Типы аберрации и способы их устранения. Аберрации объективов

Аберрация оптических систем (от лат. aberratio − уклонение, удаление) − искажения изображений, даваемых реальными оптическими системами, заключающиеся в том, что оптические изображения неточно соответствуют предмету, оказываются размыты (монохроматические геометрические аберрации оптических систем) или окрашены (хроматические аберрации оптических систем). В большинстве случаев аберрации обоих типов проявляются одновременно.
 В приосевой, так называемой параксиальной, области оптическая система близка к идеальной, т. е. точка изображается точкой, прямая линия − прямой и плоскость − плоскостью. Но при конечной ширине пучков и конечном удалении точки-источника от оптической оси нарушаются правила параксиальной оптики: лучи, испускаемые точкой предмета, пересекаются не в одной точке плоскости изображений, а образуют кружок рассеяния, т. е. изображение искажается − возникают аберрации.
Геометрические аберрации оптических систем характеризуют несовершенство оптических систем в монохроматическом свете. Происхождение аберрации оптических систем можно понять, рассмотрев прохождение лучей через центрированную оптическую систему L (рис. 1).

OO 1 − плоскость предмета, О / О 1 / − плоскость изображений, РР 1 и Р / P 1 / − соответственно плоскости входного и выходного зрачков. В идеальной оптической системе все лучи, испускаемые какой-либо точкой С(z, у) предмета, находящейся в меридиональной плоскости (z = 0 ) на расстоянии у = l от оси, пройдя через систему, собрались бы снова в одну точку С (z o / , y о / ). В реальной оптической системе эти лучи пересекают плоскость изображения O / O 1 / в разных точках. При этом координаты z / и у / точки В пересечения луча с плоскостью изображения зависят от направления луча и определяются координатами р у и р z точки А пересечения с плоскостью входного зрачка. Отрезок С / В характеризует несовершенство изображения, даваемого данной оптической системой. Проекции этого отрезка на оси координат равны δg = y / − y о / и δG = z / − z o / и характеризуют поперечную аберрацию. В заданной оптической системе δg / и δG / являются функциями координат падающего луча СА : δg / = f 1 (l, р у, р z) и δG / = f 2 (l, Р у, Р z) Считая координаты малыми, можно разложить эти функции в ряды по p z и l .
 Линейные члены этих разложений соответствуют параксиальной оптике, следовательно коэфф. при них должны быть равными нулю; чётные степени не войдут в разложение ввиду симметричности оптич. системы; таким образом остаются нечётные степени, начиная с третьей; аберрации 5-го порядка (и выше) обычно не рассматривают, поэтому первичные аберрации оптических систем называются аберрациями 3-го порядка. После упрощений получаются следующие формулы


 Коэффициенты А , В , С , D , Е зависят от характеристик оптической системы (радиусов кривизны, расстояний между оптическими поверхностями, показателей преломления). Обычно классификацию аберраций оптических систем проводят, рассматривая каждое слагаемое в отдельности, полагая другие коэффициенты равными нулю. При этом для наглядности представления об аберрации рассматривают семейство лучей, исходящих из точки-объекта и пересекающих плоскость входного зрачка по окружности радиуса ρ с центром на оси. Ей соответствует определённая кривая в плоскости изображений, а семейству концентрических окружностей в плоскости входного зрачка радиусов ρ , , и т. д. соответствует семейство кривых в плоскости изображений. По расположению этих кривых можно судить о распределении освещённости в пятне рассеяния, вызываемом аберрацией.
Сферическая аберрация соответствует случаю, когда А ≠ 0 , а все другие коэффициенты равны нулю. Из выражения (*) следует, что эта аберрация не зависит от положения точки С в плоскости объекта, а зависит только от координаты точки А в плоскости входного зрачка, а именно, пропорциональна ρ 3 .  Распределение освещённости в пятне рассеяния таково, что в центре получается острый максимум при быстром уменьшении освещённости к краю пятна. Сферическая аберрация − единственная геометрическая аберрация, остающаяся и в том случае, если точка-объект находится на главной оптической оси системы.
Кома определяется выражениями при коэффициенте B ≠ 0 . Равномерно нанесённым на входном зрачке окружностям соответствуют в плоскости изображения семейства окружностей (рис. 2) с радиусами, увеличивающимися как ρ 2 , центры которых удаляются от параксиального

изображения также пропорционально ρ 2 . Огибающей этих окружностей (каустикой) являются две прямые, составляющие угол 60° . Изображение точки при наличии комы имеет вид несимметричного пятна, освещённость которого максимальна у вершины фигуры рассеяния и вблизи каустики. Кома отсутствует на оси центрированных оптических систем.
Астигматизм и кривизна поля соответствуют случаю, когда не равны нулю коэффициенты С и D . Из выражения (*) следует, что эти аберрации пропорциональны квадрату удаления точки-объекта от оси и первой степени радиуса отверстия.
Астигматизм обусловлен неодинаковой кривизной оптической поверхности в разных плоскостях сечения и проявляется в том, что волновой фронт деформируется при прохождении оптической системы, и фокус светового пучка в разных сечениях оказывается в разных точках. Фигура рассеяния представляет собой семейство эллипсов с равномерным распределением освещённости. Существуют две плоскости − меридиональная и перпендикулярная ей сагиттальная, в которых эллипсы превращаются в прямые отрезки. Центры кривизны в обоих сечениях называются фокусами, а расстояние между ними является мерой астигматизма. Пучок параллельных лучей, падающих на оптическую систему под углом w (рис. 3),


в меридиональном сечении имеет фокус в точке m , а в сагиттальном − в точке s . С изменением угла w положения фокусов m и s меняются, причём геометрические места этих точек представляют собой поверхность вращения MOM и SOS вокруг главной оси системы, На поверхности КОК, находящейся на равных расстояниях от MOM и SOS , искажение наименьшее, поэтому поверхность КОК называется поверхностью наилучшей фокусировки. Отклонение этой поверхности от плоскости представляет собой аберрацию, называемой кривизной поля. В оптической системе может отсутствовать астигматизм (например, если MOM и SOS совпадают), но кривизна поля остаётся: изображение будет резким на поверхности КОК , а в фокальной плоскости FF изображение точки будет иметь вид кружка.
Дисторсия проявляется в случае, если Е ≠ 0 ; как видно из формул (*), она может быть в меридиональной плоскости: δg" = El 3 ; δG / = 0 . Дисторсия не зависит от координат точки пересечения луча с плоскостью входного зрачка (поэтому каждая точка изображается точкой), но зависит от расстояния точки до оптической оси (−l 3 ), поэтому изображение искажается, нарушается закон подобия. Например, изображение квадрата имеет вид подушкообразной и бочкообразной фигур (рис. 4) соответственно в случае E > 0 и E < 0 .
 Труднее всего устранить сферическую аберрацию и кому . Уменьшая диафрагму, можно было бы практически полностью устранить обе эти аберрации, однако уменьшение диафрагмы уменьшает яркость изображения и увеличивает дифракц. ошибки. Подбором линз устраняют дисторсию, астигматизм и кривизну поля изображения.


Хроматическая аберрация . Излучение обычных источников света обладает сложным спектральным составом, что приводит к возникновению хроматической аберрации. В отличие от геометрических, хроматические аберрации возникают и в параксиальной области. Дисперсия света порождает два вида хроматической аберраций : хроматизм положения фокусов и хроматизм увеличения . Первая характеризуется смещением плоскости изображения для разных длин волн, вторая − изменением поперечного увеличения.
Хроматическая аберрация (от греч. croma − цвет) − одна из основных аберраций оптических систем, обусловленная зависимостью показателя преломления прозрачных сред от длины волны света . Хроматическая аберрация проявляется в оптических системах, включающих элементы из преломляющих материалов (например, линзы), зеркалам хроматическая аберрация не свойственна, т. е. зеркала ахроматичны.
 Существуют два не зависящих один от другого типа хроматических аберраций: хроматизм положения изображения и хроматизм увеличения . Хроматизм положения состоит в том, что изображения удалённой точки, формируемые лучами разной длины волны, не совпадают для лучей разного цвета, располагаясь вдоль некоторого отрезка О 1 О 2 (т. е. немонохроматический пучок света имеет целую совокупность фокусов вдоль отрезка оптической оси; см. рис.).


 В этом случае на экране, поставленном перпендикулярно оптической оси в области формирования изображения, вместо одной светлой точки наблюдается совокупность цветных кружков.
 Хроматизм увеличения заключается в том, что поперечные увеличения изображений объекта, формируемых лучами разной длины волны, могут оказаться различными. Это вызвано различием положений гл. плоскостей системы для лучей разного цвета, что может иметь место, даже если их фокусы совпадают, но различаются фокусные расстояния. Из-за хроматизма увеличения изображение предмета конечных размеров оказывается окружённым цветной каймой.
Исправлять хроматизм положения в оптической системе можно, совмещая фокусы для лучей света разной длины волны. В простейшем случае совмещение фокусов для лучей двух длин воли (и уменьшение взаимного удаления фокусов лучей др. длин волн) сравнительно несложно. Такие системы (обычно объективы) называются ахроматами. В более совершенных апохроматах фокусы совмещают для лучей трёх длин волн, для чего увеличивают число элементов системы с разными показателями преломления и вводят в систему зеркала. Ещё более тщательное исправление хроматизма положения требует дальнейшего усложнения конструкции системы, тем большего, чем больше её относительное отверстие и угол поля зрения оптической системы (число линз и зеркал увеличивается и форма их усложняется).
 При исправлении хроматизма увеличения необходимо совместить главные плоскости для возможно большего числа лучей с разными длинами волн, что связано с большими трудностями.
 Литература: Слюсарев Г. Г., Методы расчета оптических систем, 2 изд., Л., 1969; Сивухин Д. В., Общий курс физики, [т, 4] - Оптика, 2 изд., М., 1985; Теория оптических систем, 2 изд, М., 1981. Г. Г. Слюсарев

В этой статье со страшным названием мы разберемся в особенностях оптических искажений объективов. Вы замечали, что при съемке на широкоугольник у вас искажаются края кадра? А при попытках сделать кадр в контровом свете вокруг предметов появляется розовая, синяя или зеленоватая окантовка? Если не замечали, присмотритесь еще раз. А пока давайте разберемся, почему так происходит.

Для начала нужно понять и принять тот факт, что идеальных оптические систем (т.е. в нашем случае – объективов) не существует. Каждой оптической системе присущи искажения, которые она вносит в проекцию реальности на изображение (фотографию). Искажения оптических систем по-научому принято называть аберрациями , т.е. отклонениями от нормы или от идеала.

Аберрации различных оптических систем могут принимать разную форму и быть более заметными или практически не различимыми. Обычно чем дороже объектив, тем качественнее его оптическая система, а значит, тем меньше аберраций ей присуще.

Виды аберраций

Чаще всего само слово «аберрация» в фотографии применяется в сочетании «хроматические аберрации». Как вы уже могли догадаться, хроматические аберрации – это один из видов искажений, вызванных особенностями оптической системы объектива, который выражается в виде цветовых отклонений. Типичный пример хроматических аберраций – это нестественные цветные контуры на границах объектов съемки. Ярче всего хроматические аберрации проявляются на контурах в высококонтрастных участках изображения. Например, на границе веток деревьев, снятых на фоне яркого неба, или по контуру волос при съемке портрета в .

Причиной хроматических аберраций является такое оптическое явление как дисперсия стекла, из которого изготовлены линзы. Дисперсия стекла заключается в том, что световые волны разной длины (разного цветового спектра) при прохождении через линзу преломляются под разными углами. Белый свет (который содержит в себе целый спектр световых волн разной длины, т.е. разного цвета), проходя через линзу объектива, сначала распадается на цветовой спектр, который затем снова собирается в пучок для проекции изображения на матрицу фотоаппарата. В результате из-за разницы углов преломления цветных лучей возникают отклонения при формировании изображения. Это выражается в погрешностях при распределении цвета на снимке. Именно поэтому на фотографии могут появиться цветные контуры, цветные пятна или полосы, которых не было на объекте съемки.

Хроматические аберрации в той или иной степени присущи практически всем объективам. Дешевая оптика «хроматит» гораздо сильнее, чем объективы элитной серии. На этапе проектирования оптической системы производители могут минимизировать хроматические аберрации при помощи использования ахроматических линз. Секрет ахроматической линзы в том, что ее конструкция состоит из двух сортов стекла: одно с низким, а другое с высоким коэффициентом преломления света. Подбор пропорции сочетания материалов с разными коэффициентами преломления света позволяет снизить отклонения световых волн в момент расщепления белого света.

Не стоит сильно расстраиваться, если ваш объектив не содержит ахроматических линз – хроматические аберрации возникают в основном при съемке в сложных условиях освещения, и сильно бросаются в глаза только при просмотре фотографии в 80-100% увеличении. К тому же, никто не отменял обработку в графических редакторах, которые позволяют свести на нет такие погрешности оптики. О том, как это сделать, читайте в следующей статье «Исправление погрешностей объектива» (публикация скоро).

К другому виду аберраций объектива относятся геометрические искажения, которые принято называть дисторсией объектива. Дисторсия объектива проявляется в искажении пропорций объектов, расположенных ближе к краям кадра. Говоря научным языком, при дисторсии линейное увеличение объектов, находящихся в поле зрения, происходит неравномерно. В результате предметы по краям кадра выглядят неестественно сплюснутыми или вытянутыми.

По характеру искажений выделяют два вида дисторсии : положительная (вогнутая или подушкообразная) и отрицательная (выпуклая или бочкообразная). Если в кадре геометрических искажений не наблюдается, то говорят, что дисторсии нет. В этом случае изображение выглядит ровным и плоским, обратите внимание на идеально ровную линию горизонта на снимке ниже. Обычно именно по линии горизонта можно легко заметить геометрические искажения в пейзажной съемке.


Сильнее всего дисторсия проявляется при использовании . Причем, чем больше угол обзора объектива (чем меньше фокусное расстояние), тем сильнее проявляются геометрические аберрации . Наверняка, вы замечали, что вертикальные и горизонтальные линии при съемке на ширик искривляются по мере приближения к краям кадра. Самый яркий пример дисторсии объектива – это фотографии, снятые на сверхширокоугольный объектив «фишай» (рыбий глаз). Но в случае с фишаем дисторсия не является погрешностью или недостатком оптики. Скорее, это его особенность, которая позволяет расширить угол обзора объектива до 180 градусов (и даже больше).

При использовании широкоугольных объективов (ФР<24 мм) можно наблюдать бочкообразную (вогнутую) дисторсию, при использовании длиннофокусных объективов (ФР>200 мм) может появляться подушкообразная (выпуклая) дисторсия. Объективам со средними значениями фокусных расстояний обычно не свойственны геометрические искажения по полю кадра.

Именно поэтому говорят, что широкоугольный объектив искажает пропорции, а объективы с фокусным расстояние 70-200 мм сглаживают какие-либо искажения. И именно поэтому, портреты принято снимать на объективы 70-200 мм, которые не искажают пропорции лица и фигуры. А вот портреты, снятые на ширик, выглядят комично и используются только для создания специального карикатурного эффекта. При этом чем меньше расстояние между точкой съемки и объектом съемки, тем сильнее проявляются искажения пропорций. Например, как на известном портрете Билла Клинтона (фотография ниже) - голова выглядит непропорционально маленькой по сравнению с большими руками и коленями. Но в данном случае это как раз творческая задумка, авторский стиль фотографа. При помощи использования широкоугольного объектива он смог создать яркий зрительный образ - ассоциацию с персоной бывшего президента США.

Так же, как и хроматические аберрации, дисторсия поддается исправлению при конструировании объектива. Для этого в оптическую систему встраивается асферическая линза , а объективы с исправленной дисторсией называют асферическими . Вы могли видеть такие названия (ASP) в описании технических характеристик к объективу. Такие объективы обычно стоят дороже сферических аналогов, но при съемке передают пропорции объектов в кадре без искажений. Однако есть относительно не дорогой объектив Sigma 10-20 mm F4-5.6 EX DC HSM, который дает ровную картинку даже при максимальном угле обзора 102 градуса.

Если ваш объектив на широком угле дает геометрические аберрации , то есть два способа это исправить:

  1. Если вы используете зум-объектив, можно просто выставить большее фокусное расстояния и сделать пару шагов назад. Так, у вас в кадре окажется та же композиция, но за счет изменения фокусного расстояния вы избавитесь от искажений.
  2. Исправить геометрические аберрации позволяют средства графических редакторов (прежде всего, Photoshop). Но при этом будьте готовы потерять часть объектов на фотографии, потому что при исправлении искривлений происходит обрезка по краям кадра. О том, как это сделать, читайте в следующей статье.

1. Введение в теорию аберраций

Когда речь идет о характеристиках объектива, очень часто приходится слышать слово аберрации . «Это отличный объектив, в нем практически исправлены все аберрации!», - тезис, который очень часто можно встретить в обсуждениях или обзорах. Гораздо реже можно услышать и диаметрально противоположное мнение, к примеру: «Это замечательный объектив, его остаточные аберрации хорошо выражены и формируют необыкновенно пластичный и красивый рисунок»…

Почему же возникают такие разные мнения? Я попробую дать ответ на этот вопрос: насколько это явление действительно хорошо/плохо для объективов и для жанров фотографии в целом. Но для начала, давайте попробуем разобраться, что, же такое аберрации фотографического объектива. Начнем мы с теории и некоторых определений.

В общем применении термин Аберрация (лат. ab- «от» + лат. errare «блуждать, заблуждаться») - это отклонение от нормы, ошибка, некое нарушение нормальной работы системы.

Аберрация объектива - ошибка, или погрешность изображения в оптической системе. Она вызвана тем, что в реальной среде может возникать существенное отклонение лучей от того направления, по которому они идут в расчетной «идеальной» оптической системе.

В итоге страдает общепринятое качество фотографического изображения: недостаточная резкость в центре, потеря контраста, сильная нерезкость по краям, искривление геометрии и пространства, цветные ореолы и т.п.

Основные аберрации, характерные для фотографических объективов, следующие:

  1. Коматическая аберрация.
  2. Дисторсия.
  3. Астигматизм.
  4. Кривизна поля изображения.

Перед тем как познакомиться поближе с каждой из них, давайте вспомним из статьи , как происходит прохождение через линзу лучей в идеальной оптической системе:

Илл. 1. Прохождение лучей в идеальной оптической системе.

Как мы видим, все лучим при этом собираются в одной точке F - главном фокусе. Но в реальности, все обстоит намного сложнее. Сущность оптических аберраций в том, что лучи, падающие на линзу из одной светящейся точки, не собираются тоже в одной точке. Итак, давайте посмотрим, какие отклонения происходят в оптической системе при воздействии различных аберраций.

Тут еще надо сразу отметить, что и в простой линзе и в сложном объективе все далее описываемые аберрации действуют совместно.

Действие сферической аберрации состоит в том, что лучи, падающие на края линзы, собираются ближе к линзе, чем лучи, падающие на центральную часть линзы. Вследствие этого, изображение точки на плоскости получается в виде размытого кружка или диска.

Илл. 2. Сферическая аберрация.

В фотографиях действие сферической аберрации проявляется в виде смягченного изображения. Особенно часто эффект заметен на открытых диафрагмах, причем объективы с большей светосилой больше подвержены этой аберрации. Если при этом сохраняется и резкость контуров, такой софт-эффект может быть весьма полезным для некоторых видов съемки, например, портретной.

Илл.3. Софт-эффект на открытой диафрагме обусловленный действием сферической аберрации.

В объективах построенных полностью из сферических линз практически невозможно полностью устранить этот вид аберраций. В сверхсветосильных объективах единственный эффективный способ ее существенной компенсации - использование асферических элементов в оптической схеме.

3. Коматическая аберрация, или «Кома»

Это частный вид сферической аберрации для боковых лучей. Действие ее заключается в том, что лучи, приходящие под углом к оптической оси не собираются в одной точке. При этом изображение светящейся точки на краях кадра получается в виде «летящей кометы», а не в форме точки. Кома также может привести к засвечиванию участков изображения в зоне нерезкости.

Илл. 4. Кома.

Илл. 5. Кома на фотоизображении

Является прямым следствием дисперсии света. Суть ее состоит в том, что луч белого света, проходя через линзу, разлагается на составляющие его цветные лучи. Коротковолновые лучи (синие, фиолетовые) преломляются в линзе сильнее и сходятся ближе к ней, чем длиннофокусные (оранжевые, красные).

Илл. 6. Хроматическая аберрация. Ф - фокус фиолетовых лучей. К - фокус красных лучей.

Здесь, как и в случае сферической аберрации, изображение светящейся точки на плоскости, получается в виде размытого кружка/диска.

На фотографиях хроматическая аберрация проявляется в виде посторонних оттенков и цветных контуров у объектов съемки. Особенно заметно влияние аберрации в контрастных сюжетах. В настоящее время ХА достаточно легко исправляется в RAW-конверторах, если съемка велась в RAW-формате.

Илл. 7. Пример проявления хроматической аберрации.

5. Дисторсия

Дисторсия проявляется в искривлении и искажении геометрии фотоснимка. Т.е. масштаб изображения меняется с удалением от центра поля к краям, вследствие чего прямые линии искривляются к центру или к краям.

Различают бочкообразную или отрицательную (наиболее характерна для широкого угла) и подушкообразную или положительную дисторсию (чаще проявляется на длинном фокусе).

Илл. 8. Подушкообразная и бочкообразная дисторсия

Дисторсия намного сильнее обычно выражена у объективов с переменным фокусным расстоянием (зумы), чем у объективов с постоянным фокусным (фиксы). У некоторых эффектных объективов, например Fish Eye (Рыбий глаз), намеренно не исправляется и даже подчеркивается дисторсия.

Илл. 9. Ярко-выраженная бочкообразная дисторсия объектива Zenitar 16 mm FishEye.

В современных объективах, в том числе с переменным фокусным расстоянием, дисторсия достаточно эффективно корректируется введением в оптическую схему асферической линзы (или нескольких линз).

6. Астигматизм

Астигматизм (от греч. Stigma - точка) характеризуется в невозможности получить на краях поля изображения светящейся точки и в виде точки и даже в виде диска. При этом светящаяся точка, находящаяся на главной оптической оси, передается как точка, но если точка вне этой оси - как затемнение, скрещенные линии и т.д.

Это явление чаще всего наблюдается по краям изображения.

Илл. 10. Проявление астигматизма

7. Кривизна поля изображения

Кривизна поля изображения - это аберрация, в результате которой изображение плоского объекта, перпендикулярного к оптической оси объектива, лежит на поверхности, вогнутой либо выпуклой к объективу. Эта аберрация вызывает неравномерную резкость по полю изображения. Когда центральная часть изображения фокусирована резко, то его края будут лежать не в фокусе, и изобразятся не резко. Если установку на резкость производить по краям изображения, то его центральная часть будет нерезкой.

Аберрации оптических систем

Описываются аберрации оптических систем и методы их уменьшения или устранения.

Аберрации - общее название для погрешностей изображения, возникающих при использовании линз и зеркал. Аберрации (от лат. «аберрацио» - отклонение), которые проявляются только в немонохроматическом свете, называются хроматическими. Все остальные виды аберраций являются монохроматическими, так как их проявление не связано со сложным спектральным составом реального света.

Источники аберраций . В определении понятия изображения содержится требование того, чтобы все лучи, выходящие из какой-то точки предмета, сходились в одной и той же точке в плоскости изображения и чтобы все точки предмета отображались с одинаковым увеличением в одной и той же плоскости.

Для параксиальных лучей условия отображения без искажений соблюдены с большой точностью, однако не абсолютно. Поэтому первый источник аберраций состоит в том, что линзы, ограниченные сферическими поверхностями, преломляют широкие пучки лучей не совсем" так, как это принимается в параксиальном приближении. Например, фокусы для лучей, падающих на линзу на разных расстояниях от оптической оси линзы, различны и т. д. Такие аберрации называют геометрическими.

а) Сферическая аберрация - монохроматическая аберрация, обусловленная тем, что крайние (периферические) части линзы сильнее отклоняют лучи, идущие от точки на оси, чем ее центральная часть. В результате этого изображение точки на экране получается в виде светлого пятна, рис. 3.5

Этот вид аберрации устраняется путем использования систем, состоящих из вогнутой и выпуклой линз.

б) Астигматизм - монохроматическая аберрация, состоящая в том, что изображение точки имеет вид пятна эллиптической формы, которое при некоторых положениях плоскости изображения вырождается в отрезок.

Астигматизм косых пучков проявляется тогда, когда пучок лучей, исходящих из точки, падает на оптическую систему и составляет некоторый угол с ее оптической осью. На рис. 3.6а точечный источник расположен на побочной оптической оси. При этом возникают два изображения в виде отрезков прямых линий, расположенных перпендикулярно друг другу в плоскостях I и П. Изображение источника можно получить лишь в виде расплывчатого пятна между плоскостями I и П.

Астигматизм, обусловленный асимметрией оптической системы. Этот вид астигматизма возникает, когда симметрия оптической системы по отношению к пучку света нарушена в силу устройства самой системы. При такой аберрации линзы создают изображение, в котором контуры и линии, ориентированные в разных направлениях, имеют разную резкость. Это

наблюдается в цилиндрических линзах, рис. 3.6

Рис. 3.6. Астигматизм: косых лучей (а); обусловленный

цилиндрической линзой {б)

Цилиндрическая линза образует линейное изображение точечного объекта.

В глазу астигматизм образуется при асимметрии в кривизне систем хрусталика и роговицы. Для исправления астигматизма служат очки, которые имеют различную кривизну в разных направлениях.

направлениях.

в) Дисторсия (искажение). Когда лучи, посылаемые предметом, составляют большой угол с оптической осью, обнаруживается еще один вид аберрации - дисторсия. В этом случае нарушается геометрическое подобие между объектом и изображением. Причина состоит в том, что в действительности линейное увеличение, даваемое линзой, зависит от угла падения лучей. В результате изображение квадратной сетки принимает либо подушко-, либо бочкообразный вид, рис. 3.7

Рис. 3.7 Дисторсия: а) подушкообразная, б) бочкообразная

Для борьбы с дисторсией подбирают систему линз с противоположной дисторсией.

Второй источник аберраций связан с дисперсией света. Поскольку показатель преломления зависит от частоты, то, и фокусное расстояние и другие характеристики системы зависят от частоты. Поэтому лучи, соответствующие излучению различной частоты, исходящие из одной точки предмета, не сходятся в одной точке плоскости изображения даже тогда, когда лучи, соответствующие каждой частоте, осуществляют идеальное отображение предмета. Такие аберрации называются хроматическими, т.е. хроматическая аберрация заключается в том, что пучок белого света, исходящий из точки, дает ее изображение в виде радужного круга, фиолетовые лучи располагаются ближе к линзе, чем красные, рис. 3.8

Рис. 3.8. Хроматическая аберрация

Для исправления этой аберрации в оптике используют линзы, изготовляемые из стекол с разной дисперсией: ахроматы,

Глаз как оптический инструмент window.top.document.title = "3.4. Глаз как оптический инструмент";

Строение глаза . Глаз как оптическая система состоит из следующих элементов, см. рис. 3.9

1.Склера - достаточно прочная внешняя белковая оболочка белого цвета, защищающая глаз и придающая ему постоянную форму.

2. Роговица - передняя часть склеры, более выпуклая и

2. Роговица - передняя часть склеры, более выпуклая и прозрачная; действующая как собирающая линз, оптическая сила которой - примерно 40 дптр; роговица - наиболее сильно преломляющая часть (обеспечивает до 75 % фокусирующей способности глаза), толщина которой 0,6-1 мм, п = 1,38.

3. Сосудистая оболочка - с внутренней стороны склера выстлана сосудистой оболочкой (темные пигментные клетки, препятствующие рассеиванию света в глазу).

4. Радужная оболочка - в передней части сосудистая оболочка переходит в радужную.

5. Зрачок - круглое отверстие в радужной оболочке, диаметр, которого может изменяться в пределах от 2 до 8 мм (радужная оболочка и зрачок выполняют роль диафрагмы, регулирующей доступ света внутрь глаза), площадь отверстия изменяется в 16 раз.

6. Хрусталик - природная прозрачная двояковыпуклая линза диаметром 8-10 мм, имеющая слоистую структуру, наибольший показатель преломления в слоях хрусталика п = 1,41; хрусталик находится за радужной оболочкой, примыкает к зрачку, оптическая сила его равна 20-30 дптр.

7. Кольцевая мышца - она охватывает хрусталик и может изменять кривизну поверхностей хрусталика.

8. Передняя камера - камера с водянистой массой (n=1,33воды), которая находится в передней части глаза за роговицей, оптическая сила 2-4 дптр.

9. Зрительный нерв - подходя к глазу, разветвляется, образуя на задней стенке сосудистой оболочки светочувствительный слой - сетчатку.

10. Сетчатка - светочувствительный слой, она представляет собой разветвление зрительного нерва с нервными окончаниями в виде палочек и колбочек, из них колбочки (их примерно 10 млн. клеток) служат для различения мелких деталей предмета и восприятия цветов. Палочки же (20 млн. клеток) не дают возможности различать цвета и мелкие предметы, но они высокочувствительны к слабому свету. С помощью палочек человек различает предметы в сумерки и ночью. Палочки и колбочки очень малы. Диаметр палочки 2 10~3 мм, длина 6 10 -3 мм, диаметр же колбочки 7 10-3 мм, а длина около 35 10-3 мм. Палочки и колбочки распределены неравномерно: в средней части сетчатки преобладают колбочки, а по краям - палочки.

11. Стекловидное тело - объем части глаза (задняя глазная камера) между хрусталиком и сетчаткой, заполненный прозрачным стекловидным веществом, имеет оптическую силу до 6 дптр.

12. Желтое пятно - самое чувствительное место на сетчатке, то есть человек видит ясно те предметы, изображение, которых проектируется на желтое пятно.

13. Центральная ямка - наиболее чувствительная часть желтого пятна; это узкая область, в которой сетчатка углублена, здесь палочки совсем отсутствуют, а колбочки расположены очень плотно; особенно хорошо различимы детали, проектируемые на центральную ямку (глаз различает те детали объекта, угловое расстояние между которыми не меньше углового расстояния между соседними колбочками или палочками, в центральной ямке плотность палочек наибольшая, поэтому и различие деталей здесь оказывается наилучшим).

14. В том месте, где зрительный нерв входит в глаз, нет ни палочек, ни колбочек, и лучи, попадающие на эту область, не вызывают ощущения света, отсюда и название «слепое пятно».

15. Конъюнктива - наружная оболочка глаза, выполняет барьерную и защитную роль. Свет, действующий на колбочки и палочки, вызывает в них химические превращения. Благодаря этому в нервном волокне, соединяющем светочувствительные клетки глаза с мозгом, возникают электрические импульсы, которые все время передаются в мозг, пока свет действует на глаз. Рассматривание предмета целиком происходит следующим образом. Изображение отдельных деталей предмета фиксируются на желтое пятно и даже на центральную ямку. Поле зрения этих предметов не велико. Так, на желтое пятно одновременно может проектироваться картина, занимающая по горизонтальному направлению около 8°, а по вертикальному - около 6°. Поле зрения центральной ямки еще меньше и равно 1-1,5° по горизонтальному и вертикальному направлениям. Таким образом, из всей фигуры человека, стоящего на расстоянии 1 м, глаз может фиксировать на желтое пятно, например, только его лицо, а на центральную ямку - поверхность, немного большую глаза. Все остальные части фигуры проектируются на периферическую часть сетчатки и рисуются в виде смутных деталей. Однако глаз обладает способностью быстро перемещаться (поворачиваться) в своей орбите, так что за короткий промежуток времени глаз может последовательно (сканируя объект) фиксировать большую поверхность. Все изображение регистрируется за счет последовательного просматривания (яркий пример - чтение текста на странице - глаз последовательно просматривает каждую букву). Благодаря этой особенности глаза человек не замечает ограниченности поля ясного зрения. Общее поле зрения у глаза человека по вертикальному и горизонтальному направлениям составляет 120-150°, то есть больше чем у хороших оптических инструментов. Светопроводящая часть глаза образована роговицей, жидкостью передней камеры, хрусталиком, стекловидным телом. Спереди она ограничена воздухом, сзади - стекловидным телом. Главная оптическая ось проходит через центры роговицы, зрачка, хрусталика (глаз - центрированная оптическая система). Световоспринимающая часть (рецепторный аппарат) - сетчатка, в которой находятся светочувствительные зрительные клетки. Направление наибольшей чувствительности глаза определяет его зрительная ось, которая проходит через центры роговицы и желтого пятна. В направлении этой оси глаз имеет наилучшую разрешающую способность. Угол между оптической и зрительной осью составляет 5°. Оптическая сила глаза представляет собой алгебраическую сумму оптических сил всех основных преломляющих сред: роговица (D = 42-43 дптр), хрусталик (D = 19-33 дптр), передняя камера (D = 2-4 дптр), стекловидное тело (D = 5-6 дптр). Первые три среды подобны собирающим линзам, последняя - рассеивающей. В покое оптическая сила всего глаза - около 60 дптр, при напряжении (рассматривании близких предметов) D > 70 дптр.

Аккомодация .

Из формулы линзы следует, что изображения предметов, удаленных от линзы на различные расстояния, получаются также на различных расстояниях от нее. Однако мы знаем, что для «нормального» глаза изображения различно удаленных предметов дают на сетчатке одинаково резкие изображения. Это означает, что существует механизм, позволяющий глазу приспосабливаться к изменению расстояния до наблюдаемых предметов. Этот механизм называется аккомодацией. Аккомодация - приспособление глаза к четкому видению различно удаленных предметов («наводка на резкость»). Аккомодацию можно осуществить двумя способами: первый - изменяя расстояние от хрусталика до сетчатки (по аналогии с фотоаппаратом); второй - изменяя кривизну хрусталика и, следовательно, меняя фокусное расстояние глаза. Для глаза реализуется второй способ, который обеспечивает четкое изображение предметов, удаленных от глаза на расстояния от 12 см до ос. Ближний предел аккомодации связан с максимальным напряжением кольцевой мышцы. В норме при приближении предмета к глазу на расстояние до 25 см аккомодация совершается без существенного напряжения. Это расстояние называется расстоянием наилучшего зрения - а 0 .Светочувствительность глаза изменяется в широких пределах благодаря зрительной адаптации - способности глаза приспосабливаться к различным яркостям.

Угол зрения .

Размер изображения на сетчатке зависит от размера предмета и его удаления от глаза, то есть от угла, под которым виден предмет (рис. 3.10). Этот угол называют углом зрения. Угол зрения - это угол между лучами, идущими от крайних точек предмета через узловую точку (оптический центр глаза).

Рис. 3.10. Изображение, даваемое глазом, и угол зрения /3

При построении изображения, даваемого глазом, используют узловую точку N, которая аналогична оптическому центру тонкой линзы. Разным телам (В и В 1) может соответствовать один и тот же угол зрения.

Из рис. 3.10 следует, что = B/L = b/l. Учитывая эти соотношения, можно записать следующую формулу для размера изображения:

(3.13)

Для малых углов зрения (/3 < 0,1 рад) справедлива приближенная формула: tgb »b. Принимается, что l» 17 мм.

Разрешающая способность .

Разрешающая способность - это способность глаза различать две близкие точки предмета раздельно. Для количественной характеристики разрешающей способности глаза используют величину - наименьший угол зрения . Наименьший угол зрения - такой угол зрения, при котором человеческий глаз еще различает две точки предмета по раздельности. Принято считать, что для нормального глаза наименьший угол зрения глаза равен (3*10 -4 рад). Поясним это значение. Две точки предмета будут восприниматься раздельно, если их изображения попадают в соседние колбочки сетчатки. В этом случае размер изображения (b) на сетчатке равен расстоянию между соседними колбочками, которое составляет около 5 мкм (5 10 -6 м). Используя рис. 3/10 и приближенное соотношение tgb »b, находим

Если изображение двух точек на сетчатке займет линию короче 5 мкм, то эти точки не будут разрешаться, то есть глаз их не различит. Наряду с наименьшим углом зрения используют и другую характеристику разрешающей способности глаза - предел разрешения. Предел разрешения (Z) глаза - это наименьшее расстояние между двумя точками предмета, рассматриваемого с расстояния наилучшего зрения, при котором они различимы как отдельные объекты. Предел разрешения глаза связан с наименьшим углом зрения простым соотношением:

(3.14)

b подставляют в радианах.

Для нормального глаза взрослого человека а 0 = 0,25 м, b= = 3 10 -4 рад., Z = 75- 10 -6 м. = 75 мкм.

Аберрации оптических систем (от латинского aberratio – отклонение) – искажения, ошибки, или погрешности изображений, формируемых оптическими системами. Причина их возникновения в то, что луч отклоняется от того направления, по которому в близкой к идеалу оптической системе он должен был бы идти. Различные нарушения гомоцентричности (отчетливости, соответствия или окрашенности) в структуре выходящих из оптической системы пучков лучей характеризуют аберрации.

Наиболее распространенными видами аберраций оптических систем можно считать:

1. Сферическую аберрацию. Она характеризуется недостатком изображения. При нем испущенные одной точкой объекта световые лучи, проходящие вблизи оси оптической системы, и лучи, проходящие через отдаленные от оси части системы, не собираются в одной точке.

2. Кому. Так называют аберрацию, которая возникает во время косого прохождения световых лучей через оптическую систему. В результате этого наблюдается нарушение симметрии пучка лучей относительно его оси и изображение точки (которая создается системой) принимает вид несимметричного пятна рассеяния.

3. Астигматизм. Об этой аберрации говорят, когда световая волна испытывает деформацию во время прохождения оптической системы. В результате этого, наблюдается деформация, при которой исходящие из одной точки объекта пучки лучей не пересекаются в одной точке, а располагаются в двух взаимно перпендикулярных отрезках на некотором расстоянии друг от друга. Такие пучки получили название астигматических.

4. Дисторсию. Так называется аберрация, характеризующаяся нарушением геометрического подобия между объектом и изображением объекта. Она обуславливается неодинаковостью линейного оптического увеличения на разных участках изображения.

5. Кривизну поля изображения. При этой аберрации наблюдается процесс, когда изображение плоского предмета получается резким на искривленной поверхности, а не на плоскости, как должно было.

Все вышеперечисленные виды аберраций оптических систем называются геометрическими или аберрациями Зейделя. В реальных системах отдельные виды геометрических аберраций можно встретить крайне редко. Куда чаще мы можем наблюдать симбиоз всех аберраций. А метод выделения отдельных видов аберраций является искусственным приемом, призванным облегчить анализ явления.

В то же время существует и хроматическая аберрация. Наблюдается связь этого вида аберрации и зависимости показателя преломления оптических сред от длины волны света. Проявления этой аберрации наблюдаются в оптических системах, в которые входят элементы из преломляющих материалов. Как пример, линзы. Отметим также, что зеркалам свойственна ахроматичность.

Проявление хроматических аберраций может наблюдаться при виде постороннего окрашивания изображения, а также, когда у изображения предмета появляются цветные контуры, которых у предмета ранее не наблюдалось. Хроматические аберрации обусловливаются дисперсией оптических сред (зависимость показателя преломления оптических материалов от длины проходящей световой волны). Именно из них образуется оптическая система

К числу этих аберраций можно отнести хроматическую аберрацию или хроматизм положения (ее иногда называют «продольным хроматизмом») и хроматическу аберрацию или хроматизм увеличения.

Хотите узнать больше об аберрациях оптических систем? У вас остались какие-то вопросы или появилось желание получше разобраться в отдельных нюансах? – Мы всегда готовы вам помочь. Просто зарегистрируйтесь на нашем сайте, выберите подходящий тарифный план и вперед!

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.