Большая энциклопедия нефти и газа. Серые, высокопрочные и ковкие чугуны

Сплав железа с углеродом называют чугуном. Присутствие эвтектики в структуре чугуна (см. рис. 87) обусловливает его использование исключительно в качестве литейного сплава. Углерод в чугуне может находиться в виде цементита или графита, или одновременно в виде цементита и графита. Цементит придает излому специфический светлый блеск. Поэтому чугун, в котором весь углерод находится в виде цементита, называют белым. Графит придает излому чугуна серый цвет, поэтому чугун называют серым. В зависимости от формы графита и условий его образования различают следующие чугуны: серый, высокопрочный и ковкий (см. рис. 101 и 102).

1. СЕРЫЙ И БЕЛЫЙ ЧУГУНЫ

Серый чугун (технический) представляет собой, по существу, сплав содержащий в качестве постоянных примесей и . В структуре серых чугунов большая часть или весь углерод находится в виде графита. Характерная особенность структуры серых чугунов, определяющая многие его свойства, заключается в том, что графит имеет в поле зрения микрошлифа форму пластинок (см. рис. 88). Наиболее широкое применение получили доэвтектические чугуны, содержащие . Чем выше содержание в чугуне углерода, тем больше образуется графита и тем ниже его механические свойства. В то же время для обеспечения высоких литейных свойств (хорошей жидкотекучести) должно быть не менее .

Кремний, содержание которого в серых чугунах находится в пределах оказывает большое влияние на строение, а следовательно, и на свойства чугунов, поэтому при изучении структурообразования в техническом чугуне нужно пользоваться не диаграммой состояния а тройной диаграммой

Рис. 99. Диаграмма состояния жидкая фаэа; А - аустенит; Г - графит

Разрез тройной диаграммы состояния для постоянного содержания кремния показан на рис. 99. В отличие от стабильной диаграммы (см. рис. 87) в системе перитектическое эвтектическое и эвтектоидное превращения протекают не при постоянной температуре, а в некотором интервале температур.

Величинатемпературного интервала, в котором в равновесии с жидким сплавом находятся аустенит и графит, зависит от содержания кремния. Чем больше содержание кремния, тем шире эвтектический интервал температур.

Охлаждение чугуна в реальных условиях вносит существенные отклонения от условий равновесия. Структура чугуна в отливках зависит в первую очередь от химического состава (содержания углерода и кремния) и скорости кристаллизации.

Кремний способствует процессу графитизации, действуя в том же направлении, что и замедление скорости охлаждения. Изменяя, с одной стороны, содержание в чугуне углерода и кремния, а с другой - скорость охлаждения, можно получить различную структуру металлической основы чугуна. Структурная диаграмма для чугунов, показывающая, какой должна быть структура в отливке с толщиной стенки 50 мм, в зависимости от

Рис. 100. Структурные диаграммы для чугунов: а - влияние С и на структуру чугуна; б - влияние скорости охлаждения (толщины отливки) и суммы на структуру чугуна; белые чугуны; - серые чугувы

Рис. 101. Структура чугуна, а - белый чугун; б - перлитный серый чугун; в - ферритно-перлитный серый чугун; ферритный серый чугун

В зависимости от содержания углерода, связанного в цементит, различают:

1. Белый чугун (рис. в котором весь углерод находится в виде цементита Структура такого чугуна - перлит, ледебурит и цементит (рис. 100, а, I и 101, а).

2. Половинчатый чугун (рис. большая часть углерода находится в виде Структура такого чугуна -1 перлит, ледебурит и пластинчатый графит.

3. Перлитный серый чугун (рис. 100, а, III) структура чугуна (рис. 101, б) - перлит и пластинчатый графит. В этом чугуне 0,7-0,8 % С находится в виде входящего в состав перлита.

4. Ферритно-перлитный (рис. 100, а, IV) серый чугун. Структура такого чугуна (рис. 101, в) - перлит, феррит и пластинчатый графит (составы см. на рис. 100, а, III). В этом чугуне в зависимости от степени распада эвтектоидного цементита в связанном состоянии находится от 0,7 до 0,1 %.

5. Ферритный серый чугун (рис. 100, а, V). Структура (рис. 101, г) - феррит и пластинчатый графит. В этом случае весь углерод находится в виде графита.

При данном содержании углерода и кремния графитизация протекает тем полнее, чем медленнее охлаждение. В производственных условиях скорость охлаждения удобно характеризовать по толщине стенки отливки. Чем тоньше отливка, тем быстрее охлаждение и в меньшей степени протекает графитизация (рис. 100, б).

Следовательно, содержание кремния надо увеличивать в отливке небольшого сечения, охлаждающейся ускоренно, или в чугуне с меньшим содержанием углерода. В толстых сечениях отливок, охлаждающихся медленнее, графитизация протекает полнее и содержание кремния может быть меньше. Количество марганца в чугуне не превышает Марганец препятствует графитизации, т. е. затрудняет выделение графита и повышает способность чугуна к отбеливанию - появлению, особенно в поверхностных слоях, структуры белого или половинчатого чугуна. Сера является вредной примесью, ухудшающей механические и литейные свойства чугуна. Поэтому ее содержание ограничивают до 0,1-0,2%. В сером чугуне сера образует сульфиды или их твердые растворы

Содержание фосфора в сером чугуне чаще но иногда допускается даже до При повышенном содержании фосфора в структуре чугуна образуются твердые включения фосфидной эвтектики: в серых чугунах - двойной аустенит), а в белых - тройной аустенит). Эвтектика улучшает литейные свойства чугуна.

Механические свойства чугуна обусловлены его структурой, главным образом графитной составляющей. Чугун можно рассматривать как сталь, пронизанную графитом, который играет роль надрезов, ослабляющих металлическую основу структуры. В этом случае механические свойства будут зависеть от количества, величины и характера распределений включений графита.

Чем меньше графитных включений, чем они мельче и больше степень изолированности их, тем выше прочность чугуна. Чугун с большим количеством прямолинейных крупных графитных выделений, разделяющих его металлическую основу, имеет грубозернистый излом и низкие механические свойства. Чугун с мелкими

и завихренными графитными выделениями обладает более высокими свойствами.

Пластинки графита уменьшают сопротивление отрыву, временное сопротивление и особенно сильно пластичность чугуна. Относительное удлинение при растяжении серого чугуна независимо от свойств металлической основы практически равно нулю Графитные включения мало влияют на снижение предела прочности при сжатии и твердость, величина их определяется главным образом структурой металлической основы чугуна. При сжатии чугун претерпевает значительные деформации и разрушение имеет характер среза под углом 45°. Разрушающая нагрузка при сжатии в зависимости от качества чугуна и его структуры в 3-5 раз больше, чем при растяжении. Поэтому чугун рекомендуется использовать преимущественно для изделий, работающих на сжатие.

Пластинки графита менее значительно, чем при растяжении, снижают прочность и при изгибе, так как часть изделия испытывает сжимающие напряжения. Предел прочности при изгибе имеет промежуточное значение между пределом прочности на растяжение и на сжатие. Твердость чугуна

Графит, нарушая сплошность металлической основы, делает чугун малочувствительным к всевозможным концентраторам напряжений (дефектам поверхности, надрезам, выточкам и т. д.). Вследствие этого серый чугун имеет примерно одинаковую конструктивную прочность в отливках простой формы или с ровной поверхностью и сложной формы с надрезами или с плохо обработанной поверхностью. Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного «смазывающего» действия и повышения прочности пленки смазочного материала. Очень важно, что графит улучшает обрабатываемость резанием, делая стружку ломкой.

Металлическая основа в сером чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру (см. рис. 100, б). Присутствие в структуре феррита, не увеличивая пластичность и вязкость чугуна, снижает его прочность и износостойкость. Наименьшей прочностью обладает ферритный серый чугун.

Серый чугун маркируется буквами С - серый и Ч - чугун После букв следуют цифры, указывающие минимальное значение временного сопротивления

Серые чугуны по свойствам и применению можно разделить на следующие группы.

Ферршпные и ферритно-перлитные чугуны имеют временное сопротивление предел прочности при изгибе Их примерный состав: Структура чугунов - перлит, феррит и графит чаще в виде крупных выделений

Эти чугуны применяют для малоответственных деталей, испытывающих небольшие нагрузки в работе с толщиной стенки отливки 10-30 мм. Так, чугун используют для строительных колонн, фундаментных плит, а чугуны и - для литых малонагруженных деталей сельскохозяйственных машин, станков, автомобилей и тракторов, арматуры и т. д.

Перлитные чугуны применяют для ответственных отливок (станин мощных станков и механизмов, поршней, цилиндров, деталей, работающих на износ в условиях больших давлений, компрессоров, арматуры, дизельных цилиндров, блоков двигателей, деталей металлургического оборудования и т. д.) с толщиной стенки до 60-100 мм. Структура этих чугунов - мелкопластинчатый перлит (сорбит) с мелкими завихренными графитными включениями. К перлитным относятся так называемые сталистые и модифицированные чугуны.

При выплавке сталистых чугунов в шихту добавляют стального лома; чугуны имеют пониженное содержание углерода, что обеспечивает получение более дисперсной перлитной основы с меньшим количеством графитных включений. Примерный состав:

Модифицированные чугуны получают при добавлении в жидкий чугун перед разливкой специальных добавок- модификаторов (графит, ферросилиций, силико-кальций в количестве Модифицирование применяют для получения в чугунных отливках с различной толщиной стенок перлитной металлической основы с вкраплением небольшого количества изолированных пластинок графита средней величины.

Модифицированию подвергают низкоуглеродистый чугун, содержащий сравнительно небольшое количество кремния и повышенное количество марганца и имеющий без введения модификатора структуру половинчатого чугуна, т. е. ледебурит, перлит и графит. Примерный химический состав чугуна:

Для снятия литейных напряжений и стабилизации размеров чугунные отливки отжигают при 500-600 °С. В зависимости от формы и размеров отливки выдержка при температуре отжига составляет Охлаждение после отжига медленное, вместе о печью. После такой обработки механические свойства изменяются мало, а внутренние напряжения снижаются на Иногда Для снятия напряжений в чугунных отливках применяют естественное старение чугуна - выдержку их на складе в течение 6-10 месяцев; такая выдержка снижает напряжения на 40-50 %.

Антифрикционные чугуны применяют для изготовления подшипников скольжения, втулок и других деталей, работающих при трении о металл, чаще в присутствии смазочного материала. Эти чугуны должны обеспечивать низкое трение (малый коэффициент трения), т. е. антифрикционность. Антифрикционные свойства чугуна определяются соотношением перлита и феррита в основе, а также количеством и формой графита. Антифрикционные чугуны изготовляют следующих марок:

Детали, работающие в паре с закаленными или нормализованными стальными валами, изготовляют из перлитных серых чугунов для работы в паре с термически необработанными валами применяют перлитно-ферритный чугун

Перлитный чугун, содержащий повышенное количество фосфора используют для изготовления поршневых колец. Высокая износостойкость колец обеспечивается металлической основой, состоящей из тонкого перлита и равномерйо распределенной фосфидной эвтектики при наличии изолированных выделений пластинчатого графита.

Серый чугун имеет низкие хар-ки механич. св-в при испытаниях на растяжение. Включения графита играют роль концентраторов напряжений. Твёрдость и прочность при испытаниях на сжатие, зависящие от свойств металлической основы, у чугуна достаточно высоки. Серый чугун с пластинчатой формой графита имеет ряд преимуществ. Он позволяет получать дешёвое литьё, т.к. при низкой стоимости обладает хорошей жидкотекучестью и малой усадкой. Мех. св-ва серых чугунов зависят от метал­лической основы, а также формы и размеров включений графита. Наиболее прочными являются серые чугуны на пер­литной основе, а наиболее плас­тичными - серые чугуны на ферритной основе. Серый чугун получают при добавлении в расплавленный металл веществ, способствующих распаду цементита и выделению углерода в виде графита. Для серого чугуна графитизатором является кремний. При введе­нии в сплав кремния около 5% цементит серого чугуна практически пол­ностью распадается и образуется структура из пластичной ферритной основы и включений графита. С уменьшением содержания кремния цементит, входящий в состав перлита, частично распадается и образуется ферритно-перлитная струк­тура с включениями графита. При дальнейшем уменьше­нии содержания кремния формируется структура серо­го чугуна на перлитной осно­ве с включениями графита.

Включения графита делают стружку ломкой, след-но, чугун хорошо обрабатывается резанием. Благодаря смазывающему действию графита чугун обладает хорошими антифрикционными свойствами. Чугун имеет высокие демпфирующие св-ва, хорошо гасит вибрации и резонансные колебания. Маркируется серый чугун буквами СЧ и цифрами, характеризующими величину временного сопротивления при испытаниях на растяжение. Н-р, СЧ10 содержит (3,5…3,7)% С, (2,2…2,6)% Si, (0,5…0,8)% Mn, P<0,3% и S<0,15%, d В =100МПа, твёрдость <190НВ. СЧ35 d В =350МПа, твёрдость <275НВ.

Серые чугуны - это литейный чугун. Серый чугун поступает в произ­водство в виде отливок. Серый чугун является дешевым конструкцион­ным материалом. Он обладает хорошими литейными свойствами, хоро­шо обрабатывается резанием, сопротивляется износу, обладает способ­ностью рассеивать колебания при вибрационных и переменных на­грузках. Свойство гасить вибрации называется демпфирующей способ­ностью. Демпфирующая сп-ть чугуна в 2-4 раза выше, чем у ста­ли. Высокая демпфирующая сп-ть и износостойкость обуслови­ли применение чугуна для изготовления станин различного оборудова­ния, коленчатых и распределительных валов тракторных и автомо­бильных двигателей и др. Выпускают следующие марки серых чугунов (в скобках указаны числовые значения твердости НВ): СЧ 10(143-29), СЧ 15(163-229), СЧ 20(170-241), СЧ 25(180-250), СЧ 30(181-255), СЧ 35(197-269), СЧ 40(207-285), СЧ 45(229-289).

По физико-механическим характеристикам серые чугуны условно можно разделить на четыре группы: малой прочности, повышенной проч­ности, высокой прочности и со специальными свойствами.

Легированный серый чугун имеет мелкозернистую структуру и лучшее строение графита за счет присадки небольших кол-в никеля и хрома, молибдена и иногда титана или меди.

Модифицированный серый чугун имеет однородное строение по сечению отливки и более мелкую завихренную форму графита. Модификаторы - ферросили­ций, силикоалюминий, силикокальций и др. - добавляют в количестве 0,1 -0,3% от массы чугуна непосредственно в ковш во время его заполне­ния.

Серый и белый чугуны резко различаются по свойствам. Белые чугуны очень твердые и хрупкие, плохо обрабатыва­ются режущим инструментом, идут на переплавку в сталь и называются передельными чугунами. Часть белого чугуна идет на получение ков­кого чугуна.

Белые чугуны используются как износостойкие конструкционные материалы. В таких чугунах весь углерод находится в связанном состоянии с карбидообразующими элементами (хром, марганец, бор, титан). При введении 5-8% Cr образуется карбид цементитного типа (Fe,Cr) 3 C, а при содержании более 10% Cr образуются сложные и твердые карбиды (Fe,Cr) 7 C 3 и (Fe,Cr) 23 C 6 . Для придания чугуну большей вязкости, жаро- или коррозионной стойкости в его состав вводят никель.

Сплав железа с углеродом (>2,14 % С) называют чугуном. Присутствие эвтектики в структуре чугуна (см. рис. 87) обусловливает его использование исключительно в качестве литейного сплава. Углерод в чугуне может находиться в виде цементита или графита, или одновременно в виде цементита и графита. Цементит придает излому специфический светлый блеск. Поэтому чугун, в котором весь углерод находится в виде цементита, называют белым. Графит придает излому чугуна серый цвет, поэтому чугун называют серым. В зависимости от формы графита и условий его образования различают следующие чугуны: серый, высокопрочный и ковкий (см. рис. 101 и 102).

СЕРЫЙ И БЕЛЫЙ ЧУГУНЫ

Серый чугун (технический) представляет собой, по существу, сплав Fe-Si-С, содержащий в качестве постоянных примесей Mn, Р и S. В структуре серых чугунов большая часть или весь углерод находится в виде графита. Характерная особенность структуры серых чугунов, определяющая многие его свойства, заключается в том, что графит имеет в поле зрения микрошлифа форму пластинок (см. рис. 88). Наиболее широкое применение получили доэвтектические чугуны, содержащие 2,4- 3,8 % С. Чем выше содержание в чугуне углерода, тем больше образуется графита и тем ниже его механические свойства. В то же время для обеспечения высоких литейных свойств (хорошей жид- котекучести) должно быть не менее 2,4 % С.

Разрез тройной диаграммы состояния Fe-Si-С для постоянного содержания кремния (2 %) показан на рис. 99. В отличие от стабильной диаграммы Fe-С (см. рис. 87) в системе Fe-Si-С перитектическое (Ж+

Рис. 99.

Ж - жидкая фаза; А аустенит; Г * графит

F- 6-феррит-? А), эвтектическое (Ж-*А + Г) и эвтектоид- ное (А -? Ф + Г) превращения протекают не при постоянной температуре, а в некотором интервале температур.

Величина температурного интервала, в котором в равновесии с жидким сплавом находятся аустенит и графит, зависит от содержания кремния. Чем больше содержание кремния, тем шире эвтектический интервал температур.

Охлаждение чугуна в реальных условиях вносит существенные отклонения от условий равновесия. Структура чугуна в отливках зависит в первую очередь от химического состава (содержания углерода и кремния) и скорости кристаллизации.

Кремний способствует процессу графитизации, действуя в том же направлении, что и замедление скорости охлаждения. Изменяя, с одной стороны, содержание в чугуне углерода и кремния, а с другой - скорость охлаждения, можно получить различную структуру металлической основы чугуна. Структурная диаграмма для чугунов, показывающая, какой должна быть структура в отливке с толщиной стенки 50 мм, в зависимости от содер-


Рис. 100.

а - влияние С в Si; ни структуру чугуна: б - влияние скорости охлаждения (толщины отливкн) и суммы С + SI на структуру чугуна; I - белые чугуны; //- V - серые чу- гуны


Рис. 101.

а - белый чугун; б - перлитный серый чугун: в - ферритно-перлитный серый чугун; г - ферритный серый чугун

жания в чугуне кремния и углерода показана на рис. 100, а. При данном содержании углерода, чем больше в чугуне кремния, тем полнее протекает графитизация. Чем больше в чугуне углерода, тем меньше требуется кремния для получения заданной структуры.

В зависимости от содержания углерода, связанного в цементит, различают:

  • 1. Белый чугун (рис. 100, а, /), в котором весь углерод находится в виде цементита Fe 3 C. Структура такого чугуна - перлит, ледебурит и цементит (рис. 100, а, I и 101, а).
  • 2. Половинчатый ч>тун (рис. 100, а , //), большая часть углерода (>0,8 %) находится в виде Fe 3 C. Структура такого чугуна - перлит, ледебурит и пластинчатый графит С
  • 3. Перлитный серый чугун (рис. 100, а, III) структура чугуна (рис. 101, б) - перлит и пластинчатый графит. В этом чугуне 0,7-0,8 °b С находится в виде Fe 3 C, входящего в состав перлита.
  • 4. Ферритно-перлитный (рис. 100, а, /V) серый чугун. Структура такого чугуна (рис. 101, в ) - перлит, феррит и пластинчатый графит (составы см. на рис. 100, а, III). В этом чугуне в зависимости от степени распада эвтектоидного цементита в связанном состоянии находится от 0,7 до 0,1 % С.
  • 5. Ферритный серый чугун (рис. 100, а, V ). Структура (рис. 101, г) - феррит и пластинчатый графит. В этом случае весь углерод находится в виде графита.

При данном содержании углерода и кремния графитизация протекает тем полнее, чем медленнее охлаждение. В производственных условиях скорость охлаждения удобно характеризовать по толщине стенки отливки. Чем тоньше отливка, тем быстрее охлаждение и в меньшей степени протекает графитизация (рис. 100, б).

Следовательно, содержание кремния надо увеличивать в отливке небольшого сечения, охлаждающейся ускоренно, или в чугуне с меньшим содержанием углерода. В толстых сечениях отливок, охлаждающихся медленнее, графитизация протекает полнее и содержание кремния может быть меньше. Количество марганца в чугуне не превышает 1,25-1,4 %. Марганец препятствует гра- фитизации, т. е. затрудняет выделение графита и повышает способность чугуна к отбеливанию - появлению, особенно в поверхностных слоях, структуры белого или половинчатого чугуна. Сера является вредной примесью, ухудшающей механические и литейные свойства чугуна. Поэтому ее содержание ограничивают до 0,1-0,2 %. В сером чугуне сера образует сульфиды (FeS, MnS) или их твердые растворы (Fe, Мп) S .

Механические свойства чугуна обусловлены его структурой, главным образом графитной составляющей. Чугун можно рассматривать как сталь, пронизанную графитом, который играет роль надрезов, ослабляющих металлическую основу структуры. В этом случае механические свойства будут зависеть от количества, величины и характера распределений включений графита.

Чем меньше графитных включений, чем они мельче и больше степень изолированности их, тем выше прочность чугуна. Чугун о большим количеством прямолинейных крупных графитных выделений, разделяющих его металлическую основу, имеет грубозернистый излом и низкие механические свойства. Чугун с мелкими

и завихренными графитными выделениями обладает более высокими свойствами.

Пластинки графита уменьшают сопротивление отрыву, временное сопротивление и особенно сильно пластичность чугуна. Относительное удлинение при растяжении серого чугуна независимо ог свойств металлической основы практически равно нулю (-"0,5 %). Графитные включения мало влияют на снижение предела прочности при сжатии и твердость, величина их определяется главным образом структурой металлической основы чугуна. При сжатии чугун претерпевает значительные деформации и разрушение имеет характер среза под углом 45°. Разрушающая нагрузка при сжатии в зависимости от качества чугуна и его структуры в 3-5 раз больше, чем при растяжении. Поэтому чугун рекомендуется использовать преимущественно для изделий, работающих на сжатие.

Пластинки графита менее значительно, чем при растяжении, снижают прочность и при изгибе, так как часть изделия испытывает сжимающие напряжения. Предел прочности при изгибе имеет промежуточное значение между пределом прочности на растяжение и на сжатие. Твердость чугуна 143-255 НВ.

Графит, нарушая сплошность металлической основы, делает чугун малочувствительным к всевозможным концентраторам напряжений (дефектам поверхности, надрезам, выточкам и т. д.). Вследствие этого серый чугун имеет примерно одинаковую конструктивную прочность в отливках простой формы или с ровной поверхностью и сложной формы с надрезами или с плохо обработанной поверхностью. Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного «смазывающего» действия и повышения прочности пленки смазочного материала. Очень важно, что графит улучшает обрабатываемость резанием, делая стружку ломкой.

Металлическая основа в сером чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру (см. рис. 100, б). Присутствие в структуре феррита, не увеличивая пластичность и вязкость чугуна, снижает его прочность и износостойкость. Наименьшей прочностью обладает ферритный серый чугун.

Серый чугун маркируется буквами С - серый и Ч - чугун (ГОСТ 1412-85). После букв следуют цифры, указывающие минимальное значение временного сопротивления 10" 1 МПа (кгс/мм 2).

Серые чугуны по свойствам и применению можно разделить на следующие группы.

Ферритные и ферритно-перлитные чугуны (СЧ 10, СЧ 15, СЧ 18) имеют временное сопротивление 100-180 МПа (10- 18 кгс/мм 2), предел прочности при изгибе 280-320 МПа (28- 32 МПа). Их примерный состав: 3,5-3,7 % С; 2,0-2,6 % Si; 0,5--0,8 % Ми;

СЧ 15). Эти чугуны применяют для малоответственных деталей, испытывающих небольшие нагрузки в работе с толщиной стенки отливки 10-30 мм. Так, чугун СЧ 10 используют для строительных колонн, фундаментных плит, а чугуны СЧ 15 и СЧ 18 -для литых малонагруженных деталей сельскохозяйственных машин, станков, автомобилей и тракторов, арматуры и т. д.

Перлитные чугуны (СЧ 21, СЧ 24, СЧ 25, СЧ 30, СЧ 35) применяют для ответственных отливок (станин мощных станков и механизмов, поршней, цилиндров, деталей, работающих на износ в условиях больших давлений, компрессоров, арматуры, дизельных цилиндров, блоков двигателей, деталей металлургического оборудования и т. д.) с толщиной стенки до 60-100 мм . Структура этих чугунов - мелкопластинчатый перлит (сорбит) с мелкими завихренными графитными включениями. К перлитным относятся так называемые сталистые и модифицированные чугуны.

При выплавке сталистых чугунов СЧ 24, СЧ 25 в шихту добавляют 20-30 % стального лома; чугуны имеют пониженное содержание углерода, что обеспечивает получение более дисперсной перлитной основы с меньшим количеством графитных включений. Примерный состав: 3,2-3,4 % С; 1,4-2,2 % Si; 0,7-

1,0 % Мп; % Р;

Модифицированные чугуны (СЧ 30, СЧ 35) получают при добавлении в жидкий чугун перед разливкой специальных добавок- модификаторов (графит, 75 %-ный ферросилиций, силико- кальций в количестве 0,3-0,8 % и т. д.). Модифицирование применяют для получения в чугунных отливках с различной толщиной стенок перлитной металлической основы с вкраплением небольшого количества изолированных пластинок графита средней величины.

Модифицированию подвергают низкоуглеродистый чугун, содержащий сравнительно небольшое количество кремния и повышенное количество марганца и имеющий без введения модификатора структуру половинчатого чугуна, т. е. ледебурит, перлит и графит. Примерный химический состав чугуна: 2,2-3,2 % С; 1,0-2,9 % Si; 0,2-1,1 % Мп;

Для снятия литейных напряжений и стабилизации размеров чугунные отливки отжигают при 500-600 °С. В зависимости от формы и размеров отливки выдержка при температуре отжига составляет 2-10 ч. Охлаждение после отжига медленное, вместе о печью. После такой обработки механические свойства изменяются мало, а внутренние напряжения снижаются на 80-90 %. Иногда для снятия напряжений в чугунных отливках применяют естественное старение чугуна - выдержку их на складе в течение 6-10 месяцев; такая выдержка снижает напряжения на 40-50 % .

Антифрикционные чугуны применяют для изготовления подшипников скольжения, втулок и других деталей, работающих при трении о металл, чаще в присутствии смазочного материала. Эти чугуны должны обеспечивать низкое трение (малый коэффициент трения), т. е. антифрикционность. Антифрикционные свойства чугуна определяются соотношением перлита и феррита в основе, а также количеством и формой графита. Антифрикционные чугуны изготовляют следующих марок :

АЧС-1 (3,2-3,6 % С; 1,3-2,0 % Si; 0,6-1,2 % Мп; 0,15- 0,4% Р; % Сг; 1,5-2,0 % Си); АЧС-2 (3,2-3,8% С; 1,4-2,2% Si; 0,3-1% Мп; 0,15-0,4 % Р; % Ti; 0,2- 0,5 % Си) и АЧС-3 (3,2-3,8 % С; 1,7-2,6 % Si; 0,3-0,7 % Мп; 0,15-0,4% Р; 0,2-0,5 % Си;

Детали, работающие в паре с закаленными или нормализованными стальными валами, изготовляют из перлитных серых чугу- нов АЧС-1 и АЧС-2; для работы в паре с термически необработанными валами применяют перлитно-ферритный чугун АЧС-3.

Перлитный чугун, содержащий повышенное количество фос^ фора (0,3-0,5 %), используют для изготовления поршневых колец. Высокая износостойкость колец обеспечивается металлической основой, состоящей из тонкого перлита и равномерно распределенной фосфидной эвтектики при наличии изолированных выделений пластинчатого графита.

  • Графит кристаллизуется в виде довольно сложных форм (см. рис. 88, б, о),но сечение их плоскостью микрошлифа дает вид пластинок.
  • 2 В белых чугунах возможно образование эвтектики (Fe + FeS) и растворение серы в FeaC.
  • Чем больше толщина стенок отливки, тем ниже механические свойства. 149
  • А - антифрикционный, Ч - чугун, С - серый.

Структура и свойства чугунов.

Чугунами называют железоуглеродистые сплавы, содержащие более 2,14% углерода. В машиностроении чугун является одним из основных литейных материалов, что объясняется прежде всего его хорошими литейными и прочностными свойствами. Он не подвергается обработке давлением. Главным фактором, определяющим свойства, а, следователь­но, и область применения чугуна, является его структура, которая может быть разнообразной.

По структуре чугуны делят на белые,серые, ковкие и высокопрочные.

9.1. Белые чугуны.

Белым называется чугун, в котором весь углерод находится в химически связанном состоянии в виде цементита Fe 3 C, который придает излому чугуна белый блестящий цвет.

Фазовые превращения в этих чугунах протекают согласно метастабильной диаграмме Fе - Fe 3 С (см. рис.23). По структуре белые чугуны делятся на:

а) доэвтектические, содержащие от 2,14 до 4,3 С. Они состоят из перлита, ледебурита и вторичного цементита, выделяющегося из зерен аустенита в интервале температур от 1147° (линия ЕС) до 727° (линия SК). Вторичный цементит сливается с цементитом ледебурита и может быть не виден на микрошлифе как самостоятельная структурная составляющая (рис. 51,а);

б) эвтектические, содержащий 4,3% С. Он состоит из эвтектики -ледебурита, представляющего собой механическую смесь цементита и перлита (рис. 51,б);

В) заэвтектические, содержащие от 4,3% до 6,67% С. Они состоят из первичного цементита, выделяющегося в виде крупных пластин и ледебурита (рис. 51, в).

Рис. 51.Структура белого чугуна: а) доэвтектического б) эвтектического в) заэвтектического

В микроструктуре белого чугуна содержится много цементита, поэ­тому он очень тверд и хрупок, но хорошо сопротивляется износу. Он почти не поддается обработке резанием (за исключением абразивного), поэтому белые чугуны не находят непосредственного применения в машиностроении, их используют редко, только для изготовления дета­лей, работающих в условиях повышенного абразивного изнашивания (детали гидромашин, пескометов и др.). Будучи главным продуктом доменной плавки, этот чугун используется вметаллургии для передела в сталь (передельный чугун). В незначительном количестве белый чугун применяется также для получения ковкого чугуна.

9.2. Серые чугуны.

Серым называется чугун, в котором углерод находится в виде гра- фита, имеющего форму слегка изогнутых пластин или чешуек, или разветвленных розеток с пластинчатыми лепестками. Вследствие большого количества графита в структуре такой чугун в изломе имеет серый цвет.

Кремний способствует процессу графитизации, уменьшает усадку, кремний входит в состав феррита, образуя с α-железом твердый раствор замещения.

Марганец увеличивает склонность чугуна к сохранению цементита, а следовательно, и увеличивает твердость чугуна.

Сера - вредная примесь чугунов, она повышает их твердость и хрупкость в 5-6 раз больше, чемMn и значительно ухудшает литейные свойства.

Фосфор в небольших количествах в чугунах является полезной примесью (в отличие от сталей), улучшает литейные свойства серого чу- гуна, так как фосфор образует эвтектику Fe+Fe 2 P, плавящуюся при тем- пературе 983°С, что ценно для производства тонкостенного дутья. Химический состав серых чугунов: 2,5…4% С; 1,0…4,8% Si; 0,5…0,7% Mn; до 0,12% S; 0,2…0,5% P.

По структуре металлической основы серые чугуны подразделяют в основном на следующие группы;

1. Перлитные. Структура П+ПГ (пластинчатый графит), металлическая основа - П, а количество связанного углерода (Fe 3 C) равно эвтектоидной концентрации 0,8% (рис. 52, а).

2. Ферритно-перлитные. Структура Ф +П+ПГ, металлическая основа их состоит из Ф + П, а количество Fe 3 C меньше эвтектоидной концентрации (рис. 52, б).

3. Ферритные. Структура Ф + ПГ. Основа их состоит из Ф, а Fe 3 C=0 (рис. 52, в).

Рис.52.Структура серого чугуна: а)перлитного б) ферритно-перлитного в)ферритного

Механические свойства чугуна зависит от свойства металлической основы, количества и размеров графитных включений. При конструиро­вании деталей машин следует учитывать, что серые чугуны работают на сжатие лучше, чем на растяжение. Они мало чувствительны к надрезам при циклическом нагружении, хорошо поглощают колебания при вибрациях, обладают высокими антифрикционными свойствами из-за смазывающей способности графита. Серые чугуны хорошо обрабатываются резанием, дешевы и просты в изготовлении. Наряду с этими положительными свойствами они имеют сравнительно невысокую прочность и чрезвычайно низкую пластичность.

Марка серого чугуна состоит из букв СЧ (серый чугун) и цифры, показывающей уменьшенное в 10 раз значение (в мегапаскалях) временного сопротивления при растяжении (табл.7).

Прочность чугуна существенно зависит от толщины стенки отливки. Указанное в марке значение σ в соответствует отливкам с толщиной стенки 15 мм. При увеличении толщины стенки от 15 до 150 мм прочность и твердость чугуна уменьшаются почти в два раза.

Графит, ухудшая механические свойства, в то же время придает чугунам ряд ценных свойств. Он измельчает стружку при обработке ре- занием, оказывает смягчающее действие и, следовательно, повышает из- носостойкость чугунов, придает им демпфирующую способность. Кроме того, пластинчатый графит обеспечивает малую чувствительность чугу- нов к дефектам поверхности. Благодаря этому сопротивления усталости чугунных и стальных деталей соизмеримы.

Согласно ГОСТ 1412-85 отливки изготавливают из серого чугуна следующих марок: СЧ10, СЧ15, СЧ18, СЧ20, СЧ25, СЧ30, СЧ35. Цифры в обозначении марки соответствуют минимальному пределу прочности при растяжении (σ в, кгс/мм 2). Чугун СЧ10 - ферритный, а начиная с СЧ25 и более - перлитные, промежуточные - ферритно-перлитные.

Из ферритных чугунов изготавливают в основном неответственные детали, к которым предъявляются главным образом требования хорошей обрабатываемости резанием, а не прочности, например, плиты, грузы, корыта, крышки, кожухи и др.

Из ферритно-перлитных чугунов в автомобилестроении изготавливают картеры, тормозные барабаны, крышки, поршни, поршневые кольца, крупные шкивы, зубчатые колеса и др.

Из перлитных - блоки цилиндров, гильзы, маховики и др. В станкостроении серый чугун является основным конструкционным материалом (станины станков, столы и верхние салазки, шпиндельные бабки, колонки, каретки и т.д.), К износостойким относится отбеленный серый чугун(0Ч), имеющий тонкий поверхностный слой со структурой белого чугуна. применяется для изготовления отливок прокатных валков, вагонных колёс и т.д.

Ковкие чугуны.

Название "ковкий чугун" является условным, поскольку изделия из него, как и из любого другого чугуна изготавливают не ковкой, а литьем. Название "ковкий" этот чугун получил вследствие более высоких, по сравнению с серыми чугунами пластических свойств.

Принципиальная схема технологии получения деталей из ковкого чугуна состоит из двух операций. Сначала путем отливки из белого доэвтектического чугуна получают детали (рекомендуемый химический состав заливаемого в формы сплава: 2,4...2,9% С; 1,0...1,6% Si ; 0,3...1,0% Мn ; ≤ 0,1% S; ≤ 0,2% Р, затем полученные отливки подвергают специальному графитизирующему отжигу (томлению). Отжиг состоит обычно из двух стадий (рис. 53).

Вначале отливки из белого чугуна (чаще упакованные в ящики с песком) медленно нагревают в течение 20...25 ч до температуры 950...1050°С. И при этой же температуре длительно их выдерживают (в течение 10...15 ч). В этот период протекает первая стадия графитизации, т.е. распад цементита, входящего в состав ледебурита(А +Fe 3 С), и установление стабильного равновесия аустенит + графит.

В результате распада цементита образуется хлопьевидный графит (углерод отжига).

Металлическая основа чугуна формируется на второй стадии отжига при эвтектоидном превращении. В случае непрерывного охлаждения отливки (на воздухе) в области эвтектоидной (727°С) температуры аустенит распадается на перлит и процесс графитизации не успеет охватить цементит перлита. Чугун принимает структуру: перлит пластинчатый + хлопьевидный графит (ХГ) Он обладает высокими твердостью, прочностью и небольшой пластичностью (НВ 235...305, σ в = 650... 680 МПа, δ = 3,0...15%). Для повышения пластичности при сохранении достаточно высокой прочности проводится непродолжительная (2...4 ч) изотермическая выдержка чугуна или замедленное охлаждение при температурах 690...650°С. Это вторая стадия отжига, представляющая собой в данном случае отжиг на зернистый перлит.

Рис. 53. График отжига белого чугуна на ковкий

В машиностроении широко применяется ферритный ковкий чугун, характеризующийся высокой пластичностью (δ = 10...12%) и относи -тельно низкой прочностью (σ в = 370...300 МПа). Ферритная основа чугуна образуется при очень медленном прохождении интервала 760... 720° С или в процессе изотермической выдержки при 720...700°С. Здесь аустенит и цементит, в том числе и цементит перлита, если перлит успел обрадоваться, распадается на феррит + хлопьевидный графит. Хлопьевидная форма графита является основной причиной более высокой прочности и пластичности ковкого чугуне по сравнению с серым чугуном (см. табл.7).

Продолжительность отжига в целом составляет 48...96 ч (длительность II стадии примерно в 1,5 раза больше, чем I). Для сокращения продолжительности отжига в расплав перед его разливкой по формам (вводится (модифицируют) алюминий (реже бор, висмут и др.), что создает дополнительные искусственные центры образования графита. Согласно ГОСТ 1215-79 выпускают следующие марки ковких чугунов КЧ30-8 , КЧ35-10, КЧ37-12, КЧ45-7, КЧ50-5, КЧ55-4, КЧ60-3, КЧ65-3, КЧ70-2, КЧ80-1,5. Первые две цифры соответствуют минимальному пределу

прочности при растяжении (σ в,кгс/мм 2); цифры после тире - относительное удлинение (δ , % )

Ковкие чугуны применяются для деталей, работающих при ударных вибрационных нагрузках (ступицы, тормозные колодки, коленчатые валы, крюки, картеры редукторов и др.).

Основным недостатком получения КЧ является длительный отжиг отливок и ограничение толщины их стенок (до 50 мм). В пассивных деталях в результате замедленного охлаждения при кристаллизации возникает пластинчатый графит (вместо хлопьевидного), который снижает прочность и пластичность чугуна.

Таблица 7. Механические свойства чугунов.

Серые чугуны (ГОСТ 1412 - 85)

СЧ 10 - - -190 Ф
СЧ 15 - - 163-210 Ф
СЧ 25 - - 180-245 Ф+П
СЧ 35 - - 220-275 П

Высокопрочные чугуны (ГОСТ 7293 - 85)

ВЧ 35 140-170 Ф
ВЧ 45 140-225 Ф+П
ВЧ 60 192-227 Ф+П
ВЧ 80 248-351 П
ВЧ 100 270-360 Б

Ковкие чугуны (ГОСТ 1215 – 79

КЧ 30 – 6 - 100-163 Ф+до10%П
КЧ 35 – 8 - 100-163
КЧ37 – 12 - 110-163
КЧ45 – 7 - 150-207
КЧ 60 - 3 - 200-269 П+до20%Ф
КЧ 80-1,5 - 1,5 270-320

9.4. Высокопрочные чугуны.

Высокопрочный чугун получают при модифицировании (микролегировании жидкого чугуна магнием (0,1...0,5%) или церием (0,2...0,3%). При этом под действием магния графит в процессе кристаллизации принимает не пластинчатую, а шаровидную форму. Микроструктура модифицированного чугуна на ферритной и на перлитной основе приведена на рис. 54, а, б.

Рис. 54. Структура высокопрочного чугуна: а)ферритного б) перлитного

Основной причиной высоких механических свойств высокопрочного чугуна (табл. 7) является шаровидная форма графита. Шаровидный графит, имеющий минимальную поверхность при данном объеме, значительно меньше ослабляет металлическую основу чугуна, чем пластинчатый графит. В отличие от последнего он не является активным концентратором напряжений.

Согласно ГОСТ 7293-85, отливки изготавливают из высокопрочного чугуна следующих марок: ВЧ35, ВЧ40, ВЧ45, ВЧ50, ВЧ60, ВЧ70, ВЧ80, ВЧ100 (цифры в обозначении соответствуют минимальному пределу прочности при растяжении σ в, кгс/мм 2)

Высокопрочный чугун имеет высокие механические характеристики, обладает хорошими литейными и технологическими свойствами. Он применяется как новый материал и как заменитель стали, ковкого и серого чугуна с пластинчатым графитом. По сравнению со сталью обладает большей износостойкостью, лучшими антифрикционными и антикоррозионными свойствами, лучшей обрабатываемостью резанием, Вследствие меньшей плотности отливки легче стальных на 8...10%. Из высокопрочного чугуна, в отличие от ковкого, можно отливать детали любого сечения, массы и размеров.

Области применения: в станкостроении - суппорты, резцедержатели, тяжелые планшайбы, шпиндели, рычаги и др.; для прокатного и кузнечно-прессового оборудования - прокатные валки, станины прокатных станов и ковочных молотов, шаботы, траверсы прессов; для других видов оборудования - барабаны тельферов экскаваторов, коленчатые валы и т.д.

9.5. Легированные чугуны.

Требования к легированным чугунам для отливок с повышенной жаростойкостью, коррозионной стойкостью, износостойкостью или жаропрочностью регламентированы ГОСТ 7769-82. Марки легированных чугунов и их свойства приведены в табл. 8.

Легированные чугуны подвергаются термической обработке для обеспечения необходимых свойств и структуры.

Важным свойством легированных чугунов является сопротивление износу.

В качестве антифрикционных используются чугуны по ГОСТ 1585-85. Они предназначены для изготовления деталей, работающих в узлах трения со смазкой. Стандарт определяет марки антифрикционных чугунов, их химический состав, характеристики, назначение, форму, размер и распределение графита, дисперсность перлита, характер распределения фосфидной эвтектики, твердость и предельные режимы эксплуатации деталей из этих чугунов. Основой их является железо, постоянные компоненты, %: 2,2-4,3 С; 0,5-4,0 Si; 0,3-12,5 Mn. Допускаются примеси, % : 0,1-1 Р; 0,03-0,2 S.

Марки антифрикционных чугунов, их характеристики и на значение представлены в табл. 9.

Таблица 8.

Марки и свойства легированных чугунов(ГОСТ 7769-82)

Марка чугуна Свойства
ЧХ1, ЧХ2, ЧХ3 Чугуны, обладающие повышенной коррозионной стойкостью в газовой, воздушной и щелочной средах в условиях трения и износа, жаростойкие в воздушной среде, выдерживают температуру от 500 до 700˚. предназначены дл изготовления деталей металлургического производства, кокилей стеклоформ, деталей химического оборудования и др.
ЧХ3Т, ЧХ9Н5, ЧХ22, ЧХ16М2, ЧХ28Д2 Чугуны, обладающие повышенной стойкостью против абразивного износа и истирания
ЧХ22С Этот чугун характеризуется повышенной коррозионной стойкостью при температуре 1000˚С
ЧС13, ЧС15, ЧС17, ЧС15МА, ЧС17М3 Устойчивы к воздействию концентрированных и разбавленных кислот, растворов щелочей, солей
ЧГ6С3Ш, ЧГ7Х4 Чугуны, обладающие высокой стойкостью в абразивной среде
ЧГ8Д3 Немагнитный износостойкий чугун
ЧНХТ, ЧНХМД, ЧН2Х, ЧНМШ Чугуны с высокими механическими свойствами, хорошо сопротивляются износу и коррозии
ЧН15Д3Ш, ЧН19Х3Ш, ЧН11Г7Ш, ЧН20Д2Ш, ЧН15Д7 Чугуны, обладающие высокими механическими свойствами, высокой коррозионной и эрозионной стойкостью в щелочах, слабых растворах кислот, в морской воде. Чугун ЧН20Д2Ш может быть пластически деформирован в холодном состоянии

Таблица 9.

Марки антифрикционных чугунов, их свойства и назначение

(ГОСТ 1585-85)

Марка чугуна Свойства и назначение
АЧС-1 Перлитный чугун, легированный хромом (0,2-0,5 %) и медью (0,8-1,6%); предназначен для изготовления деталей, рабо­тающих в паре с закаленным или нормализованным валом
АЧС-2 Перлитный чугун, легированный хромом (0,2-0,5%), нике­лем (0,2-0,5%), титаном (0,03-0,1%) и медью (0,2-0,5%); назначение - такое же, как и чугуна марки АСЧ-1
АЧС-3 Перлитно-ферритный чугун, легированный титаном (0,03-0,1 %) и медью (0,2-0,5 %); детали из такого чугуна могут работать в паре, как с "сырым", так и с термически обработанным валом
АЧС-4 Перлитный чугун, легированный сурьмой (0,04-0,4%); ис­пользуется для изготовления деталей, работающих в паре с закаленным или нормализованным валом
АЧС-5 Аустенитный чугун, легированный марганцем (7,5-12,5 %) и алюминием (0,4-0,8%); из этого чугуна изготавливают дета­ли, работающие в особо нагруженных узлах трения в паре с закаленным или нормализованным валом
АЧС-6 Перлитный пористый чугун, легированный свинцом (0,5-1,0%) и фосфором (0,5-1,0%); рекомендуется для производства де­талей, работающих в узлах трения с температурой до 300 ˚ С в паре с "сырым" валом
АЧВ-1 Перлитный чугун с шаровидным графитом; детали из такого чугуна могут работать в узлах трения с повышенными окруж­ными скоростями в паре с закаленным или нормализованным валом
АЧВ-2 Перлитно-ферритный чугун с шаровидным графитом; изготов­ленные из этого чугуна детали хорошо работают в условиях тре­ния с повышенными окружными скоростями в паре с "сырым" валом
АЧК-1 Перлитный чугун с хлопьевидным графитом, легированный медью (1,0-1,5%); предназначен для изготовления деталей, работающих в паре с термически обработанным валом
АЧК-2 Ферритно-перлитный чугун с хлопьевидным графитом; детали из этого чугуна работают в паре с "сырым" валом

Буквы в обозначениях марок чугунов означают: АЧ - анти­фрикционный чугун, С - серый чугун с пластинчатым графитом, В - высокопрочный чугун с шаровидным графитом, К - ковкий чугун с хлопьевидным графитом. Твердость отливок из анти­фрикционных чугунов (от 100 до 290 НВ) зависит от содержания элементов и условий термической обработки.

Предельные режимы работы деталей из этих чугунов в узлах трения: удельное давление (50 - 300) 10 4 Па (5-300 кгс/см 2), ок­ружная скорость 0,3-10 м/с.

Введение

Чугуном называют сплав железа с углеродом и другими элементами, содержащими более 2,14 % С.

В металлургическом производстве чугуны выплавляют в доменных печах. Получаемые чугуны подразделяют на: передельные, специальные (ферросплавы) и литейные. Передельные и специальные чугуны используют для последующей переработки в сталь. Литейные чугуны (около 20 % всего выплавляемого чугуна) отправляют на машиностроительные заводы для использования при изготовлении литых заготовок деталей (литья).

Нелегированный конструкционный чугун для производства отливок в машиностроении имеет следующий химический состав, %: 2,0 - 4,5 С; 1,0 - 3,5 Si; 0,5-- 1,0 Мп; содержание примесей: не более 0,3 % S; не более 0,15 % S.

Широкое распространение чугуна в промышленности обусловлено оптимальным сочетанием различных свойств: технологических (литейных, обрабатываемости резанием), эксплуатационных (механических и специальных) и технико-экономических показателей.

Белый и серый чугуны

Основной структурной составляющей белых чугунов является хрупкий и твердый цементит. Поэтому белые чугуны обладают высокой твердостью и хрупкостью. Из-за этих свойств их незначительно применяют в технике и совершенно не используют в строительстве. Белые чугуны идут в переделку на сталь и серые чугуны. В доменных печах выплавляют белые чугуны трех типов: литейный коксовый, передельный коксовый и ферросплавы.

Литейный коксовый чугун. (ГОСТ 4832--72) содержит от 3,5 до 4,6% углерода и применяется для производства серых чугунов.

Передельный коксовый чугун используется для выплавки стали и производства отливок.

Ферросплавы применяют как добавки при выплавке стали. Они содержат повышенное количество марганца и кремния. Так, один из видов ферросплавов-- зеркальный" чугун содержит 10--25% марганца, ферромарганец - 70--80% марганца, а ферросилиций - 9--12% кремния.

Серый чугун. Такое название серые чугуны получили по серому цвету излома в отличие от серебристого цвета излома белых чугунов. Серый цвет излому придает угле род, входящий в состав серого чугуна в свободном со стоянии в виде графита. Графит образуется в серых чугунах в результате распада хрупкого цементита. Этот процесс называют графитизацией. Распад цементита вызывают искусственно путем введения кремния или специальной термической обработки белого чугуна.

Структура серых чугунов состоит из металлической основы и несвязанных с нею включений графита. Механические свойства серых чугунов зависят от структуры металлической основы, количества углерода и конфигурации включений графита.

Металлическая основа в серых чугунах состоит из одного феррита, или одного перлита, или их смеси. Наиболее прочным, но в то же время, наименее пластичным, является чугун на перлитной основе.

Чугун на ферритной основе обладает наивысшей пластичностью при наименьшей прочности. Структура металлической основы зависит от режима термической обработки или от количества кремния. При увеличении количества вводимого кремния возрастает степень графитизации. При введении около 5% кремния в структуре серого чугуна цементит, полностью отсутствует в металлическая основа состоит из одного феррита. Выплавляют серые чугуны на всех трех металлических основах.

Графитовые включения в чугуне не связаны с металлической основой. Поэтому при увеличении содержания углерода повышается объем графитовых включений, что снижает их прочность. Этим обусловлено сравнительно небольшое содержание углерода (от 3,5 до 4,5%) в пере дельных коксовых чугунах, применяемых для производства отливок из серых чугунов.

Конфигурация графитовых включений значительно влияет на механические свойства серых чугунов. Наихудшими свойствами обладают чугуны с пластинчатыми включениями графита, наилучшими - с глобулярными (шаровидными) или хлопьевидными включениями, сред ними - чугуны с точечными включениями графита. Кон фигурация включения графита зависит от способа получения серого чугуна.

Промышленность выпускает серые, высокопрочные, легированные и ковкие чугуны.

Серые чугуны с пластинчатым графитом (ГОСТ 1412--79) выпускают марок от СЧ 10 до СЧ 45. В марках, буквы означают наименование чугуна, цифры - предел прочности чугуна, Н/мм 2, при растяжении. Графитизация в серых чугунах достигается введением в их состав от 1 до 2,9% кремния. При этом образуются пластинчатые графитовые включения.

Для получения более высоких механических свойств производят модификацию серого чугуна. В расплавленный чугун вводят 0,3--0,8% модификаторов, в качестве которых применяют ферросилиций или силикокальций, содержащий 70--65% кремния и 30--35% кальция. При такой модификации графит распределяется в виде точечных включений;

Высокопрочные чугуны (ГОСТ 7293--79) - разновидность серых чугунов, которые получают при модификации их магнием или церием. Графитовые включения в этих чугунах имеют шаровидную форму. Такие чугуны при высоком пределе прочности до 12 МПа обладают и относительно высоким удлинением до 17%. Высокопрочные чугуны выпускают марок от ВЧ 38-17 до ВЧ 120-2. Буквы означают наименование чугуна, первые две цифры - предел прочности при растяжении чугуна, кгс/мм 2, вторые - относительное удлинение при растяжении, %.

Легированные чугуны получают введением в серый чугун небольшого количества легирующих добавок: хрома, никеля, меди, титана, которые улучшают механические свойства металлической основы чугуна и способствуют получению благоприятной формы графита.

Ковкие чугуны (ГОСТ 1215--79) - разновидность серых чугунов, получаемая путем длительного (до 80 ч) выдерживания белых чугунов при высокой температуре. Такая термическая обработка называется томлением. При этом цементит распадается и выделившийся при его распаде графит образует хлопьевидные включения. В зависимости от температуры и длительности выдерживания ковкие чугуны получают на ферритной и ферритно-перлитной основах. Такие чугуны - наиболее пластичные из всех видов чугуна. Относительное удлинение ферритного ковкого чугуна до 12% при прочности на растяжение 3,7 МПа, а ферритно-перлитного 5% при прочности до 5 МПа. Ковкие чугуны выпуска ют марок от КЧЗО-6 до КЧ 50-5. Расшифровка марки такая же, как и у высокопрочного чугуна.

Все виды чугуна обладают хорошими литейными свойствами, а также хорошо противостоят коррозии. Из серых чугунов изготовляют элементы строительных конструкций, в том числе и таких ответственных, как опорные части железобетонных балок, ферм, башмаки под колонны, тюбинги для тоннелей метрополитена.