Можно ли резать алюминий электросваркой. Электродуговая резка и сварка металлов

Наиболее распространенным средством борьбы с гололедом в период зимних холодов являются антигололедные реагенты, которые различаются друг от друга не только химическим составом или типом происхождения, но и формой выпуска. В последнее время наибольшим спросом пользуются гранулированные реагенты, которые обладают повышенной эффективностью .

Для того чтобы борьба со льдом была максимально эффективной при любых погодных условиях, требуется правильно подобрать антигололедные реагенты для обработки дорог. В настоящее время наиболее популярными и распространенными средствами против льда являются такие вещества, как хлористый кальций, соль техническая, мраморная и гранитная крошка, а также магния хлорид.

По своей структуре и форме выпуска все используемые реагенты делятся на несколько типов:

  • Порошковые. Это наиболее известная и распространенная форма выпуска антигололедных средств, которая представляет собой сыпучее вещество. Чаще всего в порошковой форме выпускаются такие реагенты, как хлорид натрия и хлористый кальций. Главное преимущество такой формы выпуска вещества состоит в простоте его хранения.
  • Жидкие. Это относительно новая форма выпуска противогололедных средств, которая чаще всего используется для очистки территорий от снега на небольших предприятиях и в частных дворах. Недостаток жидких реагентов состоит в их относительно высокой стоимости по сравнению с веществами других форм выпуска.
  • Гранулированные. Эта форма выпуска реагентов представляет собой твердые маленькие гранулы, которые помимо антигололедных качеств, обладают еще и абразивными свойствами, препятствуя скольжению на обледеневшей дороге. В последнее время именно гранулированные реагенты пользуются высоким спросом, так как их стоимость сравнима с порошковыми средствами, а эффективность и быстродействие в несколько раз выше.

Главное преимущество, которым обладают гранулированные противогололедные реагенты, является их оптимальная форма, которая представляет собой круглые крупинки небольших размеров. Благодаря такой структуре, гранулы, едва попадая на ледяную поверхность, моментально вступают в контакт со льдом, вгрызаясь в него в процессе использования. Результатом такого воздействия является не только быстрое таяние льда, но и его расщепление, которое уменьшает сцепление ледяной корки с дорожным покрытием. Таким образом, после использования реагентов в гранулах, остатки льда легко удаляются с асфальта с помощью подручных средств или спецтехники.

Дополнительные свойства реагентов гранулированных

Помимо всех вышеописанных преимуществ противогололедного реагента в гранулах, гранулированный хлористый кальций или хлорид магния обладает еще и такими достоинствами, как:

  • Экологическая чистота и безопасность эксплуатации. В отличие от технической соли, которая в процессе использования наносит непоправимый ущерб дорожным покрытиям и другим поверхностям, гранулированные реагенты не причиняют никакого вреда окружающей среде.
  • Устойчивость к морозам. Благодаря особой структуре, гранулы антигололедного средства способны эффективно выполнять свою работу даже при низких температурах воздуха вплоть до -30C°.

Благодаря доступной стоимости, безопасности и высокой эффективности, хлористый кальций в гранулах активно заменяет техническую соль и пескосоляную смесь во многих населенных пунктах.

Сварка - процесс получения неразъемного соединения с местным нагревом или без него при использовании сил молекулярного сцепления. Применение сварки дает экономию металла (она намного экономичнее клепки, литья). Сварка широко используется в промышленности и строительстве. С ее помощью изготавливают металлические конструкции, арматурные каркасы, металлические резервуары, мостовые фермы и другие изделия.

При сварке различают следующие виды соединений : стыковые, внахлестку, угловые, тавровые (рис. 12.12).

В зависимости от способа соединения металла в момент сварки различают два основных ее вида:

Рис. 12.12. а - стыковые; б - внахлестку; в - угловые; г - тавровые

  • ? сварка давлением , когда металл доводят до пластичного состояния и сдавливают;
  • ? сварка плавлением , при которой металл нагревают выше температуры плавления, после чего сваривают без применения механического воздействия.

Высокий местный нагрев при сварке вызывает значительное изменение в структуре металла. Чем меньше околошовная зона термического воздействия, тем выше свойства сварного шва.

В зависимости от источника нагрева различают электрическую и химическую сварку.

Электрическая сварка. Эта сварка основана на использовании тепла, выделяемого при прохождении электрического тока. Электрическая сварка подразделяется:

  • ? на сварку сопротивления (или контактную), при которой электрический ток выделяет тепло за счет омического сопротивления (в контактах свариваемых деталей);
  • ? электро дуговую, основанную на использовании при сварке тепла, выделяемого электрической дугой.

При сварке методом сопротивления электрический ток подводится к двум свариваемым изделиям. При их контакте выделяется тепло, которое размягчает металл, и под нагрузкой они свариваются. Применяются три вида контактной сварки: точечная, роликовая и стыковая.

Точечная сварка служит для соединения внахлестку сеток и каркасов. Суммарная толщина свариваемых таким способом изделий не должна превышать 20 мм.

Роликовая сварка используется для соединения листового металла.

Стыковая сварка применяется для соединения металлических стержней арматуры.

Источником тепла при электродуговой сварке (рис. 12.13) является электрическая дуга, открытая в 1902 г. профессором В.В. Петровым. При этом температура, развивающаяся в центре столба дуги, достигает 6000 °С.

Практическое применение электрической дуги для сварки металлов было осуществлено русскими инженерами Н.Н. Бенардосом и Н.Г. Славяновым.

По способу Бенардоса (рис. 12.13, а) электрическая дуга возбуждается в атмосфере между угольным электродом и сва-


Рис. 12.13. а - способ Н.Н. Бенардоса; б - способ Н.Г. Славянова; 1 - держатель; 2 - электрод; 3 - электрическая дуга; 4 - присадочный материал; 5 - свариваемая деталь; 6 - плита; 7 - гибкий провод

риваемой деталью. При этом способе пользуются постоянным током. Положительный полюс присоединяют к свариваемому изделию, отрицательный - к угольному электроду. Присадочный материал вводят отдельно. Этот способ сварки широко применяется при сварке цветных металлов.

Способ Славянова(рис. 12.13, б) - основной вид сварки, применяемый для соединения элементов металлических строительных конструкций. При контакте изделия и металлического электрода между ними возникает электрическая дуга с температурой выше 5000 °С. При этой температуре металл электрода переходит в мелкокапельное жидкое состояние и переносится на свариваемое изделие. Металл изделия также расплавляется на некоторую глубину, которая называется глубиной провара, образуя с наплавленным металлом однородный сплав, в результате чего соединение приобретает высокую прочность.

Несмотря на большую распространенность, электродуго- вая сварка имеет ряд существенных недостатков:

  • ? малая скорость сварки за счет большой зоны разогрева металла, что вызывает коробление изделия;
  • ? пористость шва и выгорание легирующих компонентов из сплавов во время окислительных процессов;
  • ? затруднение сварки металлов с различными физико-механическими свойствами.

Для устранения отмеченных недостатков в последние годы применяется химическая сварка в среде защитных газов или под флюсом.

Химическая сварка. Эта сварка производится за счет тепла химических реакций и делится на газовую и термитную.

При газовой сварке тепловым источником служат продукты сгорания смеси кислорода с горючим газом или жидким распыленным топливом. В настоящее время применяются следующие горючие газы: ацетилен, водород, нефтегаз, природный газ, а также пары бензина, бензола, керосина и др.

Ацетилено-кислородная сварка наиболее экономична и эффективна. Ацетилен С 2 Н 2 - бесцветный газ с плотностью 906 кг/м 3 , который получают путем воздействия воды на карбид кальция СаС 2 + 2Н 2 0 -> С 2 Н 2 + Са(ОН) 2 .

При давлении 17,5 МПа и выше ацетилен взрывоопасен.

При полном сгорании ацетилена в кислороде образуется пламя с температурой около 3200 °С.

Для сварки используются специальные сварочные головки, в которых ацетилен смешивается с кислородом (рис. 12.14) и сгорает у выхода из горелки. Процесс сварки осуществляется наплавлением присадочного металла на нагретый ацетиленокислородным пламенем шов.

Присадочным материалом при газовой сварке служит стальная проволока диаметром 2...8 мм с содержанием углерода от 0,15 до 1,5 % в зависимости от состава свариваемого металла. Для уменьшения степени окисления шва во время сварки применяют флюсы (буру и борную кислоту).


Рис. 12.14.

1 - присадочный материал; 2 - свариваемый материал; 3 - наплавленный металл; 4 - корпус горелки; 5,7 - шланги для подачи ацетилена и кислорода; 6 - баллон с кислородом; 8 - ацетиленовый

генератор

Газовую сварку обычно применяют для изделий толщиной не более 30 мм. При большей толщине свариваемого изделия целесообразно применять электродуговую сварку.

Термитная сварка. Термит - смесь алюминиевого порошка (22 %) и оксидов железа Fe 2 0 3 или Fe 3 0 4 (78 %). Смесь предварительно тщательно перемешивают и подогревают до температуры около 1300 °С. После этого смесь вступает в реакцию и начинает выделять тепло при температуре 3000 °С:

Термитную сварку применяют для сварки труб, рельсов, при ремонтных работах. Наибольшее распространение термитная сварка получила на железнодорожном транспорте при сварке рельсов и труб.

Резка металлов. В строительстве широко применяется газовая резка металла. Наиболее распространена ацетиленокислородная резка металлов (рис. 12.15).

Рис. 12.15.

1 - режущий кислород; 2 - нагревательное пламя; 3 - выдуваемая окалина

Процесс резки распадается на три этапа:

  • 1) подогрев стали до температуры воспламенения (=1250 °С) смесью ацетилена и кислорода (С 2 Н 2 + 0 2);
  • 2) сжигание подогретого участка стали подводимой струей чистого кислорода (0 2).
  • 3) выдувание струей кислорода оксидов, образовавшихся в разрезе.

Время чтения: 8 минут

Резка и сварка металлов - одна из самых часто заказываемых услуг у частных сварщиков и в небольших мастерских. Никого не удивляет тот факт, что для выполнения сварки часто используется технология . Но не все знают, что с помощью электрической дуги можно не только варить, но и резать металл.

Для сварки и резки металла можно использовать различные способы. В этой статье мы кратко напомним вам, что такое электродуговая сварка, какова технология электродуговой сварки и как резать металл электродуговой сваркой.

Метод соединения металлов, в основе которого лежит использование электрической дуги. нагревает и плавит металл, позволяя сформировать сварное соединение. Может нагреваться до температуры более 6000 градусов. Этого достаточно для плавления большинства существующих типов металлов.

Электродуговая технология широко используется при сварке и резке металлов. Бывает , и автоматической.

Ручная электродуговая сварка (она же РДС) - сварка с применением ручного труда и электрода. Сварщик сам держит электрод и направляет его в зону сварки, сам формирует шов и следит за процессом. При полуавтоматической сварке в качестве электрода используется сварочная проволока, которая подается в зону сварки с помощью специального механизма. При этом сварщик все еще сам следит за дугой. А при автоматической сварке и подача проволоки, и движение дуги выполняется с помощью автоматического оборудования.

Технология электродуговой сварки

Технология электродуговой сварки проста. Сварочный аппарат подключается к сети. Один кабель присоединяется к детали, а второй к электродержателю с электродом. Концом электрода постукивают о поверхность металла, возбуждая дугу. Дуга образуется между электродом и свариваемым металлом. Дуга мгновенно начинает отдавать тепло, плавя кромки металла и сам электрод (если он плавящийся). В итоге образовывается сварочная ванна.

В ней смешивается расплавленный электрод и основной металл. Они заполняют стык между двумя деталями, и после остывания образовывается прочное неразъемное соединение. При этом на поверхности шва может образоваться так называемый шлак.

Для выполнения сварки можно использовать плавящиеся и неплавящиеся электроды или проволоку. Выбор зависит от выбранной вами технологии электродуговой сварки. Например, при ручной электродуговой сварке чаще всего используют плавящиеся электроды. А для полуавтоматической сварки - плавящуюся или неплавящуюся проволоку.

Если вы не умеете поддерживать устойчивое горение дуги, то можете использовать в работе специальные электроды или сварочную проволоку. У них в составе должен быть натрий, калий или кальций. Эти элементы стабилизируют дугу за счет своих ионизирующих свойств.

Чтобы защитить сварочную зону от окисления, можно использовать . Например, аргон или . Такие газы подаются прямо в сварочную ванну, защищая ее от кислорода из атмосферы.

Электродуговая сварка может проводиться как на постоянном, так и на переменном токе. Мы рекомендуем использовать постоянный ток, поскольку металл будет меньше разбрызгиваться и шов получится намного качественнее. Если вы новичок, то работа на постоянном токе просто обязательна.

Электродуговая резка металлов

Резка металла сваркой с применением дуги - один из старейших способов резки. Существует ручная дуговая резка с применением плавящегося или неплавящегося электрода и воздушно- и кислородно-дуговая резка. Давайте подробнее остановимся на каждом из способов.

Резка неплавящимся электродом

Начнем с мало используемого, но все же применяемого метода. Резка . В качестве электрода используют графитовый или угольный стержень, резку выполняют на любом роде тока, но при этом с прямой полярностью. Сила тока не должна превышать 800А. Чтобы разрезать металл его нужно сначала нагреть с помощью дуги, а затем выплавить.

Почему этот метод мало используется? Дело в том, что он применим только в особых случаях. Например, при разделке лома или разборке старых конструкций из металла. Словом, для работы со сложными крупногабаритными проектами. О красоте реза тоже говорить не приходится. Работа получается неровной и неаккуратной. Зато таким методом можно резать любые металлы: от чугуна до цветных металлов.

Резка плавящимся электродом

А вот резка плавящимся электродом - это, пожалуй, самый распространенный метод электродуговой резки. Разрез получается намного аккуратнее и ровнее, чем при использовании предыдущего способа. Чтобы выполнить резку установите повышенную силу тока (на процентов 30 больше, чем при сварке). Можно ориентироваться на толщину электрода. Для стержня толщиной 1 миллиметр установите силу тока примерно 50А. Для стержня 2 миллиметра - 100А. И так далее. Сам металл нужно нагревать с глубоким проплавлением. Такой способ нагрева также называют «метод опирания». Резать можно большинство металлов.

Для выполнения несложного реза в домашних условиях можно использовать любые плавящиеся электроды. Но чтобы достичь лучшего результата используйте . Обычно у специальных электродов особое покрытие. Благодаря ему процесс сварки проходит быстрее и проще.

Но несмотря на улучшенное качество реза, он все еще далек от идеала. Если сравнивать такой метод резки металлов с более технологичными, то он проиграет во всем. Начиная от качества реза, заканчивая его эстетическими характеристиками. При этом сам процесс резки очень медленный.

Воздушно- и кислородно-дуговая резка

Воздушно-дуговая и кислородно-дуговая резка металла электродуговой сваркой не имеют никаких отличий, кроме одного. При воздушной резке металл сначала плавится от тепла дуги, а затем он выдувается с помощью сжатого воздуха. При кислородной резке технология та же, только вместо воздуха используется поток кислорода.

Такой метод резки используют при работе с листами нержавейки. При этом толщина листа не должна превышать 20 миллиметров. Также такие методы резки используют при удалении дефектных частей у детали.

Чтобы выполнить такую резку нужно установить на сварочном аппарате постоянный ток и подобрать графитовые электроды. Можно также использовать трубчатые электроды. При использовании трубчатых электродов кислород подается через сквозное отверстие в сварочном стержне. Способ эффективный, но трудоемкий. Гораздо проще подать сжатый воздух или струю кислорода напрямую в место разреза.

Вместо заключения

Резка металла электродуговой сваркой - не такая сложная задача, как может показаться на первый взгляд. Главная особенность заключается в том, что вам нужно сначала в совершенстве овладеть сваркой. И лишь после этого заниматься резкой. Если вы не умеете правильно возбуждать дугу, вести шов и делать качественные соединения, то вряд ли получится грамотно разрезать металл.

Также нужно понимать, что вы никогда не получите от данной технологии аккуратного разреза. Электрическая дуга подойдет разве что для быстрой и неприхотливой резки неответственных конструкций.

Сваркой можно не только соединять металлы, но и резать их. Ничего удивительного: стоит разогреть металл до плавления, а потом не добавлять в сварочную ванну металл, а, наоборот, удалять его, и получится сквозное отверстие. Если при этом пламя не держать на одном месте, а вести по металлу, то получится не дыра, а разрез. Да, можно резать металл и болгаркой, и ножовкой, но не всегда они есть под рукой. А пока будешь ожидать их доставку, сваркой можно разрезать всё необходимое. Резать можно электрической дугой, газовым резаком и плазменной сваркой.

Для дуговой резки обычно используют инвертор. Если вдобавок к этому есть ещё и специальные электроды, предназначенные для резки, то хоть и не аккуратно, но разрезать металл сможет любой. Но даже если вы не новичок, рез получается неровным и с наплывами. А другого результата трудно добиться: электрод, расплавив металл, углубляется в сварочную ванну и как бы выдувает оттуда расплавленный металл. Вот почему, хотя дуговую резку применяют очень часто, применяется она там, где точность резки не важна. Если резка нужна для того, чтобы переварить, исправить неправильное соединение, то место разреза надо будет механически обработать, иначе новое соединение будет довольно корявым.

Самой популярной является газовая резка . Если для газовой сварки ацетилен нужен был для создания шва, а кислород для того, чтобы ацетилен мог сгорать, то здесь принцип обратный: ацетилен является подогревателем металла, причём разогревает его до такой степени, что металл начинает гореть в кислороде. То есть, далее ацетилен практически не нужен, разве только для того, чтобы снова начинать процесс после остановки. Тонкая струя кислорода, поданная под давлением до 12 атм., формирует аккуратный рез с ровными кромками. Кислородная резка не применяется для раскроя нержавейки и алюминия.

Но самый безукоризненный рез получают при плазменной резке . Причём не имеет значения, что надо резать: чугун, сталь, титан, алюминий, медь и её сплавы. Металл толщиной 20 см не является для этой резки камнем преткновения. Чтобы получить плазму, между неплавящимся вольфрамо-лантановым электродом и металлом создаётся дуга, одновременно сюда же подаётся газ. Дуга преобразовывает газ в плазму. А теперь внимание! Если температура при резке дуговой сваркой колеблется 2500-5000°С, при кислородной резке ― 1500-2000°С, то температура плазменного потока ― 5000-30000°С при скорости 1500 м/сек (в четыре с половиной раза выше скорости звука в воздухе). Плазменная струя входит в металл, как нож в масло, оставляя ровные и аккуратные кромки разреза.

Дуговая резка металлов является начальным этапом развития технологии. Практическое применение таковой, несмотря на популяризацию и целесообразность использования плазменной резки, и по сегодняшний день распространено, как в бытовых условиях, так и промышленных масштабах. В процессе дуговой резки металлов используют: металлические плавящиеся электроды, угольные электроды, не плавящиеся вольфрамовые электроды.

Эта технология носит несколько схожий характер со сваркой металла. Единственным исключением является необходимость воздействия на металл большей силы тока. Резка металла требует подбора силы тока на 30%, а в некоторых случаях и 40% больше от того, что использовался при сварке того же металла. Под воздействием более мощной дуги тока, металл начинает проплавляться. Где зажигают электрическую дугу? В качестве такого места принято использовать начало реза на внешней (верхней) кромке.

Козырек покрытия электрода: предназначение

Козырек покрытия электрода несет не только техническое значение, но и практическое. Что касается практического? В данном случае он используется в качестве выталкивающего элемента расплавленного металла. Что до технического, то именно козырек покрытия электрода является изолятором.

Режимы резки плавящимся электродом

В качестве материала может выступать низкоуглеродистая сталь толщиной в 6 мм, 12 мм, 25 мм, отталкиваясь от толщины которой, мы определяем диаметр электрода и режим резки. Используя электрод толщиной в 2,5 мм, режим резки устанавливаем в 140 Ампер и скорость работы – 12,3м/ч, 7,2м/ч и 2,1м/ч соответственно. По мере использования более толстого электрода, например 3 мм и 4 мм, увеличивается необходимая сила тока, а также скорость работы относительно обрабатываемого металла.

Резка угольным электродом

Данный вид резки является востребованным и целесообразным в тех случаях, когда не берутся во внимание качество и ширина образовавшегося реза. Посредством угольного электрода можно обрабатывать чугун, а также цветные металлы.
С помощью угольного электрода можно резать сталь толщиной в 6 мм, 10 мм и 16 мм. Во всех случаях используется электрод толщиной в 10 мм, а сила тока – 400 Ампер.

Недостатки дуговой резки металлов перед плазменной резкой

Самый основной недостаток – низкая производительность относительно выполненных работ. Скорость резки металлическим электродом оставляет желать лучшего. Вторым и не менее весомым недостатком является низкое качество реза, что делает данный метод практически неприменимым там, где нужно точно выдерживать разметку. Высокая сила тока дуги обязательно оставит на заготовке видимые неровности, а также затвердевшие натекания с обратной стороны.
Если же говорить об основных преимуществах плазменной резки, то целесообразность ее использования выходит на первый план в процессе создания точных пропорциональных металлоконструкций. Основные ее преимущества заключаются в следующем:

  • скорости выполнения работ;
  • возможности обработки любого металла или же сплава;
  • просто в необходимости придания определенной формы или фигуры на основании обрабатываемого металла или вне его;
  • высокой чистоте реза;
  • отсутствии натеканий.
  • актическая реализация вышеупомянутых преимуществ напрямую зависит от правильности выбранного режима, а точнее соответствия выполняемых работ относительно обрабатываемого металла. Сюда можно отнести:
  • свойства металла;
  • его толщину;
  • скорость и температуру на момент разреза;
  • скорость практической реализации разреза.

Соблюдение вышеперечисленного позволит добиться точного и качественного результата с учетом самых кратчайших сроков выполнения работ.

«Rezonver Hybrid». Функционал, преимущества

Сварочный аппарат «Rezonver Hybrid» – искусство ручной дугой сварки и воздушно-плазменной резки под европейские стандарты качества в компактном корпусе. Именно габариты и вес сварочного аппарата являются первым преимуществом, которое выводит «Rezonver Hybrid» на одну из первых конкурирующих позиций. Только представьте! Вес всего в 3,5 кг, что поистине в 10 раз легче, чем два отдельных аппарата MMA и CUT.

Стоит отметить, что данный инверторный сварочный аппарат 200 ампер использует для сварки металла, а 30 Ампер – резки металла. Сварочный аппарат «Rezonver Hybrid» готов предоставить своему владельцу 98% КПД, а также в процессе использования показать производительность на 13% выше, чем у других аппаратов. Согласитесь! Показатели заставляют задуматься над покупкой.

Все преимущества данного сварочного аппарата заключаются в его качестве. Сама же силовая группа «Rezonver Hybrid» не снашивается с течением времени и объемом выполненных работ. Таким образом, резка металла сварочным инвертором имеет наивысшую целесообразность.

Аппарат полностью защищен от скачков напряжения и возможных коротких замыканий. Использовать таковой можно даже при низком напряжении в 160 В. Практическая реализация инновационных технологий в компактном корпусе исключает образование электромагнитных помех. Результатом достижения такового стало применение резонансного высокочастотного инвертора нового поколения. Никакие другие бытовые сварочные аппараты инверторного типа не имеют такового резонансного контура. Собственно его интеграция в цепь позволяет добиться практически идеального результата в самые кратчайшие сроки, не смотря на плотность обрабатываемого металла.

Данный аппарат (в режиме резки) легко справляется с любым видом стали, невзирая на ее состав, плотность или же толщину. К таковым можно отнести высокоуглеродистые и легированные стали. Резка алюминия и меди выполняется в считанные минуты.

Аппарат «Rezonver Hybrid» нашел свое активное, и более того оправданное применение, в бытовых условиях, а также промышленных масштабах, о чем свидетельствует высококачественная силовая группа.