Принципы логистики на предприятии. Внешняя логистика


Первичная и вторичная продукция. Одно из важнейших свойств экосистем – способность создавать органическое вещество, которое называют продукцией . Продуктивность экосистем – это скорость образования продукции в единицу времени (час, сутки, год) на единицу площади (метр квадратный, гектар) или объёма (в водных экосистемах). Органическую массу, создаваемую продуцентами за единицу времени, называют первичной продукцией сообщества. Она подразделяется на валовую и чистую продукцию. Валовая первичная продукция – это количество органического вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идёт на поддержание жизнедеятельности самих растений (траты на дыхание). В лесах умеренного пояса и тропических растения тратят на дыхание от 40 до 70 % валовой продукции. Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию , которая представляет собой величину прироста растений. Перерабатываясь в цепях питания, она идёт на пополнение массы гетеротрофных организмов.

Вторичная продукция – это прирост массы консументов за единицу времени. Её вычисляют отдельно для каждого трофического уровня. Консументы живут за счёт чистой первичной продукции сообщества. В разных экосистемах они расходуют её с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстаёт от темпов прироста растений, то это ведёт к постепенному увеличению биомассы продуцентов. Биомасса – это суммарная масса организмов данной группы или всего сообщества в целом. В стабильных сообществах с уравновешенным круговоротом веществ вся продукция тратится в цепях питания и биомасса остаётся постоянной.

Продукция и биомасса экосистем – это не только ресурс, используемый в пищу, от этих показателей в прямой зависимости находятся средообразующая и средостабилизирующая роль экосистем: интенсивность поглощения углекислоты и выделение кислорода растениями, регулирование водного баланса территорий, гашение шумов и т.д. Биомасса, в том числе и мёртвое органическое вещество, является основным резервуаром концентрации углерода на суше. Теоретически прогнозируемая скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Как известно, лишь 44% солнечного излучения относятся к фотосинтетически активной радиации (ФАР) – по длине волны, пригодной для фотосинтеза. Максимально достигаемый в природе КПД фотосинтеза – это 10–12% энергии ФАР, что составляет около половины от теоретически возможного. Он отмечается в наиболее благоприятных условиях. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1%, так как фотосинтетическая активность растений ограничивается множеством факторов: недостатком тепла и влаги, неблагоприятными почвенно-грунтовыми условиями и т.п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны (табл. 2.) На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с ростом притока тепла и продолжительности вегетационного периода. Годовой прирост растительности изменяется от 20 ц/га на побережье Северного Ледовитого океана до 200 ц/га на Черноморском побережье Кавказа. Самый большой прирост растительной массы достигает в среднем 25 г/м 2 в день при очень благоприятных условиях, при высокой обеспеченности растений водой, светом и минеральными веществами. На больших площадях продуктивность растений не превышает 0,1 г/м 2: в жарких и полярных пустынях и обширных внутренних пространствах океанов с крайним дефицитом питательных веществ для водорослей.

Таблица 2

Биомасса и первичная продуктивность основных типов экосистем

(по Т.А. Акимовой, В.В. Хаскину, 1994)

Экосистемы Биомасса, т/га Продукция, т/га·год
Пустыни 0,1 – 0,5 0,1 – 0,5
Центральные зоны океана 0,2 – 1,5 0,5 – 2,5
Полярные моря 1 – 7 3 – 6
Тундра 1 – 8 1 – 4
Степи 5 – 12 3 – 8
Агроценозы 3 – 10
Саванна 8 – 20 4 – 15
Тайга 70 – 150 5 – 10
Лиственный лес 100 – 250 10 – 30
Влажный тропический лес 500 – 1500 25 – 60
Коралловый риф 15 – 50 50 – 120

Для пяти континентов мира средняя продуктивность экосистем различается сравнительно мало (82–103 ц/га в год). Исключением является Южная Америка (209 ц/га в год), на большей части которой условия для жизни растительности очень благоприятны.

Общая годовая продукция сухого органического вещества на Земле составляет 150–200 млрд тонн. Более трети его образуется в океанах, около двух третей – на суше.

Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими примерно 10% площади суши. Сельскохозяйственные площади при рациональном их использовании и распределении продукции могли бы обеспечить растительной пищей примерно вдвое большую численность населения планеты, чем существующую. Сложнее обеспечить население вторичной продукцией. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50% от потребностей современного населения Земли. Следовательно, большая часть населения планеты находится в состоянии хронического белкового голодания. В связи с этим увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из важнейших задач человечества.

Экологические пирамиды. Каждая экосистема имеет определённую трофическую структуру, которую можно выразить либо числом особей на каждом трофическом уровне, либо их биомассой, либо количеством энергии, фиксируемой на единице площади за единицу времени на каждом последующем трофическом уровне. Графически это обычно представляют в виде пирамиды, основанием которой служит первый трофический уровень, а последующие образуют этажи и вершину пирамиды.

Рис. 17. Упрощённая схема пирамиды численности (по Г.А. Новикову, 1979)

Различают три основных типа экологических пирамид – чисел, биомассы и продукции (или энергии).

Пирамида чисел отражает распределение особей по трофическим уровням. Установлено, что в трофических цепях, где передача энергии происходит в основном через связи хищник – жертва, часто выдерживается правило: общее число особей в цепях питания на каждом последующем трофическом уровне уменьшается (рис. 17).

Это объясняется тем, что хищники, как правило, крупнее своих жертв и одному хищнику для поддержания его жизни требуется несколько жертв. Например, одному льву требуется 50 зебр в год. Однако из этого правила есть исключения. Волки, охотясь сообща, могут убивать жертву более крупную, чем они сами (например, оленей). Пауки и змеи, обладая ядом, убивают крупных животных.

Пирамида биомассы отражает суммарную массу организмов каждого трофического уровня. В большинстве наземных экосистем суммарная масса растений больше, чем биомасса всех растительноядных организмов, а масса последних, в свою очередь, превышает массу всех хищников (рис. 18)

З Ф

Коралловый риф Залежь Пелагиаль

Рис. 18. Пирамиды биомассы в некоторых биоценозах (по Ф. Дре, 1976):

П – продуценты, РК – растительные консументы, ПК – плотоядные консументы, Ф – фитопланктон, З – зоопланктон

В океанах и морях, где основными продуцентами являются одноклеточные водоросли, пирамида биомассы имеет перевёрнутый вид. Здесь вся чистая первичная продукция быстро вовлекается в цепи питания, накопление биомассы водорослей очень мало, а их потребители гораздо крупнее, имеют большую продолжительность жизни, поэтому на высших трофических уровнях преобладает тенденция к накоплению биомассы.

Пирамида продукции (энергии) даёт наиболее полное представление о функциональной организации сообщества, так как отражает законы расходования энергии в пищевых цепях: количество энергии, содержащейся в организмах на каждом последующем трофическом уровне цепи питания меньше, чем на предыдущем уровне.


Рис. 19. Пирамида продукции


Количество продукции, образующейся в единицу времени на разных трофических уровнях, подчиняется тому же правилу, которое характерно для энергии: на каждом последующем уровне цепи питания количество продукции, создаваемой за единицу времени, меньше, чем на предыдущем . Это правило является универсальным, действует во всех типах экосистем (рис. 19). Пирамиды энергии никогда не бывают перевёрнутыми.

Изучение законов продуктивности экосистем, возможность количественного учёта потока энергии чрезвычайно важны в практическом отношении, так как первичная продукция агроценозов и эксплуатируемых человеком природных сообществ является основным источником запасов пищи для человечества. Не менее важна и вторичная продукция, которую получают за счёт сельскохозяйственных животных. Точные расчёты потока энергии в масштабах продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Наконец, очень важно хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность.

Лучистая энергия солнца, усваиваемая зелеными автотрофными растениями, превращается в энергию химических связей синтезируемого вещества. Скорость фиксации солнечной энергии определяет продуктивность сообществ. Продуктивность автотрофных организмов представляет собой первичную продуктивность . Продуктивность представителей других трофических уровней составляет вторичную продуктивность .

Основной показатель продуктивности - биомасса организмов (растительных и животных), составляющих экосистему. Биомасса - это выраженное в единицах массы или энергии количество живого вещества организмов, приходящееся на единицу площади или объема (например, г/м2, г/м3, кг/га, т/км2 и др.). Используют массу либо сырого, либо, чаще всего, сухого вещества. Различают растительную биомассу (фитомассу), животную (зоомассу), бактериомассу, либо биомассу каких-либо конкретных групп или организмов отдельных видов.

Величина биомассы меняется в зависимости от сезона года, миграций животных, от степени ее потребления.

Биомасса, производимая биоценозом на единице площади за единицу времени, называется биологической продукцией . Она выражается в тех же величинах, что и биомасса, но с указанием времени, за которое она создана (например, кг/га за месяц).

Различают 2 вида продукции - первичную и вторичную.

Первичная продукция - это биомасса, произведенная автотрофными организмами (зелёными растениями) на единице площади за единицу времени.

Суммарная продукция фотосинтеза называется первичной валовой продукцией . Это вся химическая энергия в форме произведенного органического вещества. При этом часть энергии может идти на поддержание жизнедеятельности (дыхание) самих производителей продукции - растений. Если мы изымем ту часть энергии, которая тратится растениями на дыхание, то получим чистую первичную продукцию .

Зеленые растения могут перерабатывать от 1 до 5% получаемой энергии Солнца. Животные, питающиеся растениями, для образования биомассы своего тела используют всего 1% энергии, содержащейся в растительном материале.

Вторичная продукция - это биомасса, созданная всеми консументами экосистемы за единицу времени.

В целом вторичная продукция колеблется от 1 до 10% в зависимости от свойств животного и особенностей поедаемого корма.

По участию в биологическом круговороте веществ в экосистеме различают 3 группы организмов.

  • 1 Продуценты (автотрофные организмы). Являясь организмами-продуцентами, автотрофы синтезируют с помощью солнечного света из СО2 и Н2O, а также неорганических солей почвы органические соединения, преобразуя при этом световую энергию в химическую. Они обеспечивают органическими веществами и энергией все живое население биоценоза.
  • 2 Консументы (потребители). Они не способны синтезировать вещества своего тела из неорганических составляющих. К ним относятся все животные, которые извлекают необходимую энергию из готовой пищи, поедая растения или других животных. Первичными консументами являются растительноядные животные (фитофаги), питающиеся травой, семенами, плодами, подземными частями растений - корнями, клубнями, луковицами и даже древесиной (некоторые насекомые). Ко вторичным консументам относят плотоядных животных (хищников).

3 Редуценты (от лат. reducens, reducentis - возвращающий, восстанавливающий) - микроорганизмы и грибы, разрушающие мертвое органическое вещество и превращающие его в воду, СО2 и неорганические вещества, которые в состоянии усваивать другие организмы (продуценты). Основными редуцентами являются бактерии, грибы, простейшие, т.е. гетеротрофные микроорганизмы.

Осуществляя пищевые взаимодействия, организмы биоценоза выполняют 3 функции :

  • 1) энергетическую - выражается в запасании энергии в форме химических связей первичного органического вещества; её выполняют организмы-продуценты;
  • 2) перераспределения и переноса энергии пищи - её выполняют консументы;
  • 3) разложения органического вещества редуцентами до простых минеральных соединении, которые снова вовлекаются в биологический круговорот организмами-продуцентами.

Перенос веществ и заключенной в них энергии от автотрофов к гетеротрофам, происходящий в результате поедания одними организмами других, называется пищевой цепью . Число звеньев в ней может быть различным, но обычно их бывает от 3 до 5.

Совокупность организмов, объединенных одним типом питания и занимающих определенное положение в пищевой цепи, носит название трофический уровень . К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

Пищевые цепи, которые начинаются с автотрофных фото-синтезирующих организмов, называются пастбищными, или цепями выедания .

Если пищевая цепь начинается с отмерших остатков растений, трупов и экскрементов животных (детрита), она называется детритной, или цепью разложения .

В биоценозах обычно существует ряд параллельных пищевых цепей - пищевая сеть . Сокращение численности особей одного вида - звена в пищевой цепи, вызванное деятельностью человека или другими причинами, неизбежно приводит к нарушениям целостности экосистемы.

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов приобретает определенную трофическую структуру. Трофическую структуру обычно отображают графическими моделями в виде экологических пирамид.

Эффект пирамиды в виде таких моделей разработал в 1927 г. английский зоолог Чарлз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а последующие уровни образуют консументы различных порядков. При этом высота всех блоков одинакова, а длина - пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

  • 1 Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).
  • 2 Пирамида биомасс - соотношение между организмами разных трофических уровней (продуцентами, консументами и редуцентами), выраженное в их массе. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели общая масса консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

В водных экосистемах можно также получить обращенную (или перевернутую) пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели биомасса консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона его общая масса в данный момент может быть меньше, нежели масса потребителей-консументов (киты, крупные рыбы, моллюски).

3. Пирамида энергии отражает величину потока энергии, скорость прохождения массы нищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.

Пирамида энергии, в отличие от пирамид чисел и биомасс, всегда суживается кверху.

Потребленная пища на каждом трофическом уровне ассимилируется не полностью. Значительная её часть тратится на обмен веществ. При переходе к каждому последующему звену пищевой цепи общее количество пригодной для использования энергии, передаваемой на следующий, более высокий трофический уровень, уменьшается. Продукция каждого последующего уровня примерно в 10 раз меньше продукции предыдущего.

В 1942 г. Р. Линдеман сформулировал закон пирамиды энергии (или закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии . Остальная её часть теряется в виде теплового излучения. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей.

Одно из важнейших свойств организмов, их популяций и экосистем в целом - способность создавать органическое вещество, которое называется продукцией.

Образование продукции в единицу времени (час, сутки, год) на единице площади (метры квадратные, гектар) или объема (в водных экосистемах), выраженное в единицах массы (граммы, килограммы, тонны), характеризует продуктивность экосистем. Продукция и продуктивность могут определяться для экосистем в целом или для отдельных групп организмов (растений, животных, микроорганизмов) или видов.

Продукцию растений называют первичной, а животных - вторичной. Наряду с продукцией различают биомассу организма, групп организмов или экосистем в целом. Под биомассой понимают все живое вещество, которое содержится в экосистеме или ее элементах вне зависимости от того, за какой период она образовалась и накопилась. Биомасса и продукция (продуктивность) обычно выражаются через абсолютно сухой вес. Величина биомассы экосистем или их звеньев во многом зависит не столько от их продуктивности, сколько от продолжительности жизни организмов и экосистем. Большая биомасса характерна для лесных экосистем: в тропических лесах она достигает 800-1000 т/га, в лесах умеренной зоны - 300-400 т/га, в травянистых сообществах - 3-5 т/га.

Соотношение биомассы и годичной продукции экосистем выражается формулой:

Б = УП - УД,

где Б - биомасса в данный момент времени, П - годовая продукция, Д - дыхание. Под дыханием понимается вся сумма живого вещества, отчуждаемого на процессы разложения в результате гибели целых организмов (отпад) или их частей - сучьев, коры, листьев, наружных покровов (опад) и потребление гетеротрофами.

Экологические параметры продуктивности. Продукция и биомасса экосистем - это не только ресурс, используемый в пищу или в качестве различных видов сырья (техническое, топливо и т.п.), от этих показателей в прямой зависимости находится средообразующая и средостабилизирующая роль экосистем. С продуктивностью растений и их сообществ тесно связана интенсивность поглощения углекислого газа и выделения кислорода. Для образования одной тонны растительной продукции (абс. сухой вес) обычно поглощается 1,5-1,8 т углекислого газа и выделяется 1,2-1,4 т кислорода. Биомасса, в том числе и мертвое органическое вещество, являются основными резервуарами концентрации углерода. На суше это практически единственный фактор вывода углекислого газа из процессов круговорота на длительный время, часть этого органического вещества и вовсе исключается из круговорота. Во влажных районах фактором, прерывающим круговорот, выступает недостаток кислорода и кислая среда, здесь основными очагами накопления органики являются болота. На дне глубоких водоемов захоронение органического вещества также обуславливается недостатком кислорода или избытком ядовитых веществ (например, сероводорода). В крайне сухих условиях круговорот прерывается чаще всего недостатком влаги.

Дождевые тропические леса характеризуются максимальной продуктивностью (до 20-25 г/га/год) и биомассой (до 700-1000 т/га). Органическая масса тропических лесов в большей степени включается в замкнутые циклы круговорота и следовательно большая интенсивность ассимиляции через некоторое время заканчивается большой интенсивностью процессов диссимиляции (разложения), сопровождающихся выделением углекислоты и поглощением кислорода. Тропические леса практически не накапливают мертвое органическое вещество (торф, детрит, подстилка и т.п.). Почвы этих лесов бедны гумусом и почти не содержат кальция.

В северных лесах продуктивность (6-10 т/га) и биомасса (300-400 т/га), значительно ниже, но их роль в положительном балансе кислорода и углекислоты более значительна. В северных (бореальных) лесах и других экосистемах (болотах) процессы консервирования органического вещества несравнимо значительнее. Такие явления особенно масштабны в равнинных условиях (типа Западной Сибири), в понижениях (типа полесий) и т.п.

Продуктивность различных экосистем биосферы. Основная масса первичной продукции образуется в экосистемах суши (около 115 млрд. тонн в год) и только около 55 млрд. тонн в год - в экосистемах океана. Дело в том, что внутренние воды океана, расположенные за пределами прибрежной (шельфовой) зоны, по продуктивности близки к пустыням наземных экосистем (10-120 г/м 2 за год первичной продукции). Для сравнения: продуктивность лесов тайги составляет в среднем около 700-800 г/м 2 за год, а влажных тропических лесов - 200-220 г/м 2 за год.

В.И. Вернадский выделил очаги наибольшей концентрации жизни, назвав их пленками и сгущениями живого вещества. Под пленками живого вещества понимается его повышенное количество на больших пространствах.

В океане выделяют две пленки: поверхностную (планктонную) и донную (бентосную). Мощность поверхностной пленки обусловливается в эуфотической зоной, то есть тем слоем воды, в котором возможен фотосинтез. Она колеблется от нескольких десятков и сотен метров (в чистых водах) до нескольких сантиметров (в загрязненных водах). Донная пленка образована в основном гетеротрофными экосистемами, и поэтому ее продукция представлена вторичной, а количество ее зависит в основном от поступления органического вещества с поверхностной пленки.

В наземных экосистемах выделяют две пленки живого вещества. Первая - приземная, заключенная между поверхностью почвы и верхней границей растительного покрова, имеет толщину от нескольких сантиметров (пустыни, тундры, болота и др.) до нескольких десятков метров (леса). Вторая - почвенная, она наиболее насыщена жизнью (богата организмами), на 1 м 2 почвенного слоя насчитывают миллионы насекомых, десятки и сотни дождевых червей и сотни миллионов микроорганизмов, толщина пленки находится в прямой зависимости от мощности почвенного слоя и его богатства гумусом. В тундрах и пустынях это несколько сантиметров, на черноземах, особенно тучных, - до 2-3 метров.

Повышенные концентрации живого вещества в биосфере приурочены к условиям так называемого «краевого эффекта» или экотонов. Такой эффект возникает на стыках сред жизни или различных экосистем. В приведенных примерах для водных экосистем поверхностная пленка - это зона контакта атмосферы и водной среды, донная - водной толщи и донных отложений, почвенная - атмосферы и литосферы.

Примером повышенной продуктивности на стыках экосистем могут служить переходные экосистемы между лесом и полем («опушечный эффект»), а в водных средах - экосистемы, возникающие в эстуариях рек (места впадения их в моря, океаны и озера и т. п.).

Высокопродуктивные экосистемы (сгущения живого вещества) океана:

1. Прибрежные. Они располагаются на контакте водной и наземно-воздушной среды. Особенно высокопродуктивны экосистемы в местах впадения рек в моря и океаны (эстуарии). Протяженность этих сгущений тем значительнее, чем больше вынос реками органических и минеральных веществ с суши. 2. Коралловые рифы. Высокая продуктивность этих экосистем связана прежде всего с благоприятным температурным режимом, фильтрационным типом питания многих организмов, видовым богатством сообществ, симбиотическими связями и другими факторами. 3. Саргассовые сгущения. Создаются большими массами плавающих водорослей, чаще всего саргассовых (в Саргассовом море) и филлофорных (в Черном море). 4. Апвеллинговые. Эти сгущения приурочены к районам океана, где имеет место восходящее движение водных масс от дна к поверхности (апвеллинг). Они несут много донных органических и минеральных отложений и в результате активного перемешивания хорошо обеспечены кислородом. Эти высокопродуктивные экосистемы являются одним из основных районов промысла рыб и других морепродуктов. 5. Рифтовые глубоководные (абиссальные) сгущения. Они существуют на больших глубинах (2-3 тыс. метров). Первичная продукция в них образуется только в результате процессов хемосинтеза за счет высвобождения энергии из сернистых соединений, поступающих из разломов дна (рифтов). Высокая продуктивность здесь обязана прежде всего благоприятным температурным условиям, поскольку разломы одновременно являются очагами выхода из недр подогретых (термальных) вод. Это единственные экосистемы, не использующие солнечную энергию. Они живут за счет энергии недр Земли.

Высокопродуктивные экосистемы (сгущения живого вещества) суши:

1. Экосистемы берегов морей и океанов в районах, хорошо обеспеченных теплом. 2. Экосистемы пойм, периодически заливаемые водами рек, которые откладывают ил, а вместе с ним органические и биогенные вещества. 3. Экосистемы небольших внутренних водоемов, богатые питательными веществами. 4. Экосистемы тропических лесов.

Вторичная (животная) продукция выше в океане, чем в наземных экосистемах, это связано с тем, что на суше в звено консументов (травоядных) в среднем включается лишь около 10% первичной продукции, а в океане - до 50%, поэтому, несмотря на более низкую первичную продуктивность океана, чем суши, по массе вторичной продукции эти экосистемы примерно равны.

В наземных экосистемах основную продукцию (до 50%) и биомассу (около 90%) дают лесные экосистемы. Основная масса этой продукции поступает сразу в звено деструкторов и редуцентов. Для таких экосистем характерно преобладание детритных (за счет мертвого органического вещества) цепей питания. В травянистых экосистемах (луга, степи, прерии, саванны) значительно большая часть первичной продукции прижизненно отчуждается фитофагами (травоядными животными). Такие цепи носят название пастбищных или цепей выедания.

Необходимо сохранять высокопродуктивные экосистемы, они представляют основной каркас биосферы и его разрушение связано с наиболее значительными отрицательными последствиями.

Биологическая продуктивность – общее количество органического вещества, производимое за единицу времени на единицу площади.

Общая масса особей одного вида, группы видов или сообщества в целом, приходящаяся на единицу поверхности или объема местообитания называется биомассой . Выражается она в массе сырого или сухого вещества, а также углерода или азота Ее выражают в г/ см 2 , кг/га, г/м 3 , в сыром или сухом виде, или в единицах энергии - в калориях, джоулях и т.п. Биомасса растений носит название фитомассы, животных – зоомассы. По биомассе отдельных компонентов судят о количественных соотношениях масс организмов.

Прирост биомассы организмов вида или всего сообщества за определенный период называется продукцией .

Различают первичную и вторичную продукцию сообщества.

Первичная продукция – биомасса, созданная за единицу времени продуцентов. Она делится на валовую и чистую. Валовая первичная продукция (общая ассимиляция) – это общая биомасса, созданная растениями в ходе фотосинтеза. Часть ее расходуется на поддержание жизнедеятельности растений – траты на дыхание (40-70%). Чистую первичную продукцию (чистая ассимиляция) – это скорость накопления создаваемого органического вещества сверх того, которое затрачено на дыхание. Она в дальнейшем используется консументами и редуцентами, или накапливается в экосистеме.

Вторичная продукция - биомасса, созданная за единицу времени консументами. Она различна для каждого следующего трофического уровня.

Теоретически скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Известно, что каждую минуту на 1 см 2 земной атмосферы поступает 2 калории солнечной энергии (солнечная постоянная или константа). Растения используют лишь 21-46% солнечной энергии получаемой земной поверхностью. Максимально допустимый в природе к.п.д. фотосинтеза 10-12% энергии ФАР. В целом же по земному шару усвоение растениями солнечной энергии не превышает 0,1% из-за ограничения фотосинтетической активности растений различными факторами (недостаток тепла, влаги, неблагоприятные свойства почвы и т.д.)

Для большинства типов растительного покрова к.п.д. поглощенной ФАР составляет в среднем 1-2%. Пустынные кустарники имеют к.п.д. 0,03%; травянистые альпийские растения – 0,15-0,75%. Наиболее высокий к.п.д. у лесных экосистем – 2-4%. Средний к.п.д. для территории России – 0,8%, на европейской части он составляет 1,0-1,2%, в восточных районах – 0,4-0,8% .

Среднее значение первичной продукции по земному шару составляет 3 т/га. Максимальные количества сосредоточены в вечнозеленых тропических дождевых лесах (более 500 т/га), самой низкой пустыни (7 т/га) и тундра (6 т/га). Морские растения ежегодно фотосинтезируют до 3,0 10 10 т органических веществ, а наземные – 5,3 10 10 т. В целом на планете каждый год путем фотосинтеза создается до 8,3 10 10 т органических веществ. Из 5,3 10 10 т, производимых на суше, на долю лесов приходится 2,84 10 10 т, остальное синтезируется травянистой и культивируемой растительностью.

Если в экосистеме скорость прироста растений (образования первичной продукции) выше темпов переработки ее консументами и редуцентами, то это ведет к увеличению биомассы продуцентов. Если при этом присутствует недостаточная утилизация продуктов опада в цепях разложения, то происходит накопление мертвого органического вещества. Это ведет к заторфовыванию болот, зарастанию мелких водоемов, образованию мощной лесной подстилки и т. п. В стабильных экосистемах биомасса остается постоянной, так как практически вся продукция расходуется в цепях питания.

По продуктивности сообщества делят на 4 класса:

1. Сообщества высшей продуктивности 2-3 кг/м 2 /год. Это тропические леса, посевы риса и сахарного тростника, заросли тростников в дельтах Волги, Дона;

2. Сообщества высокой продуктивности 1-2 кг/м 2 / год. В этот класс включены листопадные леса умеренной зоны, луга при применении удобрений, посевы кукурузы;

3. Сообщества умеренной продуктивности, 0, 25-1 кг/м 2 год. К этому классу относят посевы основной массы возделываемых с/х культур, сосновые и березовые леса, сенокосные луга, степи;

4. Сообщества низкой продуктивности, ниже 0,25 кг/м 2 / год - пустыни, полупустыни, тундра.

Таблица 4 - Биомасса разных типов экосистем (Н. Ф. Реймерс, 1990)

Таблица 5 - Первичная биологическая продукция основных экосистем земного шара

(Н. Ф. Реймерс, 1990)

Питание людей большей частью обеспечивает сообществами умеренной продуктивности, т.е. сообществами из сельскохозяйственных культур. Годовой прирост культурных растений равен примерно 16% от всей продуктивности суши. В антропогенный канал, образуемый людьми и животными, поступает примерно 1/4, что составляет примерно 9 млрд. т. продуктов с.-х. производства. Около 90% заключенной в этих продуктах энергии обеспечивается растениеводческой продукцией. Из известных 80 тыс. съедобных растений на земном шаре культивируется немногим более 80 видов (культурная флора СНГ составляет более 50 видов). Наиболее широкое распространение получили: рис, пшеница, кукуруза, картофель, ячмень, батат, маниок, соя, овес, сорго, просо, сахарный тростник, сахарная свекла, рожь, арахис. На рис и пшеницу приходится более 40%. Злаковые культуры дают почти 50% белка потребляемого человеком.

Продуктивность водных экосистем

Продуктивность водных экосистем неодинакова и в значительной степени определяется доступностью определенных питательных веществ.

В пределах эвфотической зоны свет не является лимитирующим фактором, поскольку в прозрачной среде фитопланктон распределяется во всей толще эвфотической зоны, а в мутной он концентрируется ближе к поверхности воды, где интенсивность света выше. Не оказывает существенного влияния на продуктивность морских экосистем и температура воды, чем и объясняется тот факт, что в холодных водах умеренной зоны продуктивность фитопланктона такая же, как и в теплых водах Индийского океана или Карибского моря.

Поскольку доступность минеральных веществ уменьшается в направлении от континента в открытый океан, то в этом же направлении уменьшается и продуктивность. Так, в прибрежных мелководных заливах (эстуариях) она составляет $2000 \ г/ м^2$ в год, в районе шельфа - $500 \ г/ м^2$ в год и менее $100 \ г/ м^2$ в год - в открытом океане, или соответственно $10,5 \ и \ 2.1 \ МДж/ м^2$ в год.

Продуктивность наземных экосистем

Средняя продуктивность наземных местообитаний (без учета площади полярпых ледниковых шапок) составляет около $1000 \ г/ м^2$ в год ($16.38 \ Мдж / м^2$ в год), что соответствует ассимиляции примерно 0,3 % световой энергии. Вместе с тем разнообразие наземных местообитаний является причиной их неодинаковой продуктивпости. Благоприятное сочетание интенсивности солнечного света, тепла, влаги делает тропики наиболее продуктивными экосистемами - в среднем около $5000 \ г/ м^2$ в год. Продуктивность экосистем умеренных и арктических областей суши снижается вследствие низких температур и длинных ночей зимой. Недостаток влаги ограничивает продукцию растений в засушливых областях. Продуктивность экосистем указанных зон колеблется в пределах $100 - 500 \ г/ м^2$ в год.

Наиболее продуктивны на суше экосистемы болот и дельт рек. В тропических болотах она достигает $7000 \ г/ м^2$ в год, а в болотах умеренной зоны - $4000 \ г/ м^2$ 3 год. Высокая продуктивность болот объясняется тем, что корни болотных растений постоянно находятся в воде, а листья - на свету и в воздухе, благодаря чему они одновременно пользуются благами как водной, так и наземной сред.

Продуктивностъ возделываемых человеком земель (агроэкосистем) обычно несколько ниже природных экосистем этой же зоны, что связано с сокращением времени (вегетации) создания продукции. Кроме того, в сельскохозяйственных экосистемах возделывается ограниченный набор культур, которые не так эффективно используют ресурсы среды (свет, влагу, питательные вещества), как виды природных экосистем.

Пример 1

Чистая первичная продукция выращиваемых в умеренной зоне зерновых культур (пшеница, рожь, ячмень, овес, кукуруза),картофеля, сена колеблется от $250 \ до \ 500 \ г/ м^2$ в год ($5.25- 10.5 \ МА, \ к/ м^2$ в год), а продуктивность сахарной свеклы обычно вдвое выше, для сравнения заметим, что продуктивность лесов в этой зоне колеблется от $600 \ до \ 2500 \ г/ м^2$ в год ($37.8 525.0 \ МДж/ м^2$ в год), а степей - $150 - 1500 \ г/ м^2$ в год.

Продуктивность всех возделываемых земель варьируется от $100 \ до \ 4000 \ г/ м^2$ в под в зависимости от выращиваемой культуры, что в среднем составляет $650 \ г/ м^2$ в год, или $13,65 \ МДж/ м^2$ в год.

Искусственное орошение и внесение удобрений могут повысить урожаи сельскохозяйственных культур в 3-4 раза по сравнению со средними величинами для всего мира. Так, продукция сахарного тростника – культуры, широко распространенной в тропическом земледелии. - составляет в среднем $1700 \ г/ м^2$ в год. При интенсивной же его культуре продуктивность увеличивается вдвое.