Какое из перечисленных стекол не является стеклом. Сферы и области применения стекла

Все твердые тела делят на кристаллические и аморфные. Аморфные имеют неупорядоченную структуру и могут плавиться при достаточно высокой температуре. В науке стеклом принято называть все аморфные тела, которые образуются в результате переохлаждения расплава.

Стеклом в обыденной жизни называют прозрачный хрупкий материал. В зависимости от того или иного компонента, входящего в состав исходной стекломассы, в промышленности различают следующие виды стекла: силикатные, боратные, боросиликатные, алюмосиликатные, бороалюмосиликатные, фосфатные и другие.

Базовый метод получения стекла заключается в плавлении смеси кварцевого песка (SiO2), соды (Na2CO3) и извести (CaO). В результате получается химический комплекс с составом Na2O*CaO*6SiO2.

Физические, механические и химические свойства стекла:

Плотность стекол зависит от компонентов, входящих в их состав. Так, стекломасса, в больших количествах включающая оксид свинца, более плотная по сравнению со стеклом, состоящим помимо прочих материалов и из оксидов лития, бериллия или бора.

Прочность на сжатие - способность материала сопротивляться внутренним напряжениям при воздействии извне каких-либо нагрузок. При этом степень прочности того или иного вида стекла зависит от химического вещества, входящего в его состав. Более прочны стекла, включающие в свой состав оксиды кальция или бора. Низкой прочностью отличаются стекла с оксидами свинца и алюминия. Различные повреждения (трещины, глубокие царапины) значительно снижают величину прочности материала. Для искусственного увеличения показателя прочности поверхность некоторых стеклоизделий покрывают кремнийорганической пленкой.

Хрупкость - механическое свойство тел разрушаться под действием внешних сил. Величина хрупкости стекла в основном зависит не от химического состава образующих его компонентов, а в большей степени от однородности стекломассы (входящие в его состав компоненты должны быть беспримесными, чистыми) и толщины стенок стеклоизделия.

Твердость - механическое свойство одного материала сопротивляться проникновению в него другого, более твердого. Определить степень твердости того или иного материла можно с помощью специальной таблицы-шкалы, отражающей свойства некоторых минералов, которые расположены по возрастающей, начиная с менее твердого, талька, твердость которого взята за единицу, и заканчивая самым твердым - алмазом с твердостью в 10 условно принятых единиц.Степень твердости того или иного вида стекла в основном зависит от химического состава входящих в него компонентов. Так, использование при создании стекломассы оксида свинца значительно снижает твердость стекла. И, напротив, силикатные стекла достаточно плохо поддаются механической обработке.

Теплоемкость - свойство тел принимать и сохранять определенное количество теплоты при каком-либо процессе без изменения состояния. Теплоемкость стекла прямо зависит от химического состава компонентов, входящих в состав исходной стекломассы. Чем выше в стекломассе содержание оксидов свинца и бария, тем ниже показатель теплопроводности. А легкие оксиды, такие, например, как оксид лития, способны повысить теплопроводность стекла. Стекло с низкой теплоёмкостью остывает намного медленнее.

Теплопроводность - свойство тел пропускать через себя теплоту от одной поверхности до другой, при условии, что у них разная температура. Стекло плохо проводит тепло. Причем наиболее высокий показатель теплопроводности отмечен у кварцевого стекла. С уменьшением доли оксида кремния в общей массе стекла или при замене его на любое другое вещество уровень теплопроводности понижается.

Температура начала размягчения - это температура, при которой аморфное тело начинает размягчаться и плавиться. Самое твердое - кварцевое - стекло начинает деформироваться только при температуре 1200-1500 °С. Другие типы стекол размягчаются уже при температуре 550-650 0С. Величина температуры начала плавления того или иного сорта и вида стекла определяется химическим составом компонентов. Так, тугоплавкие оксиды кремния или алюминия повышают температурный уровень начала размягчения, а легкоплавкие (оксиды натрия и калия), напротив, понижают.

Тепловое расширение - явление расширения размеров того или иного тела под воздействием высоких температур. Материалы для отделок следует подбирать так, чтобы величина их теплового расширения соответствовала тому же показателю стекломассы основного изделия. Коэффициент теплового расширения стекол прямо зависит от химического состава исходной массы. Чем больше в стекломассе щелочных оксидов, тем выше показатель температурного расширения, и, наоборот, присутствие в стекле оксидов кремния, алюминия и бора снижает эту величину.

Термостойкость - способность стекла не поддаваться коррозии и разрушению в результате резкой смены внешней температуры. Этот коэффициент зависит не только от химического состава массы, но и от размера изделия, а также от величины теплоотдачи на его поверхности.

Химическая стойкость - способность того или иного тела не поддаваться воздействию воды, растворов солей, газов и влаги атмосферы. Показатели химической стойкости зависят от качества стекломассы и воздействующего агента. Так, стекло, не подвергающееся коррозии при действии воды, может деформироваться при воздействии щелочных и солевых растворов.

Оптические свойства:

Преломление света - изменение направления светового луча при его прохождении через границу двух прозрачных сред. Величина, показывающая преломление света стекла, всегда больше единицы.

Отражение света - это возвращение светового луча при его падении на поверхность двух сред, имеющих различные показатели преломления.

Дисперсия света - разложение светового луча в спектр при его преломлении. Величина дисперсии света стекла прямо зависит от химического состава материала. Наличие в стекломассе тяжелых оксидов увеличивает показатель дисперсии.

Поглощение света – способность той или иной среды уменьшать интенсивность прохождения светового луча. Показатель поглощения света стекол невысок. Он увеличивается лишь при изготовлении стекла с применением различных красителей, а также особых способов обработки готовых изделий.

Рассеяние света - это отклонение световых лучей в различных направлениях. Показатель рассеяния света зависит от качества поверхности стекла. Так, проходя сквозь шероховатую поверхность, луч частично рассеивается, и потому такое стекло выглядит полупрозрачным.

Стекло, разлетаясь на мелкие кусочки, ассоциируется для нас с разбившимся кристаллом. Величайшее заблуждение, даже более того: всё, что может кристаллизоваться, стеклом быть не может. При его производстве нужный состав расплавляют, а потом дают очень быстро остыть, минуя точку кристаллизации. То есть получают затвердевшее аморфное (вязкое) вещество, твёрдую жидкость. Значит, стекло надо рассматривать, как переохлаждённую жидкость с высочайшей вязкостью. К примеру, даже из металла можно получить стекло, охлаждая его со скоростью 100000 - 1000000 К/с, правда, оно не прозрачно, но здесь дело том, что силикатное стекло весь свет пропускает, а железное ― весь отражает.

Состав стекла

Стекло делают также из органических веществ (т.н. оргстекло), но промышленное стекло, используемое в строительстве, производят, в основном, из кварцевого песка SiO 2 . К нему добавляется мел СаСО3 или известь СаО, а также сода Na2CO3. Взятые в нужных пропорциях, они перемешиваются и отправляются в печь При температурах в диапазоне 1100-1600 °С полученная масса плавится, из неё улетучивается СО 2 . Далее ей дают медленно остыть. Но стекло мягчеет и плавится при 500-600°С, значит, при этой же температуре при остывании оно может начать кристаллизоваться, и тогда это будет уже не стекло. Поэтому, начиная с температуры чуть выше указанной, производят быстрое остывание стекломассы. Она твердеет, но остаётся аморфной. Это уже стекло, имеющее состав Na 2 O СаО 6SiO 2 .

Классификация строительного стекла

Классификаций, учитывающих определённые параметры стекла множество, поэтому лучше перечислить не отдельные виды стекла, а способы классификации. Итак, строительные стёкла классифицируются по:

  • - форме готового стекла. Оно может быть плоским, профильным, листовым, может представлять собой стеклоблоки или стекловолокно;
  • - способу производства. Существует тянутое, прокатное и прессованное, пеностекло и стекловата имеют непохожую на остальные технологию производства;
  • - целям применения. Всем известно оконное, а ведь есть ещё и полированное, закалённое, в виде плиток и т.д.;
  • - свойствам. Оно может быть светотехническим, армированным, цветным, пуленепробиваемым, шумоизоляционным, теплоизоляционным.

Свойства стекла

Естественно, свойства стекла будут зависеть от его состава. Например, химическая стойкость зависит от наличия в стекле щелочных окислов. Стоит заменить одновалентные натриевые окислы окислами с большей валентностью, как она повышается.

Ранее ценились только оптические свойства, о других мало задумывались, считалось, что стекло только и предназначено для того, чтобы пропускать свет. Конечно, после бычьего пузыря в оконце это был верх прогресса. Из оптических свойств, кроме прозрачности, ещё можно назвать отражение, светопреломление, рассеивание. Все эти характеристики можно менять, изменяя химический состав или цвет стекла. К примеру, силикатное стекло не пропускает ультрафиолет, а кварцевое ― свободно.

Из других свойств стекла стоит отметить хрупкость, борьба с которой и породила создание противоударных и пуленепробиваемых стёкол. Теплопроводность стекла довольно высока. Что касается электропроводности, то само стекло плохо проводит электрический ток, хорошо проводит поверхностная плёнка, впитывающая влагу.

Стекло прекрасно противостоит воде, щелочам и кислотам, правда, не любит фосфорную и плавиковую кислоты. Оно режется, шлифуется, обтачивается и полируется специальными инструментами с содержанием алмаза. Дело в том, что по шкале Мооса твёрдость стекла 5-7, у алмаза ― все 10. При температурах около 1000°С стекло можно формовать, вытягивать в трубки и листы, делать волокна, сваривать, выдувать.

Еще о стеклах и изделиях из стекла:

-

-

-

Стекло является самым древним и самым универсальным материалом, который используется в разных сферах деятельности человека. Изготавливать стекло начали еще в Древнем Египте, где стекло применялось для внутренней облицовки пирамид. Чуть позже стекло начали широко использовать в отделке множества дворцов. Самыми важными характеристиками стекла оставалась твердость, прочность, теплопроводность и высока термостойкость, причем эти характеристики могут влиять на качество данного материала.

По аналогии до стекло имеет свои уникальные качества. Если это технические стекла, то их плотность зависит от химического состава и колеблется в пределах от 220 и до 6300 кг/м3. Если это стекла, которые применяют в изготовлении декоративных изделий и сортовой посуды, то их плотность обычно 2490-2520 кг/м3. Для изготовления свинцовых хрусталей плотность стекла составляет 2400-3200, а для бариевых хрусталей плотность составляет 2700-2900 кг/м3.

Стоит знать, что плотность стекла уменьшается при повышении температуры. Поэтому плотность стекла отожженного больше, нежели закаленного. А связано это с тем, что все закаленные стекла имеют рыхлую структуру, ведь при закалке замораживается высокотемпературная структура в стекле. А вот во время отжига эта структура уплотняется. Готовая плотность плохо и хорошо отожженных стекол различается и составляет 20-30 кг/м3.

Еще плотность стекла может изменяться в зависимости от его химического состава. Например, существенно повышают стекла оксиды железных металлов ZnO , PbO , ВаО , а в меньшей степени MgO и СаО . Такая зависимость используется в контроле химического состава стекол и особенно во время механизированного производства стеклянных изделий.

Стекло является неорганическим материалом, который изготавливают на производстве, а также оно существует в природе – это минералы. Относительно структуры стекла , то оно является аморфным твердым телом, которое имеет массу модификаций. Именно поэтому существует большое видов этого материала.

Причем каждый вид стекла имеет свой уникальный состав, свои химические и физические свойства. На сегодня, независимо от вида стекла, его производство достигло таких масштабов, что свойства стекла улучшаются каждый день. Например, данный материал имеет такой состав, что получил высокую стойкость к агрессивным веществам, биоактивность , прозрачность, отражающую способность, прочность, жаростойкость, электропроводность и другие.
Химический состав стекла

Изготавливают стекло из стеклообразующих веществ, к которым относятся такие фториды и оксиды, как B2O3, P2O5, AlF3, GeO2, SiO2, TeO2. В итоге, учитывая основной используемый компонент, выделяют разные виды стекол. Например, бывают фторидные и оксидные стекла, это силикатное, кварцевое, германатное и фосфатное стекло.

Если это обычное силикатное стекло, то его изготавливают методом плавления компонента из соды, кварцевого песка и извести. Что касается кварцевого стекла, то оно в своем составе имеет формулу SiO2 и изготавливается оно с помощью метода плавления кремнеземистых веществ, это кварцита и горного хрусталя. Помимо этого, оно еще может состоять из кластофульгуритов , то есть оно имеет природное происхождение. Изготавливают его путем попадания молнии прямо в залежи кварцевого песка.

Физические свойства

Плотность стекла зависит от его вида, например, минимальную плотность имеет кварцевое стекло, что составляет 2200 кг/м3. Если в состав стекла входят оксид свинца, висмута, тантала, то его плотность составляет приблизительно 7500 кг/м3, а обычное оконное, то есть силикатное стекло имеет плотность 2500-2600 кг/м3. Вторым важным показателем является теплопроводность стекла, которая варьирует от 0,711 и до 13,39 Вт/м*К.

Удельный вес стекла является параметром изменным , который зависит от плотности стекла. Но его высчитают по специальной формуле, в которую включают толщину и массу изделия. Например, стекло с толщиной 1 мм имеет 2,5 кг и площадь 1 м2. Еще одним показателем является хрупкость стекла, которая определяет возможное разрушение этого материала от разного физического воздействия.

Такое свойство отражается ударной вязкостью, которая может увеличиться после добавления брома в процессе изготовления стекла. Например, ударная вязкость силикатного стекла составляет 1,5-2 кН/м, а его прочность может варьировать от 500 и до 2000 МПа. Что касается твердости стекла, то она измеряется по шкале Мооса и составляет 6-7 Ед. А зависит твердость стекла от добавления различных примесей. И если в его состав внесли щелочные оксиды, то твердость материала становится меньшей, в итоге получается свинцовое мягкое стекло, а самым твердым считается кварцевое стекло.

Востребованность и популярность стекла

Самую важную роль в производстве стекла играет его закалка, то есть обработка, которая делает стекло наиболее безопасным и особенно во время его разбивания. В итоге осколки не могут ранить человека, поэтому такой материал охотно используют в производстве перегородок, мебели и дверей. Кроме этого существует и другой способ обработки стекла – это изгиб стекла, то есть получается гнутое стекло. Такой материал является очень капризным, поэтому его редко используют. Готовое стекло и даже закаленное образцы довольно легко поддаются поверхностной обработке.

Наиболее распространенным видом обработки стекол является пескоструйная обработка. То есть ударная волна песка направлена так, что выбивает в стекле следы, которые задумал дизайнер. В итоге матирующий эффект и причудливые узоры придают материалу индивидуальность и неотразимость. Еще в производстве стекла используется окраска и такая обработка материала встречается для приготовления столешниц и при отделке стен. Огромное множество способов дает возможность изготавливать каждый день различные предметы обихода, и просто прекрасные шедевры искусства.

С каждым годом разновидности стекол только увеличиваются, и это позволяет использовать его во многих сферах деятельности человека. Единственно, что нельзя забывать – это осторожно обращаться с этим прочным, красивым и восхитительным материалом, который все же остается хрупким материалом.

СТЕКЛО: СТРУКТУРА, СВОЙСТВА, ПРИМЕНЕНИЕ


ВВЕДЕНИЕ

Стекло является самым широко применяемым материалом в быту, строительстве, на транспорте благодаря своим уникальным качествам: прозрачности, твердости, химической устойчивости к активным химическим реагентам, относительной дешевизне производства. Без него невозможно изготовить оптические приборы, телевизоры, космические корабли и др. Несмотря на успехи в создании новых материалов широкого назначения, неорганические стекла после камня, бетона, металла прочно занимают одно из главных мест среди используемых в практике.

Человеку с древнейших времен известны природные стекла (янтарь, стекла вулканического происхождения), а вырабатывать стекла он научился несколько тысяч лет назад. Производство стекла совершенствовалось на протяжении веков, но долгое время этот процесс определяло искусство мастеров, опыт которых передавался из поколения в поколение. В настоящее время наряду с ручным трудом в стеклоделии применяются механизированные методы формования стеклоизделий, которые обеспечивают массовый выпуск продукции. В народном хозяйстве ориентировочно можно выделить следующие основные области применения стекла: строительная промышленность, производство стеклотары, стеклоаппаратов, химической посуды; электровакуумная промышленность, использование стекла в качестве декоративного материала, оптическая промышленность и приборостроение.

Больше половины всего выплавляемого стекла перерабатывается на листы для остекления зданий. Широкое применение в строительстве нашли изделия из стекловолокнистых материалов (стеклянная вата, маты, жгуты и др.), которые используются в качестве тепло- и звукоизоляторов. Они не гниют и не плесневеют, обладают малым объемным весом, огнестойкостью и вибростойкостью .

Около трети всей стекольной продукции - сосуды самого разнообразного типа, фасона и назначения. Замечательные декоративные свойства стекла (способность воспринимать различные окраски, передавать игру света, разнообразие в переходах от кристальной прозрачности через все степени замутнения до полной непрозрачности) обусловили существование особой группы изделий, объединяемых общим названием "художественное стекло". Сюда относится художественная столовая посуда, монументальные стеклянные изделия (барельефы, торшеры, вазы, люстры и др.) и разнообразные отделочные материалы (плитки и листы для облицовки стен, полов зданий, карнизы, фризы и др., использование стекла в витражах). Одной из важных отраслей художественного стеклоделия является производство смальт (непрозрачных стекол) широкого ассортимента. Эти стекла используются при создании монументальных стенных панно в технике мозаичной живописи, родственной технике витража .

В виде стеклоэмалей, непрозрачных тонких стекловидных слоев различных цветов, стекло используется как защитное покрытие, предохраняющее металлические изделия от разрушения и придающее им внешний вид, удовлетворяющий эксплуатационным и эстетическим требованиям. Стеклоэмали применяются при изготовлении химической и пищевой аппаратуры, посуды, изделий санитарной техники, труб, вывесок, облицовочных плиток, ювелирных изделий .

Оптическая промышленность и оптическое стекло позволили создать современные точнейшие оптические приборы во всем разнообразии их типов и назначений (обычные очки, микроскопы, телескопы, фото- и киноаппараты и др.).

Особо чистое кварцевое стекло используется для изготовления волоконных световодов при создании волоконно-оптических линий связи, позволяющих передавать большие объемы информации. Отдельный класс стекол образуют так называемые лазерные стекла. Это многокомпонентные стекла различной природы (силикатные, фосфатные, фторбериллатные, боратные, теллуритные и др.), активированные неодимом. Лазеры могут быть миниатюрными, как, например, используемые в медицине, и могут представлять собой мощные системы, применяемые в термоядерном синтезе. Лазеры применяются также в научных исследованиях, геодезии, при точной обработке металлов .

В ходе дальнейшего изложения будут дополнительно приведены еще некоторые примеры применения стекла как материала.

Из краткого обзора областей применения стекла очевидно, что необходимо изготавливать стекла, разные по свойствам: особо химически стойкие, особо прочные механически, обладающие определенными коэффициентами термического расширения, заданными оптическими и электрическими константами и др. Поэтому неудивительно, что исследователи прилагают много усилий для постижения природы стекла, выяснения влияния разнообразных факторов на его различные свойства.

В России становление науки о стекле и промышленного стеклоделия связано с именами выдающихся ученых М.В. Ломоносова и Д.И. Менделеева. М.В. Ломоносов первым в мировой практике стеклоделия обратил серьезное внимание на взаимосвязь свойств стекол и их химического состава. По его инициативе в 1754 году была отстроена первая стекольная фабрика. Заслугой Д.И. Менделеева являются предвидение полимерного строения SiO2 и развиваемые им представления о химической природе стекла, которое он рассматривал в общем контексте разработки таких фундаментальных понятий химической науки, как определенное-неопределенное соединение, раствор, сплав и т.д.


СТЕКЛООБРАЗНОЕ И КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЯ

Обычно понятие "стекло" определяется не просто как материал, а как некоторое особое состояние твердого тела, стеклообразное состояние, противопоставляемое кристаллическому. Известно, что одно и то же вещество может быть газообразным, жидким и кристаллическим. Для каждого такого состояния характерна своя группа специфических признаков. Стекло же не может быть полностью отнесено по совокупности признаков ни к одному из них. Рассмотрим вещества, находящиеся в указанных агрегатных состояниях, с точки зрения взаимного расположения частиц (атомов, ионов, молекул), образующих вещество, и их взаимодействия между собой. При очень высоких температурах многие неорганические вещества существуют в виде газа. В газе частицы вещества располагаются и движутся хаотически. При низком давлении, например атмосферном, взаимодействия между частицами чрезвычайно слабы. При понижении температуры газ конденсируется в жидкость, которая при дальнейшем снижении температуры кристаллизуется. В жидкостях и кристаллах частицы располагаются несравненно более компактно, между ними действуют значительные по величине силы, которые создают известную упорядоченность в расположении атомов или молекул: в кристаллах почти идеальную, в жидкостях - существенно менее полную. Основной особенностью кристаллов является то, что их можно получить путем повторения элементарной ячейки во всех трех направлениях. Элементарная ячейка состоит из некоторого числа атомов (ионов, молекул), строго определенным образом расположенных друг относительно друга. Такое повторение элементарной ячейки называют дальним порядком. В жидкостях нельзя выделить такой элементарной ячейки. Для жидкости можно с уверенностью говорить о существовании ближнего порядка, то есть о ближайших соседних частицах, окружающих центральную. Таким образом, для жидкости характерен ближний порядок, но нет дальнего. Мы воспользуемся здесь широко применяемым определением стекла: стекло - это такое состояние аморфного вещества, которое получается при затвердевании переохлажденной жидкости. Стекло неравновесно по отношению к кристаллическому состоянию, которое может реализовываться при том же составе и при тех же внешних условиях. Отличие стекла от кристаллов состоит в отсутствии периодичности строения, в отсутствии дальнего порядка в структуре.

Кроме традиционного пути получения стекол - охлаждения расплава, стали широко применяться и другие способы получения стекол. Сюда относятся стеклообразные пленки, получаемые напылением из газовой фазы; "метамиктные стекла", образующиеся под воздействием ударных давлений и при бомбардировке кристаллов нейтронами; стекла, получаемые по зольгель-технологии. В этой связи неудивительно, что разные исследователи дают различные определения стекла, отличные от приведенного нами. При этом они руководствуются выборочными признаками стеклообразного состояния. За основу принимаются, например, структурные признаки, способ получения стекла, тип химической связи и т.д. Терминологическая дискуссия по этому вопросу ведется уже давно, и она далека от завершения, что, безусловно, свидетельствует о сложности объекта исследования .

СТРУКТУРА СТЕКОЛ

Приведенное выше определение стекла, связанное с традиционным способом его производства и с общими сведениями о его структуре, привело к двум различным направлениям в развитии теории стеклообразного состояния. А.А. Лебедев предположил, что структуру стекла образуют субмикроскопические кристаллы - кристаллиты, расположенные друг относительно друг друга хаотическим образом . Согласно кристаллитной гипотезе стекло является химически однородным.

Исследование стекол методом рентгеноструктурного анализа явилось качественным скачком в понимании природы стеклообразного состояния . Согласно полученным данным было показано следующее: 1) кристаллиты содержат 1 - 2 элементарных ячейки, да и то искаженных, то есть терялся смысл самого понятия "кристаллит", 2) высказано предположение о химически неоднородном строении стекла. Исторически кристаллитная гипотеза сыграла большую роль в понимании природы стеклообразного состояния, но ее пригодность для описания большинства стеклообразных веществ оказалась невелика.

Наряду с кристаллитной гипотезой получили развитие представления шведского ученого В. Захариасена , который на основе успехов кристаллохимии силикатов высказал предположение, что структуру оксидных стекол образуют элемент-кислородные полиэдры, аналогичные таковым в кристаллах, но их сочленение не имеет строгого порядка и периодичности, как в кристаллах. Было установлено, что рентгенограммы кварцевого стекла лучше всего интерпретируются в рамках модели непрерывной беспорядочной сетки тетраэдров SiO4 . Атом кремния, окруженный четырьмя атомами кислорода, и отражает ближний порядок в структуре стекла. Для сравнения на рис. 1а, б схематично даны структура кристаллического кварца и структура стеклообразного кварца в виде беспорядочной сетки. Поскольку на рисунке представлена схема в двумерном изображении, каждый атом кремния окружен только тремя атомами кислорода. Понятно, что в реальном тетраэдре один атом кремния и три атома кислорода не могут находиться в одной плоскости. Поэтому схема дает несколько искаженную картину действительных представлений В. Захариасена. Тем не менее она правильно отражает основные идеи его подхода. Как показали многочисленные рентгеновские и нейтронографические (основанные на изучении рассеяния нейтронов стеклом) исследования, наличие неупорядоченной сетки подтверждается применительно к структуре однокомпонентных стекол, таких, как B2O3 , SiO2 , As2O3 , Si, B, и некоторых других. Исследования поведения стеклянных электродов в растворах электролитов также позволили высказать определенные суждения о ближнем порядке в стеклах. На базе экспериментального материала по изучению поведения электродов из разных стекол в растворах электролитов и его теоретического осмысления автором был предложен метод изучения элементов структуры стекла по типу комплексных ионов, таких, например, как 1 - , 1 - .

Стекло - это материал, по некоторым свойствам не имеющий аналогов. До сих пор для его производства используются натуральные ингредиенты, повторная переработка испорченного изделия может происходить неоднократно без потери качества и почти без отходов.

Определение

Стекло может находиться в нескольких агрегатных состояниях на разных этапах производства. И все же, стекло - что такое и из чего его делают?

Согласно научному определению, стеклом является всякое аморфное тело, полученное методом расплава, которое при увеличении вязкости приобретает свойства твердого тела. При этом процесс перехода из одного состояния в другое является обратимым.

История материала

В повседневной жизни мы ежедневно используем стекло. Что такое и из чего его делают - это редко задаваемые в современности вопросы, настолько нам привычен материал. Ученые считают, что стекло впервые было получено случайно, проследить зарождение технологии невозможно. Первые изделия датируются примерно 2540 годом до нашей эры. В древней рецептуре присутствовали три компонента - сода, песок и глинозем. В дальнейшем научились улучшать свойства материала, добавляя к основным ингредиентам мел, доломит и другие составляющие. Весь состав, из которого варится стекло, называется шихта.

Цветное стекло начали получать, используя природные пигменты - окиси хрома, оксид никеля, кобальтовые добавки. Первое формованное изделие было получено в 1-м веке нашей эры римскими мастерами. Они же изобрели листовое стекло. Технология производства стекла в листах состояла в выдувании огромного, в человеческий рост цилиндрического пузыря из горячей массы. Пока она не остыла, ее разрезали вдоль длинной части и раскладывали на поддонах для выравнивания. Такая техника была распространена повсеместно до начала 20-го века. В России стекольное производство было открыто в 17-м веке и располагалось в селе Духанине, мастерами в то время были только иностранцы.

Состав

Для множества целей используется стекло. Что такое стекло, мы уяснили, а что представляют собой его основные ингредиенты? Состав исходных ингредиентов за весь период практики изготовления материала практически не изменился. Три основных компонента составляют основу (шихту) - это кремнезем или кварцевый песок, сода (оксид натрия) и оксид кальция, известный под названием известь. Составляющие соединяются в определенных пропорциях и плавятся в печи при температуре от 300 до 2500 °С. В состав шихты, в зависимости от желаемых свойств, добавляются поташ, борный ангидрид, битое стекло предыдущих варок или сырье вторичной переработки.

Технология

Для усиления или ослабления свойств соединений в процесс плавки добавляют усилители, глушители, красители, обесцвечиватели и т. д. После варки массу быстро охлаждают, что позволяет избежать образования кристаллов. Из всех составляющих самый большой процент в рецептуре занимает песок - от 60 до 80%. Песок выступает остовом, вокруг которого формируется стекловидный материал. Технология производства стекла остается неизменной в течение столетий.

Известь является еще одним компонентом, без которого не производится стекло. Что такое оксид кальция в составе ингредиентов? Эта составляющая придает материалу химическую устойчивость и усиливает блеск. Стекло можно выплавить лишь из песка и соды, но без извести оно растворится в воде. Третьим игроком в составе шихты является оксид металла - натрия или калия (до 17%). В смесь вводится в виде кальцинированной соды или поташа. Эти составляющие уменьшают температуру плавления, позволяя отдельным песчинкам полностью расплавиться и соединиться в монолит.

Виды

В зависимости от используемых компонентов в составе шихты, разделяют виды стекла:

  • Кварцевое. Изготавливается из одного компонента - кремнезема. Обладает высокими качествами: устойчиво к высокой температуре (до 1000 °С) и термоудару, пропускает видимый и ультрафиолетовый спектр излучения. Производство связано с высокими энергетическими затратами, поскольку кремнезем (силикатное стекло) - тугоплавкое сырье и плохо поддается формовке. Основные сферы применения - химическая и лабораторная посуда, части оптических систем, ртутные лампы и пр.
  • Натриево-силикатное. Изготавливается из двух компонентов, состав стекла - силикатный песок и сода (1:3). По своим свойствам имеет широкое применение в промышленности в качестве компонента какого-либо процесса, но не применяется в других сферах, изделия из него не изготавливаются. Основной недостаток - растворяется в воде.
  • Известковое. Самый распространенный вид материала, из которого производится большинство изделий - листовое стекло, стеклотара, зеркальное полотно, посуда и многое другое.
  • Свинцовое. В классический состав стекла (шихты) пропорционально добавляется оксид свинца. Свинцовое стекло отличается повышенными диэлектрическими свойствами, что позволяет использовать его в качестве лучшего изолирующего состава в телевизионных трубках, осциллографах, конденсаторах и пр. Наличие свинца в стеклянной массе придает материалу дополнительный блеск, сверкание, что часто используется при изготовлении художественных изделий, посуды и т. д. Хрусталь - один из видов свинцового стекла.
  • Боросиликатное. Добавка оксида бора в состав материала увеличивает его устойчивость к термическому удару до 5 раз, существенно улучшаются химические свойства. Боросиликатное стекло используется для изготовления труб и лабораторно-химической посуды, изделий для бытовых нужд. Масштабным примером использования служит зеркало, созданное на основе боросиликатного стекла для крупнейшего в мире телескопа.
  • Прочие виды стекла - алюмосиликатные, боратные, цветные и др.

Виды оконных стекол

Оконное стекло самый востребованный вид материала. Оно пропускает солнечный свет, осуществляет теплоизоляцию зимой и летом, препятствует проникновению шума, эстетически оформляет оконный проем и выполняет еще множество функций. На сегодняшний день существует широкий выбор видов стекла, каждый из которых отвечает определенным требованиям:

  • Энергосберегающее. Вид стекла, тонированного в массе или покрытого специальной пленкой, которая обеспечивает проникновение в помещение коротковолнового солнечного излучения, а длинноволновое излучение отопительных приборов из помещения не выпускается. Второе название - селективное стекло. На сегодняшний день разработано несколько типов покрытий. Наиболее перспективными являются - К-стекло (нанесение окислов металлов на поверхность) и i-стекло (вакуумное многослойное напыление серебра - диэлектрика).
  • Солнцезащитное. Снижает пропускание солнечного света в помещение. Разделяют на два вида - отражающее и поглощающее. Эффект достигается либо тонировкой стекла в массе при варке, либо нанесением специальной пленки на поверхность.
  • Декоративное. Оконное стекло с дополнительными эстетическими характеристиками - узорчатое, цветное и т. д.

Безопасные стекла

Одним из отрицательных качеств стекла является его хрупкость, существуют технологии упрочнения материала. Самые распространенные виды:

  • Армированное. Листовое стекло, при формовке которого в массу внедряется металлическая сетка. Сфера применения - производственные помещения, уличные осветительные приборы, облицовка лифтовых шахт и т. п.
  • Ламинированное или триплекс . Два или больше стекол скрепляются между собой специальной пленкой или жидкостью. Этот вид материала существенно снижает уровень шума в помещениях. Также при использовании дополнительных цветофильтров при ламинации способно выполнять солнцезащитные функции. Триплекс обладает повышенной механической устойчивостью, при разбивании полотна осколки остаются прикрепленными к пленке, что делает его максимально безопасным для применения при фасадном, балконном, оконном, дверном остеклении.
  • Огнестойкое . Чаще всего производится по технологии ламинации специальными пленками, которые при температуре свыше 120 °С меняют свои физические свойства и, расширяясь, становятся матовыми, придавая стеклу жесткость.
  • Защитное . Представляет собой многослойный материал, состоящий из нескольких видов стекла, скрепленного полимерной пленкой. Например, силикатное стекло скрепляется с поликарбонатом и органическим стеклом. Такой светопрозрачный блок устойчив к механическим, химическим, ударным повреждениям. К защитным видам стекла относятся пулестойкое, ударостойкое, устойчивое к пробиванию и другие типы. Технические требования к материалу и классификация защитных стекол регулируются ГОСТом Р 51136.
  • Закаленное. Обладает высокими прочностными характеристиками. Эффект обеспечивает технология производства стекла - в специальной тоннельной печи листы краткосрочно подвергаются воздействию высокой температуры и быстро охлаждаются. При разбивании закаленное стекло рассыпается на мелкие осколки, не несущие угрозы жизни и здоровью. Недостатком является невозможность механической обработки закаленного полотна, при малейшем воздействии оно разрушается. Большинство изделий из закаленного стекла сначала формуются, режутся или обрабатываются иным способом и только после этого проходят закалку.

Автостекло

Стекла для автомобилей обладают повышенными прочностными характеристиками, отвечающими требованиям безопасности. На сегодняшний день при производстве используются две технологии - ламинация (триплекс) и закаливание (сталинит):

  • Закаленное получают термической обработкой обычного силикатного стекла, разогревая его в печи до температуры +600 °С с последующим быстрым охлаждением. Оно приобретает механическую и термическую прочность, но при сильных ударах разрушается, распадаясь на мелкие безопасные осколки, у которых отсутствуют режущие и колющие кромки. Российская маркировка - буква «З», европейская - «Т» или Tempered.
  • Ламинированное - это два тонких листовых стекла, скрепленных полимерной пленкой под действием температуры и вакуума. Свойства стекла таковы, что оно остается целостным при сильных воздействиях, не распадается на осколки, если лопнуло. Части остаются скрепленными пленкой. У триплекса есть дополнительные возможности - тонировка цветофильтрами в процессе ламинации, дополнительная шумоизоляция салона, низкая теплопроводность и пр.

Современные разработки

Двадцатый век можно назвать временем широкого применения стекла. После разработки технологии механических способов получения материала его стали применять в самых разных областях - в качестве тончайшего волокна в сферах телекоммуникаций, с не меньшим успехом используется большими многотонными блоками в строительных технологиях.

Свойства стекла многообразны, их до сих пор продолжают изучать в научных институтах, а умельцы находят новые способы применения и изобретают новые виды. В 1940 году стеклоделы представили миру пеностекло. Его качествами является:

  • Легкость - не тонет в воде, имеет ячеистую структуру, удельный вес немного превышает вес пробки.
  • Влагоустойчивость, долговечность.
  • Экологичность (в классический рецепт шихты добавлен кокс).
  • Пожаробезопасен (не горит) и заглушает огонь.
  • Материал можно распиливать на куски без ущерба для качества.

Сферой применения стали изоляционные материалы для опасных производств, холодильных камер и пр.

Для солнечных батарей используют стекло с проводящим покрытием из тонкого слоя оксида металлов. Панели с покрытием работают при температурах около 350 °С. Кроме того, такое стекло монтируют в кабины самолетов, чтобы избежать наледи и сохранить тепло внутри кабины.

Важным достижением современности стала возможность производства стеклокерамики. Материал изготавливается по технологии обычного стекла, но на последнем этапе охлаждения процесс замедляется, и происходит кристаллизация в массе материала. Катализаторами служат специальные добавки, которые никак не влияют на внешнее состояние стекла, но образуют мелкие кристаллы. Материал без деформации выдерживает высокие температуры и более устойчив ко всем видам повреждений. Используется в ракетостроении, бытовой технике, лабораториях, частях двигателя и во многих других областях.