся в топливе, является балластом. Не будучи теплообразующим элементом и связывая водород топлива, кис:юрод снижает теплоту его сгорания. Содержание кислорода в органической массе топлива с его возрастом снижается с 41% для древесины до 2,2% для антрацита.
Азот также является балластной инертной составляющей топлива, снижающей процентное содержание в нем горючих элементов. При сгорании топлива азот в продуктах сгорания содержится как в свободном виде, так и в виде окислов N0^. Последние относятся к вредным составляющим продуктов сгорания, количество которых должно быть лимитировано.
Сера содержится в топливе в виде органических соединений и колчедана 8к, объединяемых в летучую серу 8л. Кроме того, сера входит в состав топлива в виде сернистых солей - сульфатов (на-пример, гипса СаЗОз), не способных гореть. Сульфатную серу принято относить к золе топлива.
Присутствие серы значительно снижает качество топлива, так как сернистые газы 8О2 и 8О3 (соединяясь с Н2О, образуют На 804) разрушают металл котельного оборудования, попадая в атмосферу, вредно действуют на живые организмы и растительность. Поэтому сера -крайне нежелательный элемент для топлива. Сернистые газы, проникая в рабочие помещения, могут вызвать отравление обслуживающего персонала.
Зола топлива представляет собой балластную смесь различных минеральных веществ, остающихся после полного сгорания всей горючей части топлива. Зола влияет на качество сгорания топлива отрицательно.
Различают три разновидности золы по ее происхождению: первичная - внутренняя, вторичная и третичная. Первичная зола образуется из минеральных веществ, содержащихся в растениях. Содержание ее в топливе незначительно и распределение равномерно. Вторичная зола Получается вследствие заноса растительных остатков землей и песком в период пластообразования. Третичная зола попадает в топливо во время его добычи, хранения или транспортировки.
Зола является нежелательным балластом топлива, снижающим содержание в нем других горючих элементов. Кроме того, зола, образуя отложения на поверхностях нагрева котлоагрегата, уменьшает теплопередачу от газов к воде, пару и воздуху в его элементах. Наличие большого количества золы затрудняет эксплуатацию котлоагрегата. Если зола легкоплавкая, она налипает на поверхности нагрева котла, нарушая нормальный режим его работы (шлакование).
Содержание золы в процентах от рабочей массы топлива составляет: в дровах 0,6, торфе 5-7, в бурых и каменных углях от 4 до 25, в мазуте 0,3.

При сжигании твердого топлива важное значение имеют характеристика золы, степень ее легкоплавкости. Плавкость золы определяют в лаборатории. В особую электропечь помещают несколько выполненных из золы пирамид «конусов» высотой 20 мм со стороной основания 7 мм. Одна из граней пирамиды должна быть перпендикулярна основанию.
В процессе постепенного нагревания пирамид в электрической печи отмечают три точки (рис. 8): температуру начала деформации
определяемую в начале плавления верхушки пирамиды; температуру размягчения І2, которая фиксируется в момент, когда верхушка пирамиды наклонится до основания или же пирамида превратится в шар, и температуру когда содержимое пирамиды растечется до основанию.
Зола бывает легкоплавкой с температурой размягчения ниже 1050°С, вызывающая шлакование топки при сжигании топлива, и тугоплавкой с температурой размягчения выше 1050°С. Учитывая большое влияние зольности на качественные характеристики топлива, для сравнительных подсчетов используют понятие приведенной зольности.

Влага топлива складывается из внешней, или механической, вызванной поверхностным увлажнением кусков топлива и заполнением влагой пор и капилляров, и равновесной, называемой гигроскопической, которая устанавливается в материале при длительном соприкосновении с окружающим воздухом. Содержание внешней влаги определяют высушиванием пробы топлива на воздухе до постоянной массы, а гигроскопической твердого топлива - высушиванием в сушильном шкафу измельченной пробы воздушно-сухого топлива до постоянной массы при 102 -105°С.
Для определения влажности жидкого топлива отстаивают воду в течение суток при 40°С в специальных сосудах и взвешивают всю пробу и воду. При нахождении влажности газообразного топлива пропускают пробу газа через слой хлористого кальция, поглощающего влагу.
В топочной технике используют понятие приведенной влажности, которая показывает, сколько влаги в процентах от рабочей массы топлива приходится на 1 МДж низшей теплоты сгорания
WP = Жр/Яp. (19)

Рис. 8. Характер деформации лабораторного образца золы твердого топлива при определении ее плавкости

Летучие вещества и кокс
Для оценки качества топлива и условий горения большое значение имеет выход летучих веществ. Рхли нагревать топливо без доступа воздуха, то под воздействием высокой температуры (от 200 до 800°С) происходит разложение его на газообразную часть - летучие вещества (водород, метан, тяжелые углеводороды, окись углерода, немного двуокиси углерода и некоторые другие газы, т. е. в основном газообразные горючие вещества) и твердый остаток - кокс.
Выход летучих веществ, их состав, а также температура, при которой они начинают выделяться, определяются химическим возрастом топлива: чем топливо старше по возрасту, тем меньше выход летучих и выше температура начала их выделения. Например, выход летучих торфа составляет приблизительно 70% общей массы горючей части топлива, они начинают выделяться при 120 -150°С; выход летучих бурых и молодых каменных углей уменьшается приблизительно от 13 до 58,5%, они начинают выделяться при 170-250°С, а антрацита - до 4% при температуре начала выделения газов около 400°С.
Летучие вещества оказывают большое влияние на процесс горения топлива: чем больше выход летучих, тем ниже температура воспламенения и легче зажигание топлива и тем больше поверхность фронта пламени. Топливо с большим выходом летучих (торф, бурый уголь, молодой каменный уголь) легко загорается и сгорает быстро с малой потерей тепла. Топливо с малым выходом летучих, например антрацит, загорается значительно труднее, горит медленнее и сгорает не полностью.
Кокс, оставшийся после полного выделения летучих, состоит из углерода и минеральных топливных примесей. В зависимости от вида термически разложенного топлива кокс может быть порошкообразным, слипшимся, спекшимся, сплавленным.
Теплота сгорания топлива. Наиболее важной характеристикой топлива является теплота сгорания, которой называют количество тепла, получаемого при сжигании 1 кг твердого или жидкого топлива или 1 нм^ газообразного топлива в кДж/кг (ккал/кг):
1 ккал-4,1868, или 4,19, кДж.

Как указывалось ранее, к горючим элементам в топливе относят углерод С, водород Н и летучую горючую серу 8л. Элементарно их горение может быть представлено следующими уравнениями:
С + 02 = С02; 2Н2 + 02 = 2Н20; S + 02 = S02. (20)

В процессе горения горючих элементов выделяется следующее количество тепла при сжигании 1 кг: углерода - 33,65 МДж (8031 ккал/кг), серы - 9 МДж (2172 ккал/кг), водорода - 141,5 МДж (33770 ккал/кг).

Различают высшую и низшую теплоту сгорания. Высшей теплотой сгорания (Ql) топлива называют все количество тепла, выделенное при сгорании 1 кг твердого или жидкого топлива, или 1 нм" газообразного (при нормальных условиях) и превращении водяных паров, содержащихся в продуктах сгорания, в жидкость. На практике, однако, не удается охладить продукты сгорания до полной конденсации и потому введено понятие низшей теплоты сгорания, которую получают, вычитая из высшей теплоты сгорания теплоту парообразования водяных паров как содержащихся в топливе, так и образовавшихся при его сжигании. На парообразование 1 кг водяных паров расходуется 2514 кДж/кг (600 ккал/кг). Для твердого и жидкого топлива низшая теплота сгорания (кДж/кг или ккал/кг)

Числовые коэффициенты в этой формуле подобраны экспериментально. Теплота сгорания твердого и жидкого топлива может быть определена и экспериментально, калориметрическим способом. Теплоту сгорания рабочего топлива определяют в калориметре (рис. 9), который состоит из калориметрического сосуда 5, заполненного водой, калориметрической бомбы 2 с чашечкой для навески топлива, оболочки 6, термометра 4, двойной луппы 3, вибратора электродвигателя, пропеллерной мешалки 1 для перемешивания воды в оболочке и подставки 1. Для нахождения теплоты сгорания топлива в чашечку помещают навеску топлива и сжигают ее, а результаты испытания определяют по показаниям термометра.
Для удобства сравнительных расчетов при сжигании в котельных разных сортов топлива введено понятие «условное топливо», Условным принято считать топливо, теплота сгорания которого равна 29,35 МДж/кг (7000 ккал/кг). Пересчет расхода натураль¬ного топлива в условное, кг, производят по формуле
Производственные плановые задания и отчетные данные но топливу всегда удобно выражать в условном топливе.

Классификация твердого топлива .

По химическому возрасту различают три стадии образования твердого топлива: торфяную, буроугольную и каменноугольную.
Древесина - это топливо, используемое преимущественно в мелких котельных установках. Широкое применение имеют отходы деревообделочного производства: горбыли, щепа, стружки, опилки, кора и др. Дрова применяют реже.
Влажность воздушно-сухих дров не превышает 25%, полусухих - 35%, свежесрубленных - 50%. Опилки обычно имеют влажность 45 - 60%. К полусухим относят дрова весенней заготовки, пролежавшие не менее 6 мес после рубки, в том числе не менее двух летних месяцев. К сухим относят дрова, пролежавшие после рубки около года в лесу и влажность которых не превышает 30%.
Дрова как топливо характеризуются высоким выходом летучих горючих веществ - до 85% и незначительным содержанием золы - в среднем до 1%, лишь в сплавных дровах зольность повышается до 5%. Следовательно, балласт дров определяется в основном их влажностью, от которой и зависит теплота сгорания. Теплота сго¬рания МШІО зависит от породы дров, что видно из табл. 8,

Рабочий состав и теплота сгорания древесных отходов (щепы, опилок и др.) не отличаются от состава древесины, из которой они получены.
При пониженной теплоте сгорания дрова имеют преимущества: легкую воспламеняемость, отсутствие серы и малую зольность, что позволяет ограничиваться простыми топочными устройствами, работающими эффективно.

Торф по способу добычи подразделяют на три основных вида: машинно-формовочный (багерный), гидравлический и фрезерный.
При машинно-формовочном способе торфяная масса забирается КЗ торфяного карьера экскаваторами (багерами) и подается на специальные прессы, где получает форму ленты, которая разрезается на отдельные кирпичи, а затем их механически транспортерами распределяют по полю сушки, после чего складывают в штабеля.
Гидравлический способ добычи торфа основан на размывке торфяного массива струей воды, идущей под сильным напором. Получающаяся жижа - пульпа пропускается через специальные растиратели, перекачивается насосами на площадку, где и высушивается.
Высушенная торфяная масса особыми машинами нарезается на кирпичи.
фрезерный способ заключается в том, что торфяное болото последовательно разрабатывается - вспахивается специальными машинами на глубину от 5 до 35 мм. Получаемая торфяная крошка подсушивается, а затем складывается в штабеля.
Торф как топливо по своим свойствам близок к дровам. Влажность торфа колеблется в зависимости от способа добычи, условий сушки и хранения от 30-40 до 50-55%. Влажность же фрезерного торфа выше кускового примерно на 5 -10%. Зольность торфа (А""), добываемого в центральных областях СССР, колеблется от 7 до 15%. Теплота сгорания 02= 8,38 - 10,72 МДж/кг = 3511-4492 ккал/кг).

Ископаемые угли разделяют на бурые, каменные и антрациты.
При классификации угли различают по маркам, классам и группам, а также по составу, крупности, зольности. Марки отличаются одна от другой выходом летучих и степенью спекаемости. Группы углей определяют по величине их зольности. По крупности кусков ископаемые угли делят на классы.
Бурый уголь содержит много влаги, соединяется легко с кислородом воздуха и при длительном хранении на воздухе сильно выветривается и рассыпается в порошок. Кроме того, он обладает большой склонностью к самовозгоранию. По своей структуре отличается повышенным содержанием балласта и необычно высокой гигроскопичностью, вследствие чего влажность бурых углей И^Р = = 17-55%. Бурые угли не спекаются, отличаются большим выходом летучих (Р = 33,5 - 58,5%) на горючую массу и зольностью на сухую массу (А""= 10,5 - 34%), высоким содержанием серы (Рп=0,6-5,9%). Рабочая теплота сгорания 62=10,7 - 17,5 МДж/кг (4177 ккал/кг).
Каменный уголь на территории СССР имеется в огромных количествах и подразделяется: на длиннопламенный, газовый, паровичный жирный, коксовый паровичный спекающийся и тощий. Каменные угли отличаются высокой теплотой сгорания 2н = = 21,20 -28,07 МДж/кг (5097-6700 ккал/кг). Выход летучих Р= 3,5-45%.
Каменный уголь применяют непосредственно как топливо иля перерабатывают на кокс. По виду кокса различают угли неспека- ющиеся (порошкообразный кокс) и спекающиеся (сплавленный кокс, ЕЕногда вспученный). Каменные угли довольно плотны и малопо¬ристы и содержание внешней влаги в них значительно ниже, чем в бурых углях. Многие каменные угли обладают повышенной механической прочностью. В хранении они более устойчивы, меньше подвержены самовозгоранию, а некоторые их виды совсем не самовозгораются.
Антрацит относится к старейшим по происхождению каменным
углям, отличается большой твердостью, трудно загорается, горит коротким пламенем, хорошо выдерживает перегрузки и перевозки.
К ним относят угли с выходом летучих на горючую массу Р= 2-9% и теплотой сгорания горючей массы 25 = 24,35-27,24 МДж/кг (5800 - 6500 ккал/кг). Переходным между каменными углями и антрацитом является полуантрацит. Антрацит и полуантрацит не самовозгораются. Характеристика твердого топлива энергетического назначения приведена в табл. 9.
Марки углей отличаются одна от другой выходом летучих и степенью спекаемости. Различают следующие марки углей: Д (длиннопламенные), Г (газовые), Ж (жирные), КЖ (коксовые жирные), К (коксовые), С (отощенные спекающиеся), Т (тощие), СС (слабоспекающиеся). Все виды углей по размеру кусков делят на
классы (табл. 10).
Горючие сланцы являются продуктами разложения растительных остатков, оседавших на дне больших водоемов; смешиваясь с минеральными осадками, образовывалось илистое вещество - сапропель, которое обогащалось водородом, уплотнялось и превращалось в горючие сланцы.
Сланцы имеют теплоту сгорания = 10,38 МДж/кг (2477ккал/кг), при их сжигании образуется очень большое количество золы Л°=64,5%. Выход летучих у сланцев очень высок: Р=90%, влажность - 13%. Сланцы являются местным топливом.

Таблица 10. Классификация углей по размеру кусков
* Первое слагаемое - зола, второе - двуокись углерода карбонатов (минеральная)

МАЗУТ
В зависимости от вязкости мазут бывает нескольких марок, различающихся температурой застывания, которая всегда выше 0°С, Для наиболее вязких сортов мазута температура застывания - 25°С и выше, поэтому необходим предварительный подогрев такого мазута: при перекачке до 60-70°С, а при сжигании до 140°С.
Температурой вспышки мазута называют такую температуру, при которой пары его образуют с окружающим воздухом смесь, воспламеняющуюся при поднесении к ней огня.
При разогреве мазутов в открытых (без давления) емкостях в целях пожарной безопасности температура подогрева должна быть примерно на 10°С ниже температуры вспышки. В закрытых емкостях (змеевиках, трубах); находящихся под давлением, топливо можно подогревать значительно выше температуры его вспышки.
Жидкое котельное топливо (топочный мазут) по своему элементарному составу мало отличается от сырой нефти. Мазут обычно содержит некоторое количество воды, увеличивающееся после водных перевозок, а также при разогреве в цистернах острым паром. Согласно ГОСТ 10585 - 75 мазут подразделяют на шесть марок: Ф5, Ф12, М40, МЮО, М200 и МП, из них в стационарных котельных установках сжигают мазут трех марок - М40, МЮО и М200. Характеристика мазута разных марок приведена в табл. И.

Таблица 11. Характеристика мазута :

Наибольший интерес, вызывают нефть и газ, запасы которых довольно ограничены. В то же время, именно их добыча и переработка наиболее экономичны и целесообразны с точки зрения использования рабочей силы и охраны окружающей среды.

В зависимости от характера использования топливо подразделяется (табл.5.2) на: энергетическое, технологическое и бытовое; по агрегатному состоянию – на твердое, жидкое и газообразное; по способу получения - на естественное и искусственное.

Таблица 5.2 – Основные виды топлива


По способу получения

Естественное

Искусственное


По агрегатному состоянию

Твердое

Дрова, торф,
ископаемые угли,
горючие сланцы

Древесный уголь,
кокс, полукокс,
торфяные и
угольные брикеты

Жидкое

Нефть

Бензин, керосин,
мазут масла, газойль

Газообразное

Природный газ,
попутный
(конденсатный) газ

Доменный, коксовый, конвекторный,
генераторный газы

Основными видами органического топлива, используемого в энергетике, являются: твёрдого – угли и торф; жидкого – мазут; газообразного – природный газ. Торф и угли, твердое органическое топливо являются продуктами разложения органической массы растений и отличаются друг от друга химическим возрастом (торф – самое молодое). Древнейшие месторождения угля известны в канадской Арктике (350 млн.лет). Важнейший период углеобразования в истории Земли приходится на интервал последних 350-250 млн. лет. Угленосные отложения в этот промежуток времени обнаружены на всех континентах, но самые большие толщи – в Северной Америке, Европе и Азии, которые в течение периода углеобразования находились в экваториальных и умеренных широтах. Теплый климат и обилие осадков благоприятствовали развитию огромных болот. Формирование угля происходило и в последующие периоды, особенно в меловой
(~ 20 млн. лет назад), но ни в один из них угленакопление не было столь обширным и интенсивным, как в великую угольную эпоху.

Геологи полагают, что большая часть главных угольных бассейнов уже открыта. Мировые запасы всех видов углей оценены в 8620 млрд. т, а дополнительные потенциальные ресурсы – в 6650 млрд. т. При этом извлекаемыми считаются запасы углей в пластах мощностью не более 0,3 м, залегающих на глубине не более 2000 м. Угли, не отвечающие этим требованиям, относятся к потенциальным ресурсам. Примерно 43% углей мира залегают в странах СНГ (бывшего СССР), 29% – в Северной Америке, 14,5% – в странах Азии, главным образом в Китае, 5,5% – в Европе. На остальной мир приходится 8% угля. Хотя уголь во всем мире не является ведущим видом топлива, но трудности в снабжении нефтью и газом ведут к тому, что в ближайшие десятилетия уголь станет господствующим топливом на планете. При этом в течение длительного времени подземная добыча будет, видимо, оставаться преобладающей формой разработки уголь­ных месторождений.

Ископаемые угли подразделяются на бурые, каменные и антрацит: бурые следуют за торфом по химическому возрасту, затем - каменные и антрацит. Значительная роль в обеспечении ТЭК топливом принадлежит нефти и природному газу. Энергетический эквивалент оцененных потенциальных ресурсов (по данным всемирной энергетической конференции) составляет: нефти – (1,510 22) Дж, газа – (1,110 22) Дж. Ресурсы нефти и газа так же, как и угля, расположены на земном шаре очень неравномерно. Регионы, которые, сейчас являются главными производителями нефти и газа, обладают наибольшим потенциалом и для новых открытий. При сохранении существующей скорости роста потребления все ресурсы нефти и газа могут иссякнуть через несколько десятилетий.

Человечество интересуют две проблемы, непосредственно связанные с теплоэнергетикой: на какой срок хватит ТЭР; где грань загрязнения атмосферы?

В настоящее время мировое использование энергоресурсов в течение года эквивалентно 17-25 млрд.т условного топлива, энергоемкость которых эквивалентна 450-500 Эдж (1 эксаджоуль (Эдж) равен 10 18 джоулей). Если исходить из этой цифры и мировых запасов энергоресурсов (табл.5.3.), то только органического топлива человечеству хватит на тысячу лет.

Таблица 5.3 – Мировые энергоресурсы.

^

Источники энергии


Ресурсы, ЭДж

1.

Невозобновляемые:

Ядерная энергия

Химическая энергия органического топлива

5,2110 5


2.

Неисчерпаемые:

Термоядерная энергия синтеза

Геотермальная энергия

2,910 6


3.

Возобновляемая:

Солнечная энергия, которая достигает земной поверхности и превращается в тепловую

Энергия морских приливов

Энергия ветра

Энергия рек

Биоэнергия лесов

1,510 3

Однако современная технология позволяет добывать далеко не все объемы ТЭР. Не все страны имеют оптимальное соотношение между уровнем добычи ТЭР и их использованием. Все это заставляет констатировать тот факт, что энергетический кризис вполне реален, а человечество сегодня не нашло еще путей его преодоления.

Как видно из табл.5.4., весьма перспективно использование возобновляемых источников ТЭР, однако современная энерготехнология еще далека от их массового использования. К сожалению, человечество далеко еще и от решения проблем использования термоядерной энергии, общие запасы которой просто фантастические – 3,610 9 Эдж (при нынешнем уровне энергозатрат их хватит на 10 млн.лет!).

Что касается Украины, то ее энергетика в настоящем времени находится в тяжелом состоянии, несмотря на то, что только разведанные запасы угля в Украине составляют 47 млрд.т. Однако технология добычи угля не отвечает геологическим особенностям месторождений. Почти 80% объемов ТЭК физическо и морально устарели, уровень затрат энергоресурсов выше уровня их производства. Наблюдается значительный дефицит остальных видов ТЭР, что наглядно демонстрируют данные табл.5.4.

Таблица 5.4 – Энергоресурсы Украины: добыча и потребность

^

Вид топлива


Объемы

Процент
обеспеченности собственным ТЭР

использования

собственного производства
^
Природный газ

112 млрд.м 3

22 млрд.м 3

20%

Нефть


32 млн.т

4 млн.т

12%

Уголь

(?)

140 млн.т

(?)

Ядерное топливо

Твелы производства России

Уран добывает Украина

0

5.2.2. Состав и характеристики органического топлива

Топливо, поступающее в технологические устройства для сжигания, называется рабочим. В его состав входят: углерод, водород, сера, кислород, азот, а также влага W и минеральные примеси А . Указанные элементы образуют сложные химические соединения.

Наличие кислорода и азота, составляет внутренний баланс топлива и снижает его энергетическую ценность. Содержание кислорода в топливе колеблется от 2% (антрацит) до 40% (древесина), в мазуте – меньше 1%. Содержание азота в твердом и жидком топливе не более 1%. Влага и минеральные примеси (зола) составляют внешний баланс топлива. Содержание золы в твердом топливе – 1ч60% (5ч60%) на рабочую массу, в мазуте – 0,1ч0,3%, влаги – 1ч2%.

Собственно горючими в органическом топливе являются углерод, водород и сера. Главная составляющая – углерод: чем выше его содержание, тем выше количество тепла, выделяемого при его сгорании. С увеличением возраста топлива содержание углерода увеличивается, водорода – уменьшается.

Процесс сжигания топлива представляет собой окисление углерода кислородом воздуха. При полном сгорании углерода образуется относительно безвредный диоксид углерода СО 2 и выделяется 32,8 МДж теплоты на 1 кг углерода. При неправильной организации процесса горения (обычно при недостатке воздуха) продуктом сгорания является очень токсичный оксид углерода СО и выделяется всего 9,2 МДж теплоты. Содержание углерода в твердом топливе – 25ч93% на рабочую массу, в мазуте – 83ч85%.

Важной горючей составляющей топлива является водород, содержание которого колеблется в твердом топливе от 2 до 5%, в жидком – от 10 до 15%. Количество теплоты, выделяющееся при сгорании (окислении) водорода составляет 120,8 МДж на 1 кг.

Третий горючий элемент – сера: органическая (в соединениях с водородом, углеродом, азотом и кислородом) – S ор, колчеданная (в соединениях с железом) – S к, сульфатная (в виде солей серной кислоты CaSO 4 , MgSO 4 , FeSO 4 и др.) – S c .

Свойства твердого топлива как горючего материала определяются его составляющими в сухом беззольном состоянии (обозначаются индексом «daf »: dry ask frek -условное состояние топлива, не содержащее общей влаги и золы). Сюда включаются элементы органической массы топлив и колчеданная сера, сгорающая вместе с органической массой. Таким образом, состав топлива характеризуется массовым содержанием образующих его элементов, а именно: С daf +H daf +O daf +N daf +S daf . Здесь S daf –суммарное содержание горючей серы. Сера органическая и колчеданная составляют горючую или летучую серу S daf л =S o daf +S k daf . Сера сульфатная не является горючей и включается в золу. Содержание горючей серы: в твердом топливе – 0ч9%, в мазуте – 0,5ч3%. При полном сгорании 1 кг серы выделяется
9,2 МДж теплоты. При этом образуется токсичный сернистый ангидрид SO 2 и (в небольших количествах) еще более токсичный серный ангидрид SO 3 . Их выброс с продуктами сгорания вызывает загрязнение воздушного бассейна, а в сочетании с водой (водяными парами) является причиной кислотных дождей (H 2 SO 3, H 2 SO 4).

Содержание азота в сухом беззольном состоянии твердых топлив обычно составляет 1ч2% по массе. Несмотря на столь малое количество, азот является весьма вредным компонентом, поскольку при сгорании азотосодержащих соединений в высокотемпературных топках образуются сильнотоксичные оксид NO и диоксид NO 2 (при температуре свыше 1200єС они образуются также и из атмосферного азота).

Внешним балластом топлива является влажность и зола. Влажность твердого топлива в рабочем состоянии может превышать 50% и определяет экономическую целесообразность использования данного горючего материала и возможность его сжигания (например, для превращения одного килограмма воды, взятой при температуре 0єС, в пар комнатной температуры требуется 2,5 МДж теплоты).

Зола включает в себя различного рода минеральные примеси, которые в зависимости от условий сжигания претерпевают изменения. В соответствии с существующими стандартными нормами золу необходимо улавливать, транспортировать в отвалы или (что предпочтительнее) утилизировать и использовать в народном хозяйстве.

Важными характеристиками органического топлива: являются выход летучих веществ (для твердого топлива) и теплота сгорания.

Выход летучих веществ V daf в процентах на сухое беззольное состояние определяется путем прокаливания 1 кг топлива в закрытом тигле при температуре 850±10єС в течение 7 минут, в результате которого образуются газы, водяные пары и углеродосодержащий осадок. Чем больше выход летучих, т.е. чем больше сухой беззольной массы превращается при нагревании в горючий газ, тем проще зажечь это топливо и легче поддержать процесс горения. Органическая часть древесины и горючих сланцев при нагревании почти полностью переходит в летучие вещества (V daf =85ч90%), в то время как у антрацитов V daf =3ч4%. (табл.5.5).

Таблица 5.5 – Основные характеристики украинского твердого топлива.


Основные
характеристики

Выход
летучих

Содерж.
серы

S H P


Влажность

Зольность

Теплота
сгорания

Q H P


Виды топлив

Торф

70%

0,1…0,2%

30…50%

5…23%

10,5…14,6

Бурые угли

40%

0…8%

3040%

15…30%

10,0…17,0

Каменные угли

9…50%

0…8%

5…10%

18…30%

24,0..29,0

Антрациты

2…9%

0…8%

5…10%


~26,0

Полуантрациты

5…9%

0…8%



28ч30

Теплота сгорания - количество теплоты, выделяющееся при полном сгорании топлива. Различают высшую Q в P и низшую Q н Р теплоту сгорания (теплотворную способность топлива).

Высшая теплота сгорания Q в P – количество теплоты, выделяющееся при сгорании 1 кг твердого, жидкого или 1м 3 газообразного топлива при превращении водяных паров, содержащихся в продуктах сгорания, в жидкость. Низшая теплота сгорания Q н Р меньше высшей на величину парообразования влаги, имеющейся в топливе (W p) или образующейся в результате сгорания водорода топлива (9Н р).

Условное топливо как понятие используется для сравнительных расчетов.

Условное топливо – топливо, теплота сгорания которого принята равной 29,35 МДж/кг (7000 ккал/кг). Перевод действительного количества топлива в условное производится умножением количества данного топлива на его эквивалент Э = Q н P /29,35.

Максимальная низшая теплота сгорания твердых топлив, доходит до Q н Р = 28 МДж/кг, минимальная составляет 10 МДж/кг и ниже (в зависимости от содержания балласта). Теплота сгорания обезвоженных мазутов
Q н Р =39ч41,5 МДж/кг. Поскольку элементный состав всех жидких топлив, полученных перегонкой нефти, практически одинаков, их теплота сгорания примерно равна.

Химический состав первородной нефти и газа практически не изменился и остался в пределах сравнительно узкого ряда химических смесей (табл.5.6).

^ Жидкие топлива . Получают путем переработки нефти. Сырую нефть нагревают до 300370єС, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре t к : сжиженный газ (выход около 1%), бензиновую (около 15%, t к = 30ч180єС) керосиновую (около 17%, t к = 120135єС), дизельную (около 18%, t к = 180350єС). Жидкий остаток с температурой начала кипения 330350єС называется мазутом. Указанные фракции служат исходным сырьем при получении смазочных материалов и топлив для двигателей внутреннего сгорания и газотурбинных установок (бензина, керосина, дизельных топлив и т.д.).

Таблица 5.6 – Химический состав нефти и природного газа.

До настоящего времени мазут продолжает оставаться основным жидким энергетическим и отопительным топливом. Представляет собой сложную смесь углеводородов, в состав которого входит углерод (С Р = 84ч86%) и водород (H P =10ч12%). Это обеспечивает высокую теплотворную способность мазута (Q H P =40ч41 МДж/кг). Балласт мазута невысок А Р =0,2ч0,3%; W P =0,1ч1%. В состав золы входят соединения ванадия, никеля, железа и др. металлов.

Одним из основных показателей мазута являются вязкость (определяемая по его способности к распылению в зависимости от температуры) и сернистость (определяется содержанием серы: малосернистые (до 0,5%), среднесернистые (до 2%) и высокосернистые (до 3,5%). Мазуты, получаемые из нефти ряда месторождений, могут содержать серы до 4,3%, что резко усложняет защиту окружающей среды и оборудования.

^ Газообразные топлива . Главным является природный газ, основным компонентом которого (85ч98%) служит метан СН 4 . Основные горючие составляющие – тяжелые углеводороды С n H m , водород Н 2 , сероводород Н 2 S, окись углерода СО, балласт – СО 2 , N 2 , SO 2 , H 2 O, O 2 . Теплота сгорания природного газа – 31,0ч37,9 МДж/кг. Природный газ очищают от сернистых соединений, но часть их (в основном сероводород) может оставаться.

При добыче нефти выделяется так называемый попутный газ, содержащий меньше метана, чем природный, но больше высших углеводородов и поэтому выделяющий при сгорании больше теплоты. В настоящее время весьма актуальна проблема его полного использования.

В промышленности и особенно в быту находит широкое распространение сжиженный газ, полученный при первичной переработке нефти и попутных нефтяных газов: технический пропан (не менее 93% С 4 Н 18 +
+ С 3 Н 6), технический бутан (не менее 93% С 4 Н 10 + С 4 Н 8) и их смеси.

На металлургических заводах в качестве попутных продуктов получают коксовый и доменный газы, используемые там же для отопления печей и технологических аппаратов. Иногда (после очистки от сернистых соединений) коксовый газ применяют для бытового газоснабжения прилегающих жилых массивов. Однако из-за большого содержания СО (5ч10%) он значительно токсичнее природного. Избытки доменных газов чаще всего сжигают в топках заводских электростанций.

В районах расположения угольных шахт своеобразным «топливом» может служить метан, выделяющийся из пластов при их вентиляции. Однако при этом надо иметь в виду, что концентрация метана в смеси с воздухом более 5%, но менее 15% – взрывоопасна.

В последние годы в Украине вновь возродился интерес к газам, полученным путем газификации, (генераторным) или путем сухой перегонки (нагрев без доступа воздуха) твердых топлив, в первую очередь, труднодоступных углей Донецкого месторождения.

Все большее применение в ряде мест находит биогаз-продукт анаэробной ферментации (сбраживания) органических отходов (навоза, растительных остатков, мусора, сточных вод и т.д.). Конструкция небольшого ферментатора предельно проста: тепло- и гидроизолированная яма с гидрозатвором, заполненная разжиженным сырьем (влажность 88ч94%) с плавающим в ней колоколом-аккумулятором для вывода газа. С 1 м 3 объема при температуре 30ч40 о С может быть получено около 1м 3 газа, состоящего в основном из метана и диоксида углерода с небольшими добавками сероводорода, азота и водорода. Получающиеся в процессе ферментации жидкие отходы используются в качестве высококачественного удобрения, содержащего вдвое больше связанного азота, чем исходное сырье.

Анаэробное сбраживание отходов крупных животноводческих комплексов позволяет решить чрезвычайно острую проблему загрязнения окружающей среды жидкими отходами путем превращения их в биогаз и высококачественные удобрения.

Часть 6 ЭНЕРГОГЕНЕРИРУЮЩИЕ УСТАНОВКИ
^ НА ОРГАНИЧЕСКОМ ТОПЛИВЕ

6.1. Котельные установки

6.1.1. Общие сведения

В зависимости от вида вырабатываемого рабочего тела котельные установки подразделяются на паровые, вырабатывающие водяной пар требуемых параметров, и водогрейные, которые выдают горячую воду определенной температуры.

По назначению котельные установки делятся на энергетические, про­изводственные (промышленные), отопительно-производственные и отопительные. В энергетических котельных установках вырабатывается пар высокого (р  9 МПа) и среднего (р  3,5 МПа) давлений, предназначенный для дальнейшего преобразования в паровых турбинах на ТЭС.

Производственные котельные установки предназначены для получения водяного пара или горячей воды на различные технологические нужды. В отопительных котельных установках вырабатывают водяной пар низкого давления или нагревают воду только для отопления, вентиляции и горячего водоснабжения жилых и производственных зданий и сооружений.

Следующим важным признаком классификации котельных установок является расположение в них продуктов горения топлива и рабочего тела (воды, водяного пара). Котельные установки, в которых продукты горения движутся в трубках, а вода – снаружи труб, называют газотрубными, в противном случае – водотрубными (вода движется в трубках, а газы – снаружи).

Отопительные и отопительно-производственные котельные установки могут быть газотрубные и водотрубные, для энергетических целей используются только водотрубные котлы.

И, наконец, важным признаком, по которому классифицируют паро­вые котельные установки, является способ создания движения в них рабо­чего тела. По этому признаку они могут быть с естественной и принуди­тельной циркуляцией.

Источником тепловой энергии в котельных установках служит органическое топливо. Рабочим телом является вода, в отдельных случаях используются высококипящие органические жидкости, например, даутерм, дифениг и др. Применение последних обусловлено их теплофизическими свойствами, в первую очередь, высокой температурой кипения и конденсации при низких (в сравнении с водой) давлениях. Это позволяет повысить КПД бинарного цикла, в котором водяной пар обеспечивает возможность использования нижнего температурного предела, а органические жидкости – верхнего.

Рабочий процесс в котельных установках состоит из следующих конечных стадий: 1) горение топлива; 2) теплопередача от горячих дымовых газов к воде или пару; 3) парообразование (нагрев воды до кипения и ее испарение) и перегрев насыщенного пара.

Котельная установка состоит из котла соответствующего типа и вспомогательного оборудования, обеспечивающего его работу.

Котел – конструктивно объединенный в одно целое комплекс устройств для получения пара или нагрева воды под давлением. Основными элементами котла являются топка и теплообменные поверхности. Взаимное расположение топки и газоходов, в которых размещаются теплообменные поверхности нагрева, т.е. компоновка котла, определяется свойствами сжигаемого топлива, паропроизводительностью и выходными параметрами пара.

Различают П-, Т- и N-образные и башенную компоновки котла (рис.6.1). При сжигании мазута, природного газа, как правило, используется П-образная компоновка (рис.6.1, а ), при которой котел имеет два вертикальных газохода (топочную камеру и конвективную шахту) и соединяющий их горизонтальный газоход. При сжигании твердых топлив она применяется в котлах паропроизводительностью D до 1000-1600 т/ч.

Т-образная компоновка (рис.6.1, в ), способствующая уменьшению глубины конвективной шахты и высоты соединительного газохода, применяется для мощных котлов (D  1000 т/ч), работающих на твердых топливах. Для углей с высокоабразивной золой Т-образная компоновка применяется для котлов, начиная с D  500 т/ч.

N-образная компоновка котла (рис.6.1, б ) используется при сжигании топлив с высоким содержанием в золе оксида кальция и щелочей. Котел выполняется трех- или четырехходовым, с подъемной или инвертной топкой и ширмами в промежуточных газоходах.

Для мощных котлов при сжигании газа и мазута или твердого топлива (в том числе бурых углей с большим содержанием высокоабразивной золы) может быть использована башенная компоновка котла (рис.6.1, г ) в сочетании с открытой и полуоткрытой компоновками котельной установки.

Для нормального функционирования котла необходимо обеспечить подготовку и подачу к нему топлива, подачу окислителя для горения, а также удалить образующиеся продукты сгорания, золу и шлак (при сжигании твердого топлива) и др.