Авария на магистральном трубопроводе является. Анализ риска аварий на магистральных трубопроводах при обосновании минимальных безопасных расстояний

По территории Обоянского района проходит магистральный газопровод «Щебелинка-Курск-Брянск».
Наиболее опасным участком является пересечение газопровода с рекой Псел в районе города Обоянь.

Вследствие аварии на газопроводе возможно возникновение следующих поражающих факторов:

  1. воздушная ударная волна;
  2. разлет осколков;
  3. термическое воздействие пожара.

Анализ аварий на магистральных газопроводах показывает, что наибольшую опасность представляют пожары, возникающие после разрыва трубопроводов, которые бывают двух типов: пожар в котловане (колонного типа) и пожар струевого типа в районах торцевых участков разрыва. Первоначальный возможный взрыв газа и разлет осколков (зона поражения несколько десятков метров), учитывая подземную прокладку газопровода и различные удаления объектов по пути трассы, возможные зоны поражения необходимо рассматривать конкретно для каждого объекта.
Возможные радиусы термического поражения приведены в Таблице 18.

Выводы:

При аварии на магистральном газопроводе возможно возгорание зданий и поражение людей при пожаре струевого типа на удалении от места аварии до 1200 м.

Учитывая существенное расширение границ селитебной зоны населенных пунктов после завершения строительства газопроводов часть зданий, сооружений и жилых домов попадают в зону поражающих факторов при аварии на данных магистральных газопроводах.

При возникновении пожара (взрыва газовоздушной смеси) на одном из участков магистрального газопровода радиус вероятной зоны поражения может достигать 0,5 км. Ожидается гибель персонала, получателей сжиженного газа свыше 30 человек и 1-3 единиц техники. Вероятное количество населения, попадающего в зону чрезвычайной ситуации до 1000 чел. (по признаку нарушения условий жизнеобеспечения). В результате аварии потеря газа может составить до 100 тыс. м3, экономический ущерб - до 7 тыс. МРОТ.

V. Аварии на магистральных нефтепроводах

По территории района проходит нефтепровод Мичуринск - Кременчуг "Дружба". Диаметр нефтепровода составляет 720 мм. Протяженность нефтепровода - 270 км. Рабочее давление 41 кг/см2. Производительность 30 тыс.т./сут. Количество нефти, находящейся в нефтепроводе составляет 106845 т, что значительно превышает величину порогового количества, определенного для ЛВЖ (50000 т). Магистральный нефтепровод по гражданской обороне не категорируется.
Виды возможных чрезвычайных ситуаций:

1. Разлив нефтепродуктов в результате разгерметизации линейного участка с последующим возгоранием и возможным взрывом паров нефтепродуктов. Так как нефтепродуктопровод проходит на значительном расстоянии от населенных пунктов и промышленных объектов, поэтому в случае взрыва или пожара они не пострадают. Тяжелые последствия прогнозируются на пересечениях с железными дорогами. В этом случае возможен выход из строя железных дорог, ЛЭП, значительный экономический ущерб.

2. Разлив нефтепродуктов в результате разгерметизации подводного перехода. В этом случае возможно попадание нефтепродуктов в реки (до 1,5 тыс. м3) и ее распространение вниз по течению, что приведет к гибели флоры и фауны, загрязнению прибрежной полосы нефтепродуктами.

Площадь вероятной зоны чрезвычайной ситуации - до 2000 м2 на суше и 48000 м 2 на реке. Вероятное количество населения, попадающее в зону чрезвычайной ситуации до 800 чел. Вероятные социально-экономические последствия при возникновении чрезвычайной ситуации:

  1. экономический ущерб - до 30 тыс. МРОТ;
  2. пострадавшие - до 150 чел.;
  3. нарушение условий жизнедеятельности - до 800 чел.

При распространении разлива нефтепродуктов возможно загрязнение рек и водоемов, вынесение нефтепродуктов на береговую линию и частично нарушение жизнедеятельности населения, проживающего в населенных пунктах, расположенных ниже по течению рек.

Наиболее вероятные причины разливов нефтепродуктов:

Аварии в результате внешней/внутренней коррозии стенок трубопровода;
аварии при воздействии высоких температур при пожаре;
аварии в результате хрупкого разрушения при низких температурах;
аварии на трубопроводах и оборудовании при стихийных бедствиях и террористических актах;
аварии в результате механических повреждений;
аварии в результате брака строительно-монтажных работ;
аварии в результате нарушения технологии перекачки нефтепродуктов.

Основными процессами при разлитии нефтепродуктов могут быть:

Растекание;
испарение;
дисперсия;
растворение;
эмульгирование.

Возможны следующие сценарии возможного поведения нефтепродуктов в районах аварий и разливов на воде в зависимости от сезона года:

1. Безледовый период.

Попадая в реку, ручей или источник, нефтепродукты начинают распространяться, увлекаясь поверхностным течением. При этом образуется вытянутое пятно. В общем случае нефтепродукты будут стремиться скапливаться в участках спокойной воды или в водоворотах на изгибах рек, в извилистых реках, ручьях или в других местах, где скорость течения замедляется. Островки нефтепродуктов могут образоваться в местах, где скапливаются деревья и мусор.
Перемещение и удаление нефтяных пятен от источника аварии будет в первую очередь определяться скоростью течения реки и направлением ветра. Под действием течения нефтепродукты переносится вниз по реке, а ветер сместит пятно к одному из берегов.

2. Ледовый период.

Перемещение пятна нефтепродуктов не зависит от направления ветра. Плавающие нефтепродукты, попав под лед, будут двигаться по подводной части ледяного поля, которая обычно имеет неровную поверхность. Подвижность нефтепродуктов уменьшается. Скорость перемещения пятна нефтепродуктов подо льдом составляет 10-50% от скорости потока в приледном слое воды толщиной 0,1 м, в зависимости от шероховатости нижней поверхности льда. При скоростях движения воды менее 0,1 м/с пятно нефтепродуктов под ледяным покровом может оставаться в неподвижном состоянии.

Распространение нефтепродуктов под ледяным покровом может находиться в виде отдельных капель, сливаться в небольшие пятна или сплошные ковры. При этом толщина этих образований не превышает 5-10 мм.

При нарастании льда неподвижные нефтепродукты вмерзают в лед и в дальнейшем находятся в толще льда в виде вмороженных капель или отдельных линз.

Характер распространения пятна нефтепродуктов зависит от формы русловой части реки, скорости течения и времени, прошедшего с момента начала аварии.

Локализация аварийного нефтезагрязнения воды и прибрежных территорий

Основным способом локализации распространения нефтепродуктов является установка боновых заграждений на локализационных площадках. На места установки боновых заграждений выезжают бригады аварийно-спасательных подразделений в соответствии с разработанным типовым или ситуационным планом. Технические средства - боновые заграждения, нефтесборщики для очистки загрязненных вод. На малых реках допускается создание земляных дамб с водопропускными трубами.

В ледовый период время локализации пятна нефтепродуктов зависит от времени на устройство во льду прорези и майны. Наименьшая допустимая толщина ледяного покрова для выполнения работ может определяться согласно РД153-39.4-114-01 (п. 5.7.39).

За границей боновых заграждений производят контроль наличия нефтепродуктов. В случае обнаружения нефтепродуктов устанавливают дополнительный рубеж боновых заграждений.

В период половодья состояние водного объекта характерно как для ледового, так и для безледового периода. В данном случае мероприятия и объемы работ планируются в зависимости от погодных условий, преобладания признаков ледового (безледового) периода и состояния подъездных путей к рубежам локализации.

Расстановка рубежей локализации производилась с учетом географических особенностей района, а также временем подхода нефтепродуктов к конкретному рубежу локализации. Выбор рубежа локализации определяется руководителем КЧС в зависимости от условий разлива, ситуации и метеорологических условий. При сложных метеорологических условиях рубежи локализации уточняются на основании конкретных гидрометеорологических условий.

Проведение АСНДР будет затруднено высокой температурой в очаге пожара, потребует применения специализированных формирований. Локализация и ликвидация последствий ЧС потребует привлечения значительных финансовых, материальных и людских ресурсов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Подземные магистральные газопроводы

1. Технологическая схема магистрального газопровода

Магистральные газопроводы - это стальные трубопроводы, по которым транспортируется природный или искусственный газ от мест добычи или производства к местам его потребления. Диаметр газопровода, в основном, варьируется от 700 мм до 1400 мм. Глубина прокладки газопровода от 0,8 до 1 м.

В зависимости от рабочего давления газопроводы подразделяют на два класса:

1 класс - свыше 2,5 до 10 МПа включительно;

2 класс - свыше 1,2 до 2,5 МПа включительно.

В состав магистрального газопровода входят (Рисунок 1.1): собственно газопровод и его ответвления, головные сооружения, компрессорная станция, пункты контрольно-измерительной аппаратуры, ремонтно-эксплуатационная служба, газораспределительная станция, подземные хранилища газа, линии связи и электропередачи, установки электрозащиты газопровода от коррозии, вспомогательные сооружения (водоснабжения и канализации, усадьбы линейных обходчиков, административные и хозяйственно-бытовые объекты).

Рисунок 1.1 - Состав магистрального газопровода, где ГСС - газосборные сети, ГКС - головная компрессорная станция, КС - промежуточная компрессорная станция, ГХ - подземное хранилище газа

Головные сооружения служат для очистки газа от вредных примесей (удаления влаги, отделения серы и других ценных компонентов) и подготовки его к транспортировке.

Компрессорные станции (КС) - это комплекс сооружений, предназначенный для сжатия транспортируемого газа до такого давления, которое обеспечило бы бесперебойную подачу его от месторождения до потребителей.

В состав КС входят: компрессорный цех с установками для сжатия газа (его пластовое давление на промысле невелико), пылеулавливатели, установки для очистки газа и другие объекты.

При подходе магистрального газопровода к местам потребления газа (городам, поселкам, предприятиям) давление в нем должно быть снижено до уровня, необходимого потребителям (0,3-1,2 МПа). Для этого предназначены газораспределительные станции (ГРС), в которых размещается аппаратура по снижению давления, дополнительной очистке и осушке газа.

Для регулирования неравномерности потребления газа устраивают подземные газохранилища. Сооружают их в водонасыщенных пористых пластах, отработанных нефтяных и газовых месторождениях.

При эксплуатации магистральных газопроводов контролю подлежат следующие основные показатели:

а) давление газа в начале и в конце участка, на выходе с промысла и на отводах на газораспределительные станции;

б) количество транспортируемого газа, температура его на входе и выходе компрессорной станции, средняя по участку, на входе в газораспределительную станцию;

в) наличие конденсата, влаги, сероводорода, тяжелых углеводородов и загрязнений в газе, давление на входе и выходе компрессорной станции, количество работающих агрегатов и режим их работы;

г) исправность оборудования на компрессорных и газораспределительных станциях, герметичность газопровода;

д) режим закачки газа в подземные хранилища, режим отбора газа постоянными и буферными потребителями и другие показатели, характеризующие состояние газопровода, его сооружений и оборудования.

Для компримирования больших потоков газа, транспортируемых по магистральным газопроводам, суммарная мощность перекачивающих компрессорных установок достигает 50-60 тыс. кВт на одной станции. При сжатии газа на компрессорной станции ему сообщается значительное количество теплоты. Применение для газопроводов труб большого диаметра вызывает уменьшение удельной теплообменной поверхности труб на единицу количества транспортируемого газа. Поэтому по пути следования к следующей станции газ не может охладиться до необходимой температуры за счет теплоотдачи в окружающую среду, т.е. его температура после каждой станции будет повышаться. Максимальная температура транспортируемого газа ограничивается обеспечением устойчивости газопровода, прочностными характеристиками изоляции, климатическими и геологическими условиями на трассе газопровода. Поэтому возникает необходимость охлаждения газа после сжатия.

В зависимости от перечисленных факторов температура транспортируемого газа должна составлять 40-70°С.

Рисунок 1.2 - Общий вид транспортировки газа

2. Виды аварий на магистральном газопроводе

Доминирующими причинами аварий на магистральных газопроводах являются следующие:

Коррозионное разрушение газопроводов, 48%;

Брак строительно-монтажных работ (СМР), 21%;

Обобщенная группа механических повреждений, 20%;

Заводские повреждения труб 11%.

Где, обобщенная группа механически повреждений следующая:

Случайное повреждение при эксплуатации, 9%;

Террористические акты, 8%;

Природные воздействия, 3%.

Большинство аварий на магистральных трубопроводах ограничивается утечкой газа, равной объему трубы до отключающей арматуры. Или горение факела. Но также возможны большие катастрофы, как например, Железнодорожная катастрофа под Уфой - крупнейшая в истории России и СССР железнодорожная катастрофа, произошедшая 4 июня (3 июня по московскому времени) 1989 года в Иглинском районе Башкирской АССР в 11 км от города Аша (Челябинская область) на перегоне Аша - Улу-Теляк. В момент прохождения двух пассажирских поездов №211 «Новосибирск-Адлер» и №212 «Адлер-Новосибирск» произошёл мощный взрыв облака лёгких углеводородов, образовавшегося в результате аварии на проходящем рядом трубопроводе «Сибирь-Урал-Поволжье». Погибли 575 человек (по другим данным 645), 181 из них - дети, ранены более 600.

На трубе продуктопровода «Западная Сибирь-Урал-Поволжье», по которому транспортировали широкую фракцию лёгких углеводородов (сжиженную газобензиновую смесь), образовалась узкая щель длиной 1,7 м. Из-за протечки трубопровода и особых погодных условий газ скопился в низине, по которой в 900 метрах от трубопровода проходила Транссибирская магистраль, перегон Улу-Теляк - Аша Куйбышевской железной дороги, 1710-й километр магистрали, в 11 километрах от станции Аша, на территории Иглинского района Башкирской АССР.

Примерно за три часа до катастрофы приборы показали падение давления в трубопроводе. Однако вместо того, чтобы искать утечку, дежурный персонал лишь увеличил подачу газа для восстановления давления. В результате этих действий через почти двухметровую трещину в трубе под давлением вытекло значительное количество пропана, бутана и других легковоспламенимых углеводородов, которые скопились в низине в виде «газового озера». Возгорание газовой смеси могло произойти от случайной искры или сигареты, выброшенной из окна проходящего поезда.

Машинисты проходящих поездов предупреждали поездного диспетчера участка, что на перегоне сильная загазованность, но этому не придали значения.

4 июня 1989 года в 01:15 по местному времени (3 июня в 23:15 по московскому времени) в момент встречи двух пассажирских поездов прогремел мощный объёмный взрыв газа и вспыхнул гигантский пожар.

В поездах №211 «Новосибирск-Адлер» (20 вагонов, локомотив ВЛ10-901) и №212 «Адлер-Новосибирск» (18 вагонов, локомотив ЧС2-689) находилось 1284 пассажира (в том числе 383 ребёнка) и 86 членов поездных и локомотивных бригад. Ударной волной с путей было сброшено 11 вагонов, из них 7 полностью сгорели. Оставшиеся 27 вагонов обгорели снаружи и выгорели внутри. По официальным данным 575 человек погибло (по другим данным 645), 623 стали инвалидами, получив тяжёлые ожоги и телесные повреждения. Детей среди погибших - 181.

Официальная версия утверждает, что утечка газа из продуктопровода стала возможной из-за повреждений, нанесённых ему ковшом экскаватора при его строительстве в октябре 1985 года, за четыре года до катастрофы. Утечка началась за 40 минут до взрыва.

По другой версии причиной аварии явилось коррозионное воздействие на внешнюю часть трубы электрических токов утечки, так называемых «блуждающих токов» железной дороги. За 2-3 недели до взрыва образовался микросвищ, затем, в результате охлаждения трубы в месте расширения газа появилась разраставшаяся в длину трещина. Жидкий конденсат пропитывал почву на глубине траншеи, не выходя наружу, и постепенно спускался вниз по откосу к железной дороге.

При встрече двух поездов, вероятно в результате торможения, возникла искра, которая послужила причиной детонации газа. Но скорее всего причиной детонации газа явилась случайная искра из-под пантографа одного из локомотивов.

Рисунок 2.1 - катастрофа под Уфой

3. Поражающие факторы

Поражающие факторы при аварии на магистральном газопроводе:

а) барического воздействия волн сжатия, образующихся за счет расширения в атмосфере природного газа, выброшенного под давлением из разрушенного участка трубопровода («первичная» ударная волна), измеряется как импульс Кпа?с (обильные разрушения начинаются при 100 Кпа?с);

б) барического воздействия воздушных волн сжатия, образующихся при воспламенении газового облака и расширении продуктов его сгорания («вторичная» ударная волна), измеряется как импульс Кпа?с (обильные разрушения начинаются при 100 Кпа?с);

в) термического воздействия огненного шара при воспламенении переобогащенного топливом газового облака, измеряется как температура?С (болевой порог для человека (разрушение кожи) от 50С, разрушение трубопровода 350С);

г) термического воздействия воспламенившихся струй газа, измеряется как температура?С (болевой порог для человека (разрушение кожи) от 50 ?С, разрушение трубопровода 350 ?С).

д) воздействие осколков (или фрагментов) трубы, измеряется как кг.

Объекты поражения: Человек, Газопровода, Рядом находящиеся эксплуатационные объекты, Атмосфера.

Анализ поражающих факторов при аварии в местах пересечения магистральных газопроводов показывает, что при воздействии ударной волны на верхний газопровод в результате расширения газа, выбрасываемого из нижнего газопровода, давление во фронте ударной волны составляет от 6,4 МПа, а значение импульса составляет 88,3 кПа·с. При аварийных разрывах, как показывает анализ статистических данных, возможно образование осколков магистральных газопроводов массой более трех тысяч килограмм. Некоторые фрагменты могут достигать 10 тонн. При этом выброс осколков из траншеи в 75% случаях размером примерно 25 метров на 4,5 происходит на расстояние от 16 до 400 метров. Следует отметить, что при вязком разрушении расстояние выброса может достигать 180 метров, а при хрупком - до 700 метров.

По расчетным методикам получается так, что сквозные пробития верхнего газопровода могут возникнуть когда масса осколков будет превышать 1300 килограмм при прямом ударе и 2800 - при косом. При скорости осколка, равной скорости метания грунта при угле раскрытия нижнего магистрального газопровода равном 30 градусам, верхний газопровод разрушается под воздействием осколочных фрагментов более 240 килограмм. Если угол раскрытия равен 60 градусам, газопровод разрушается от осколка массой 1300 кг.

При тепловом воздействии на смежный аварийному верхний газопровод, получается интересная картина: длина факела может достигнуть нескольких сотен метров, распространение пожара в котловане - до 80 метров, температура в зоне горения достигает 1500 ?С, тепловой поток вырастает до 200 кВт/м?. При воздействии на газопровод теплового потока горящего газа температура разрушения газопровода составляет 330 ?С, а время прошедшее от начала теплового воздействия, до разрушения составляет от трех до пяти минут.

4. Безопасность магистральных газопроводов

Чтобы иметь возможность отключать отдельные участки газопровода для ремонтных работ, а также для сохранения газа во время аварийных разрывов газопровода, на магистральных газопроводах не реже чем через 20-25 км устанавливают запорную отключающую арматуру. Кроме того, запорная арматура устанавливается во всех ответвлениях к потребителям газа, на шлейфах компрессорных станций, на берегах рек и др. Чтобы иметь возможность сбрасывать газ при необходимости опорожнения газопровода, запорную арматуру устанавливают также и на свечах.

Запорная арматура группируется в линейные отключающие устройства. В неё входит:

ь Запорная арматура с байпасом (например, кран);

ь Продувочные свечи (расположены от крана 5 - 15 м);

ь Свечи предназначены для сбрасывания газа в атмосферу.

В качестве запорной арматуры применяются краны, задвижки и вентили.

Кранами называется такая запорная арматура, которая закрывает или открывает проход жидкости или газа путем поворота пробки.

По конструкции краны делятся на простые поворотные краны с выдвижной пробкой и краны с принудительной смазкой, по способу присоединения к трубопроводу - на фланцевые, муфтовые и с концами под приварку, по роду управления - с ручным управлением, с пневмоприводом и с пневмогидравлическим приводом. Последние имеют дублирующий ручной привод.

На магистральных газопроводах применяются краны с принудительной смазкой на давление до 64 кГ/см? типа 11с320бк и 11с321бк, а также краны со сферическим затвором.

Задвижки

Запорная арматура, в которой проход открывается путем подъема плоского диска перпендикулярно движению среды, называется задвижкой.

На магистральных газопроводах применяют только стальные задвижки на давление до 64 кГ/см? с условным проходом от 50 до 600 мм. Для задвижек, устанавливаемых на подземных участках газопровода, строятся специальные колодцы, дающие возможность обслуживать арматуру (набивать и подтягивать сальники, смазывать, красить и т. д.). Присоединительные концы задвижек делаются как под приварку, так и для фланцевого соединения.

На магистральных газопроводах вентили применяются главным образом как запорная арматура на контрольно-измерительных приборах, конденсатосборниках, узлах запорных устройств, редуцирующих установках и др.

Линейные отключающие узлы с задвижками монтируют в специальных бетонных или кирпичных колодцах с раскрывающимися на две половины крышками, промежуточным полом (из съемных щитов) и металлической лестницей для спуска в колодец. Подземная часть колодца тщательно изолируется от попадания влаги. В сменках колодца, через который проходит газопровод, устанавливаются патроны; зазоры между ними и трубой уплотняются с помощью сальникового устройства. Трубы и арматура в колодцах должны быть тщательно вычищены и покрыты водостойкими красками.

На рисунке показаны схемы различных конструкций линейных отключающих узлов, оборудованных кранами. Как видно из рисунка, линейные отключающие узлы, предназначенные для перекрытия основной магистрали газопровода, имеют свечи по обе стороны отключающего крана для сбрасывания газа на любом из двух участков газопровода. На отключающем кране отвода от магистрального газопровода устанавливается только одна свеча за краном по направлению газа. На двухниточных переходах продувочные свечи устанавливаются на основной и резервной нитках между отключающими узлами и на основной нитке до узлов.

Коррозия металлов трубопровода

Коррозия металлов - химический или электрохимический процесс разрушения их под воздействием окружающей среды. Процессы разрушения протекают относительно медленно и самопроизвольно.

На эксплуатационное состояние подземных трубопроводов оказывает воздействие электрохимическая коррозия. Электрохимическая коррозия - коррозия металлов в электролитах, сопровождающаяся образованием электрического тока. Процесс разрушения подземных трубопроводов происходит под воздействием окружающей среды (почвенного электролита). При взаимодействии металла трубы с окружающей средой поверхность трубопровода разделяется на положительные (анодные) и отрицательные (катодные) участки. Между этими участками от анода к катоду протекает электрический ток (ток коррозии), который разрушает трубопровод в местах анодных зон.

Основными факторами, определяющими коррозионную активность грунтов, являются электропроводимость, кислотность, влажность, солевой и щелочной состав, температура и воздухопроницаемость.

Разрушение подземных трубопроводов может происходить также и под воздействием блуждающих токов (электрокоррозия). Коррозия металла в этом случае связана с проникновением на трубу токов утечки с рельсов электрифицированного транспорта или других промышленных установок постоянного тока.

Способы защиты магистральных газопроводов от электрохимической коррозии пассивный и активный.

Пассивная защита включает покрытие поверхности газопровода противокоррозионной изоляцией.

К активным способам защиты газопроводов от коррозии относится электрическая, которая включает катодную, протекторную и дренажную защиты. Электрозащита дополняет пассивную защиту, чем обеспечивается предохранение газопроводов от почвенной коррозии.

Сущность катодной защиты заключается в катодной поляризации посторонним источником постоянного тока металлической поверхности трубы газопровода, соприкасающегося с землей. Поляризация осуществляется током, входящим из грунта в трубу. Труба при этом является катодом по отношению к грунту.

Сценарий событий

Возможные сценарии событий на магистральных трубопроводах:

Сценарий №1, Весенняя подвижка грунтов > Дополнительные напряжения в трубопроводе > Разрыв газопровода > Утечка газа > рассеивание утечки.

Сценарий №2, Образование трещины по продольному сварному шву > утечка газа > проникновение газа по грунту в кирпичный колодец линейного сооружения > образование газовоздушной смеси > Образование искры > Взрыв газовоздушной смеси.

Сценарий №3, Нарушение изоляции трубопровода > коррозия трубопровода > утончение стенки трубы > разрушение газопровода > утечка газа > рассеивание утечки.

Сценарий №4, Нарушение целостности газопровода внешним воздействием > утечка газа > факельное горение.

Сценарий №5, Температурные нагрузки на газопровод > усталостное разрушение труб > разрыв газопровода > утечка газа > факельное горение

Дерево событий

Ниже представлено дерево отказов, головным событием которого является аварийная разгерметизация газопровода.

Минимальные пропускные сочетания - это набор исходных событий-предпосылок, обязательного (одновременного) возникновения, которых достаточно для появления головного события (аварий).

Минимальные базовые сочетания - уравнения для головного события.

Уравнение головного события для данного дерева отказа будет:

TOP = 1.2 + 3 + 4.5 + 6 + 7

магистральный газопровод авария коррозия

Тогда расчет вероятности реализации событий для головного события, следующий:

Qtop = 1.2 + 3 + 4.5 + 6 + 7 = 0.0065525 или в процентах 0.65525%

Или вероятность событий:

Произойдет событие БРАК СМР = 0.05525%

Произойдет событие Заводской дефект труб = 0.6%.

Размещено на Allbest.ru

Подобные документы

    Использование в России трубопроводного транспорта как одного из эффективных и экономичных средств газообразных веществ. Причины коррозии на трубопроводе, аварий на нефтепроводах, газопроводе, водопроводе. Спасение пострадавших при пожарах и взрывах.

    реферат , добавлен 24.12.2015

    Состояние системы подземных трубопроводов в РФ на 2008 год. Применение новых технологий. Аварии на нефтепроводах; газопроводе; водопроводе. Последствия аварий на трубопроводах. Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах.

    реферат , добавлен 30.04.2008

    Технические характеристики аварий. Факторы радиационной опасности. Возможные пути облучения при нахождении личного состава в районе аварийной АЭС. Оценка радиационной обстановки при аварии. Лечебно-профилактические работы в очагах, их основные этапы.

    презентация , добавлен 23.08.2015

    Признаки аварии на магистральном трубопроводном транспорте. Вид ответственности должностных и юридических лиц за невыполнение требований правил по предупреждению и ликвидации чрезвычайных ситуаций. Аварии на хранилищах сжатого газа и их устранение.

    контрольная работа , добавлен 14.02.2012

    Основное понятие об авариях, примерный их перечень. Человеческий фактор как одна из причин аварий. Анализ аварий на шахте "Западная-Капитальная" (Ростовская обл., г. Новошахтинск), шахтах "Ак Булак комур", "Комсомольская", "Юбилейная", "Ульяновская".

    реферат , добавлен 06.04.2010

    Виды аварий на радиационно-опасных объектах. Особенности аварий атомной энергетики. Основные фазы протекания аварий, принципы организации и проведения защитных мероприятий. Расчет уровня шума в жилой застройке. Расчет общего производственного освещения.

    реферат , добавлен 12.04.2014

    Причины техногенных аварий. Аварии на гидротехнических сооружениях, на транспорте. Краткая характеристика крупных аварий и катастроф. Спасательные и неотложные аварийно-восстановительные работы при ликвидации крупных аварий и катастроф.

    реферат , добавлен 05.10.2006

    Виды безопасностей. Классификация чрезвычайных ситуаций. Основные поражающие факторы при радиационной аварии. Принципы защиты от ионизирующего излучения. Вредные, опасные факторы производственной среды. Воздействие на организм тока, ультразвука.

    шпаргалка , добавлен 03.02.2011

    Действие сильнодействующих ядовитых веществ на население, защита от них. Характеристика вредных и сильнодействующих ядовитых веществ. Аварии с выбросом СДЯВ. Последствия аварий на химически опасных объектах. Профилактика возможных аварии на ХОО.

    лекция , добавлен 16.03.2007

    Классификация чрезвычайных ситуаций. Краткая характеристика аварий и катастроф, характерных для Республики Беларусь. Аварии на химически опасных, пожаро- и взрывоопасных объектах. Обзор стихийных бедствий. Возможные чрезвычайные ситуации для г. Минска.


ООО «Городской центр экспертиз». Руководитель департамента экспертизы промышленной безопасности Зинаида Арсентьева ООО «ГЦЭ-Энерго». Руководитель департамента разработки планов ликвидации аварийных ситуаций (ПЛАС)


ООО «Городской центр экспертиз». Руководитель департамента анализа риска

Антон Чугунов
ООО «Городской центр экспертиз». Эксперт департамента экспертизы промышленной безопасности


ООО «Городской центр экспертиз». Эксперт департамента анализа рисков

Аннотация

На сегодняшний день общая протяженность линейной части магистральных трубопроводов в Российской Федерации составляет более 242 тыс. км, из которых: магистральные газопроводы - 166 тыс. км; магистральные нефтепроводы - 52,5 тыс. км; магистральные продуктопроводы - 21,836 тыс. км. В настоящее время в системе магистрального трубопроводного транспорта эксплуатируется более 7000 поднадзорных Ростехнадзору объектов. Специфика эксплуатации трубопроводного транспорта напрямую связана с риском каскадного развития аварий. Поэтому обеспечение безопасности магистральных нефтегазопродуктопроводов имеет огромное значение для энергетической безопасности страны.

Одной из важнейших проблем трубопроводного транспорта является сохранение работоспособного состояния линейной части промысловых и магистральных трубопроводов. Многочисленные обследования показывают, что подземные газопроводы, работающие при нормальных режимах, находятся в удовлетворительном состоянии в течение нескольких десятков лет. Этому способствует то большое внимание, которое уделяется систематическому контролю состояния подземных и надземных газопроводов и своевременная ликвидация появляющихся дефектов.

Известно, что основная часть газотранспортной системы России была построена в 70–80-е годы прошлого века. К настоящему времени износ основных фондов по линейной части магистральных газопроводов составляет более половины, а точнее - 5 7,2 %.

Большая часть магистральных газопроводов имеет под земную конструктивную схему прокладки. На подземные трубопроводы воздействуют коррозионно-активные грунты. Под воздействием коррозионного износа металла уменьшается толщина стенки труб, что в свою очередь может привести к возникновению аварийных ситуаций на МГ.

Безопасность объектов трубопроводного транспорта должна быть максимально высокой для обеспечения надежных бесперебойных поставок углеводородного сырья, а угроза возникновения аварий - минимизирована.

Как правило, появляется в результате коррозионных и механических повреждений, определение места и характера которых связано с рядом трудностей и большими материальными затратами. Совершенно очевидно, что вскрытие газопровода для его непосредственного визуального обследования экономически неоправданно. К тому же обследовать можно только внешнюю поверхность объекта. Поэтому в течение последних лет в нашей стране и за рубежом усилия специализированных научно-и сследовательских и проектных организаций направлены на решение проблемы определения состояния подземных и надземных промысловых, магистральных нефтепродуктопроводов без их вскрытия. Эта проблема связана с большими техническими трудностями, однако при использовании современных методов и средств измерительной техники она успешно решается.

Основные сценарии возможных аварий на газопроводах связаны с разрывом труб на полное сечение и истечением газа в атмосферу в критическом режиме (со скоростью звука) из двух концов газопровода (вверх и вниз по потоку). Протяженность разрыва и вероятность загорания газа имеют определенную связь как с технологическими параметрами трубопровода (его энергетическим потенциалом), так и с характеристиками грунта (плотность, наличие каменистых включений). Для трубопроводов большого диаметра (1200–1400 мм) характерны протяженные разрывы (50–70 м и более) и высокая вероятность загорания газа (0,6–0,7).

Горение газа может протекать в двух основных режимах. Первый из них предстает, как правило, в виде двух независимых (слабо взаимодействующих) настильных струй пламени с ориентацией, близкой к оси газопровода. Это характерно в основном для трубопроводов большого диаметра (режим «струйного» пламени). Ко второму следует отнести результирующий (по расходу газа) столб огня с близкой к вертикальной ориентацией (горение «в котловане»). Данный режим горения газа более характерен для трубопроводов относительно малого диаметра.

Рис. 1. Суммарное распределение причин аварий на магистральных газопроводах по данным Ростехнадзора за 2005–2013 гг.

Количество природного газа, способного участвовать в аварии, зависит от диаметра газопровода, рабочего давления, места разрыва, времени идентификации разрыва, особенностей расстановки и надежности срабатывания линейной арматуры. Согласно статистике, средние потери газа на одну аварию варьируются в диапазоне от двух с половиной до трех миллионов кубометров.


Рис. 2. Распределение аварий на линейной части газопроводов разных диаметров по причинам их возникновения

Для анализа причин и прогнозирования на ближайшую перспективу ожидае мой интенсивности аварий были использованы данные и обобщения, публикуемые в официальных источниках, в том числе в ежегодных отчетах Ростехнадзора. Результаты анализа сведений, содержащихся в ежегодных отчетах о деятельности Федеральной службы по экологическому, технологическому и атомному надзору (http://www.gosnadzor. ru/public/annual_reports/) приведены в табл. 1.


Обобщенные сведения об аварийности и дефектности на газопроводах ОАО «Газпром» за период с 1991 по 2002 г. приведены табл. 2.


Из вышеприведенных данных видно, что наибольшее число аварий на линейной части МГ происходило вследствие наружной и внутренней коррозии (26 %), брака строительно-монтажных работ (25,8 %) и механических повреждений (21 %).

Отдельно можно выделить аварии, происходившие на участках переходов через водные преграды как наиболее сложные в инженерном отношении участки линейной части МГ.


Таблица 3. Изменение интенсивности аварий (кол. аварий / 1000 км в год) на газопроводах РФ различных диаметров, 2000–2010 гг. Таблица 4. Влияние продолжительности эксплуатации на относительные показатели аварийности газопроводов

Необходимо отметить четко прослеживаемую зависимость частоты возникновения аварий на линейной части газопровода от срока его эксплуатации. Данная зависимость представлена в табл. 4. В том числе с разбивкой по различным диаметрам (табл. 5).


Таблица 5. Распределение аварий (в % от общего их числа) для газопроводов разных диаметров в зависимости от срока их эксплуатации

Анализ статистических данных показал, что интенсивность аварий на магистральных трубопроводах имеет выраженный региональный характер, т. е. определяется не только общими показателями научно-т ехнического прогресса в отрасли, но и целым рядом локальных факторов климатического, инженерно-г еологического и геодинамического характера, особенностями сооружения и эксплуатации конкретного участка, развитостью промышленной и транспортной инфраструктуры, общей хозяйственной активностью в регионе. Основную опасность аварийной разгерметизации газопроводов представляют:

  1. Участки газопроводов после компрессорных станций (до 5 км) - вследствие нестационарных динамических нагрузок;
  2. Участки газопроводов на узлах подключения;
  3. Участки подводных переходов;
  4. Участки, проходящие вблизи населенных пунктов и районов с высоким уровнем антропогенной активности (районы строительства, пересечения с автомобильными и железными дорогами).

Важно отметить, что после 1990 года на газопроводах России не было аварий типа лавинного разрушения. Это явилось результатом повышения уровня технических требований к трубам и сварным соединениям. Кроме того, улучшилось качество проектных работ, вырос уровень технического обслуживания газопроводов.

Имеющиеся статистические данные свидетельствуют о том, что соблюдение установленных нормативных расстояний при укладке в одном коридоре различных веток магистральных газопроводов является мерой, достаточной для предотвращения вариантов цепного развития аварий (т.е. происходящих по принципу «домино»).

Проявление аварийности на магистральных газопроводах, представляющих , носит ярко выраженный территориальный характер. Региональное проявление аварийности связано с различием в разных регионах инженерно-геологических особенностей трасс, состоянием сети дорог, общим уровнем промышленного и сельскохозяйственного развития и проч.

Проведенный анализ показал, что скорость коррозии севернее 60-й параллели в естественных почвенных условиях вследствие относительно низких температур в 15–20 раз выше, чем, например, в районах Средней Азии. Вследствие влияния климатических факторов в совокупности с региональными характеристиками коррозионной активности грунтов интенсивность отказов в северной зоне в 1,4 раза, а в южной – в 16 раз превышает значение λср для средней полосы.

Особое значение имеют показатели региональной сельскохозяйственной и промышленной активности, влияющей на механическую и . Региональный характер проявления аварийности, помимо общих технологических причин и антропогенного влияния, определяется сложными геодинамическими процессами в верхнем слое земной коры.

Анализ показал существенные различия (до 40 раз) в интенсивности аварий в разных областях Российской Федерации. Это необходимо учитывать при анализе риска путем соответствующей коррекции λср по данным аварийности конкретного региона (области) или предприятия. В ряде районов, помимо этого, необходимо производить более детальные уточнения с учетом конкретной местной специфики трассы трубопровода. Из-за отсутствия инженерных методик такие уточнения рекомендуется выполнять введением специального коэффициента, определяемого методом экспертных оценок.

Также нередко причинами отказов являются плановые и глубинные деформации русла рек в створе перехода, размывы берегов, механические повреждения судовыми якорями, волокушами, льдом, потеря устойчивости трубопровода, коррозия и брак труб, а также дефекты строительно-монтажных работ.

Результаты выполненного ООО «ВНИИГАЗ» обобщения данных фирмы «Подводгазэнергосервис» и ИЦ «ВНИИСТ-Поиск» по основным причинам повреждений на подводных переходах приведены в табл. 6.


Аварии в русловой части чаще всего происходят в период весеннего паводка. Благодаря созданной в ОАО «Газпром» системе периодического контроля и профилактического ремонта аварии на этой части переходов сейчас довольно редки. По оценкам специалистов, интенсивность аварий в русловой части переходов примерно в 5–7 раз выше аналогичного показателя для смежных «сухопутных» участков.

В пойменной части подводных переходов разрывы трубопроводов возникают в основном в зимнее время. Это объясняется тем, что из-за нарушения изоляционного покрытия отдельных участков газопроводов на них может возникнуть коррозия, связанная с повышенной увлажненностью почв и интенсивными геохимическими процессами. Ослабленные коррозией участки труб могут быть легко разрушены под воздействием интенсивных сжимающих нагрузок со стороны обводненных грунтов при их промерзании.

Следует выделить основные проблемы, решение которых позволит в некоторой степени уменьшить аварийность объектов газового профиля.

Во-первых, основной упор делается на противодействие видимым (актуальным на сегодня) опасностям в ущерб деятельности по профилактике опасностей на стадии проектирования и ранних стадиях жизненного цикла объекта.
Во-вторых, происходит многократное повторение однотипных чрезвычайных ситуаций по причине отсутствия механизмов учета опыта расследования инцидентов, отказов и аварий в профилактике ЧС на стадиях проектирования, строительства, реконструкции и эксплуатации объекта.

Кроме того, можно отметить недостаточную эффективность действующих служб мониторинга. Службы отслеживания фактической обстановки на предприятиях, как правило, ограничиваются фиксацией «физических» явлений и процессов. Они не встроены в системы, обеспечивающие синтез и анализ наблюдений, принятие управленческих решений и корректировку собственной деятельности.

Литература

  1. Материалы ежегодных отчетов о деятельности Федеральной службы по экологическому, технологическому и атомному надзору за 2004-2014 года (http://www.gosnadzor.ru/public/annual_reports/).
  2. Промышленная безопасность и надежность магистральных трубопроводов / Под ред. А.И. Владимирова, В.Я. Кершенбаума. – М.: Национальный институт нефти и газа, 2009. 696 с.
  3. Башкин В.Н., Галиулин Р.В., Галиулина Р.А. Аварийные выбросы природного газа: проблемы и пути их решения // Защита окружающей среды в нефтегазовом комплексе. 2010. № 8. С. 4-11.
  4. Лисанов М.В., Савина А.В., Дегтярев Д.В. и др. Анализ Российских и зарубежных данных по аварийности на объектах трубопроводного транспорта //Безопасность труда в промышленности. 2010. № 7 С. 16-22.
  5. Лисанов М.В., Сумской С.И., Савина А.В. и др. Анализ риска магистральных нефтепроводов при обосновании проектных решений, компенсирующих отступления от действующих требований безопасности // Безопасность труда в промышленности. 2010. №3. С. 58-66.
  6. Мокроусов С.Н. Проблемы обеспечения безопасности магистральных и межпромысловых нефтегазопродуктопроводов. Организационные аспекты предупреждения несанкционированных врезок // Безопасность труда в промышленности. 2006. № 9. С. 16-19.
  7. Ревазов А.М. Анализ чрезвычайных и аварийных ситуаций на объектах магистрального газопроводного транспорта и меры по предупреждению их возникновения и снижению последствий // Управление качеством в нефтегазовом комплексе. 2010. № 1. С. 68-70.
  8. Руководитель департамента разработки планов ликвидации аварийных ситуаций (ПЛАС)

Доминирующими причинами аварий на магистральных газопроводах являются следующие:

Коррозионное разрушение газопроводов, 48%;

Брак строительно-монтажных работ (СМР), 21%;

Обобщенная группа механических повреждений, 20%;

Заводские повреждения труб 11%.

Где, обобщенная группа механически повреждений следующая:

Случайное повреждение при эксплуатации, 9%;

Террористические акты, 8%;

Природные воздействия, 3%.

Большинство аварий на магистральных трубопроводах ограничивается утечкой газа, равной объему трубы до отключающей арматуры. Или горение факела. Но также возможны большие катастрофы, как например, Железнодорожная катастрофа под Уфой - крупнейшая в истории России и СССР железнодорожная катастрофа, произошедшая 4 июня (3 июня по московскому времени) 1989 года в Иглинском районе Башкирской АССР в 11 км от города Аша (Челябинская область) на перегоне Аша - Улу-Теляк. В момент прохождения двух пассажирских поездов №211 «Новосибирск-Адлер» и №212 «Адлер-Новосибирск» произошёл мощный взрыв облака лёгких углеводородов, образовавшегося в результате аварии на проходящем рядом трубопроводе «Сибирь-Урал-Поволжье». Погибли 575 человек (по другим данным 645), 181 из них - дети, ранены более 600.

На трубе продуктопровода «Западная Сибирь-Урал-Поволжье», по которому транспортировали широкую фракцию лёгких углеводородов (сжиженную газобензиновую смесь), образовалась узкая щель длиной 1,7 м. Из-за протечки трубопровода и особых погодных условий газ скопился в низине, по которой в 900 метрах от трубопровода проходила Транссибирская магистраль, перегон Улу-Теляк - Аша Куйбышевской железной дороги, 1710-й километр магистрали, в 11 километрах от станции Аша, на территории Иглинского района Башкирской АССР.

Примерно за три часа до катастрофы приборы показали падение давления в трубопроводе. Однако вместо того, чтобы искать утечку, дежурный персонал лишь увеличил подачу газа для восстановления давления. В результате этих действий через почти двухметровую трещину в трубе под давлением вытекло значительное количество пропана, бутана и других легковоспламенимых углеводородов, которые скопились в низине в виде «газового озера». Возгорание газовой смеси могло произойти от случайной искры или сигареты, выброшенной из окна проходящего поезда.

Машинисты проходящих поездов предупреждали поездного диспетчера участка, что на перегоне сильная загазованность, но этому не придали значения.

4 июня 1989 года в 01:15 по местному времени (3 июня в 23:15 по московскому времени) в момент встречи двух пассажирских поездов прогремел мощный объёмный взрыв газа и вспыхнул гигантский пожар.

В поездах №211 «Новосибирск-Адлер» (20 вагонов, локомотив ВЛ10-901) и №212 «Адлер-Новосибирск» (18 вагонов, локомотив ЧС2-689) находилось 1284 пассажира (в том числе 383 ребёнка) и 86 членов поездных и локомотивных бригад. Ударной волной с путей было сброшено 11 вагонов, из них 7 полностью сгорели. Оставшиеся 27 вагонов обгорели снаружи и выгорели внутри. По официальным данным 575 человек погибло (по другим данным 645), 623 стали инвалидами, получив тяжёлые ожоги и телесные повреждения. Детей среди погибших - 181.

Официальная версия утверждает, что утечка газа из продуктопровода стала возможной из-за повреждений, нанесённых ему ковшом экскаватора при его строительстве в октябре 1985 года, за четыре года до катастрофы. Утечка началась за 40 минут до взрыва.

По другой версии причиной аварии явилось коррозионное воздействие на внешнюю часть трубы электрических токов утечки, так называемых «блуждающих токов» железной дороги. За 2-3 недели до взрыва образовался микросвищ, затем, в результате охлаждения трубы в месте расширения газа появилась разраставшаяся в длину трещина. Жидкий конденсат пропитывал почву на глубине траншеи, не выходя наружу, и постепенно спускался вниз по откосу к железной дороге.

При встрече двух поездов, вероятно в результате торможения, возникла искра, которая послужила причиной детонации газа. Но скорее всего причиной детонации газа явилась случайная искра из-под пантографа одного из локомотивов.

Рисунок 2.1 - катастрофа под Уфой

Фото: Крупные газовые и нефтяные трубопроводы в США. Красным обозначены трубопроводы, входящие в зону риска.

10 сентября 2010 года, в 6 часов вечера, в службу спасения г. Сан-Бруно, в штате Калифорния поступил тревожный звонок. По сообщениям перепуганных свидетелей, произошел ужасный взрыв на автомобильной заправке. Огонь полыхал с такой силой, что очевидцы подозревали авиакатастрофу, либо теракт. Память о случившемся 11 сентября давала о себе знать.

Почти час понадобился на то, чтобы установить истинную причину - ей оказался взрыв стального газопровода диаметром 76 см, принадлежавшего Тихоокеанской газовой и электрической компании. Взрыв оставил после себя кратер диаметром 51 м, 7,9 м в ширину и глубиной до 12 метров. Восемь человек погибло, и более пятидесяти было ранено. Высота пламени достигала 300 футов, очевидцы сообщали об огненном шаре и стене огня высотой 1000 футов.

Геологическая служба США зарегистрировала результат ударной волны, эквивалентный землетрясению в 1.1 балл по шкале Рихтера. К ликвидации пожара были привлечены более 200 пожарных - сильный ветер раздувал пламя, затрудняя борьбу с огнем. В результате взрыва и последующего пожара были повреждены 35 домов, три из них были признаны непригодными для проживания.

Фото: Части газопровода на улицах после взрыва.

Фото: Разрушения после взрыва и пожара в Сан-Бруно

Фото: Применение авиации для тушения пожара в Сан Бруно

Критики утверждают, что трубопроводы должны стать еще более безопасными в эксплуатации. По их словам, многих аварий на трубопроводах можно было бы избежать - при должном контроле со стороны правительства и усилении мер безопасности в отрасли.

На общую длину всех трубопроводов Америки - 2,5 млн. км, ежегодно приходится сотни утечек и разрывов, ценой которых становятся в отдельных случаях и человеческие жизни. И по мере старения трубопроводных систем, риск аварий на этих линиях будет только увеличиваться. При том, что с 1986 года, при авариях на трубопроводах уже погибли более 500 человек, пострадали свыше 4000, а убытки составили почти семь миллиардов долларов.

Причин аварий очень много - это и банальная коррозия оборудования, и плохое качество сварных швов, и даже стихийные бедствия. Так, в 2012 году трубопроводы в штате Нью-Джерси подверглись атаке урагана "Сэнди", что привело к возникновению более 1600 случаев разгерметизации трубопровода. Все утечки были взяты под контроль, и никто не пострадал, но компания-оператор понесла значительные убытки и обанкротилась, оставив почти 28 тысяч человек без подачи газа.

Наконец, одна из самых банальных причин - старость. Трубопроводы элементарно стареют. Более половины из них построены около пятидесяти лет назад. И такая ситуация также чревата авариями.

Так, в 2011 году, в городе Аллентаун взорвался газопровод. Погибло 5 человек, было уничтожено почти пятьдесят домов. Причиной был названо превышение срока эксплуатации - газопровод был изготовлен из чугунных труб в 1928 году. 83 года назад.

Фото: Пожар бушует в городе Аллентаун, штат Пенсильвания, после взрыва газа в феврале 2011 года

Другая причина выхода трубопроводов из строя - коррозия. Сталь, находящаяся в соприкосновении с активными средами, такими как нефть и газ - закономерно ржавеет.

На долю коррозионных процессов приходится от 15 до 20 процентов всех сообщений о "серьезных инцидентах", что в переводе с бюрократического языка означает гибель людей, или серьезный ущерб имуществу.

В общем и целом, аварии по причине коррозии насчитывают более 1400 инцидентов с 1986 года.

Сокращение государственного контроля

Основная часть государственного контроля за функционированием тысяч километров нефтепроводов и газопроводов возложена на небольшое агентство в составе Департамента транспорта. Это так называемое "Управление по безопасности трубопроводов и опасным материалам" США (Pipelines and Hazardous Materials Safety Administration ),сокращенно - PHMSA

Агентство утверждает, что только семь процентов линий передачи природного газа, и лишь 44% всех опасных линий передачи жидких нефтепродуктов, соответствуют строгим критериям проверки и проверяются регулярно. Все остальное проходит контроль гораздо реже.

Причина тут кроется в давней ошибке. В 60-е и 70-годы было принято большинство федеральных законов о безопасности трубопроводов, а также установлены стандарты безопасности для вновь построенных линий.

Однако на трубопроводы, построенные ранее этого срока, данные правила не распространялись - просто нереально было, даже для США, привести эти трубопроводы к единому стандарту безопасности. Именно к таким объектам принадлежал газопровод, взорвавшийся в городе Сан-Бруно

Эта магистраль, участок которой лопнул вдоль дефектного шва, как показало расследование, никогда не проходила тестов на высокое давление. Но, парадокс в том, что, поскольку он был установлен в 1956 году, его владелец и не обязан был проводить такое тестирование.

То, к чему привела такая ситуация - на фотографии:

Фото: Сгоревшие автомобили и разрушенные дома в Сан-Бруно, США, после взрыва газопровода в сентябре 2010 года.

Позже, в 1990 годах были приняты дополнительные акты, и сегодня PHMSA набирает персонал для тестирования старых трубопроводов в зоне риска. Сюда относится населенные пункты, или крупные источники пресной воды. Однако многие старые газопроводы в сельской местности все равно не могут быть охвачены тестированием.

Другой элемент риска - это временные и технические линии, например магистрали, соединяющие скважины на месторождениях. К ним вообще неприменимы какие-либо стандарты регулирования, потому что многие из этих линий работают при очень низких давлениях и находятся в отдаленных районах.

Поэтому правительственные агенты не могут собрать объективных данных о разрывах и протечках, а также о том, соблюдаются ли вообще какие-либо стандарты для сварочных швов, или глубинах залегания на этих объектах.

Еще одна проблема, в последнее время ставшая традиционной для США - недостаток финансирования. Миф о "супербогатой Америке«» уже практически прописался у нас в подкорке. Возможно, когда-то так и было, но сегодня это именно что миф. Денег на обслуживание инфраструктуры в Америке не хватает точно так же, как и в России, или других странах мира.

Причины этого разные, одна из них - гигантские объемы и расстояния. В частности, при огромной протяженности линий передачи нефти и газа в Соединенных Штатах, PHMSA не хватает ресурсов для адекватного мониторинга миллионов километров трубопроводов.

Агентство может финансировать деятельность лишь 137 инспекторов, а зачастую, реально работает еще меньше. Некомплект персонала - настоящий бич этой структуры. Согласно отчету, в период между 2001 и 2009 агентство сообщало о кадровом дефиците в среднем 24 человек в год.

По сообщениям газеты "Нью-Йорк Таймс", агентству хронически не хватает инспекторов, потому что их переманивают трубопроводные компании, которые используют их для проверки своих собственных магистральных линий.

Пути решения проблемы

Если люди не справляются с мониторингом сотен тысяч километров трубопроводов, то на помощь должна прийти техника. Одним из выходов из такой ситуации является повсеместная установка запорной арматуры с автоматическим дистанционным управлением , которая может быстро остановить подачу газа или нефти в случае аварии.

В июле 2010 года, в результате прорыва нефтепровода, в реку Каламаза вытекло около миллиона галлонов сырой нефти. Операторам трубопровода понадобилось почти 17 часов, для того чтобы найти и вручную перекрыть место разрыва. Использование автоматической арматуры позволило бы значительно сократить это время, а значить - уменьшить масштаб экологического загрязнения местности.

Фото: Контрольно-измерительный снаряд Smart Pig

Эти устройства помещаются в газопровод и перемещаются в нем, измеряя важные параметры, такие как деформации труб и повреждения металла.

Однако не каждый газопровод имеет подходящий диаметр для использования подобного устройства, а для регулярной диагностики нужен частичный демонтаж, а значит простой трубопровода, вновь влекущий за собой убытки.

Таким образом, на кону стоят деньги - против человеческих жизней. Ведь пока компании-операторы считают убытки, взрывы на газопроводах продолжают уносить человеческие жизни.

В июне 2013 года разрыв газопровода вызвал крупный взрыв и пожар в городке Вашингтон-Пэрриш в штате Луизиана.

Фото: Взрыв в городе Вашингтон-Пэрриш, штат Луизиана

Взрыв произошел в 5:30 утра по местному времени. Жители в радиусе одной мили от эпицентра взрыва были эвакуированы. Обошлось без человеческих жертв, но некоторые близлежащие строения были уничтожены огнем. Данная линия перекачивает 3,1 млрд кубических футов газа в день из Техаса в Южную Флориду. Часть линии была закрыта, и остается неясным, когда подача газа будет возобновлена. Ведется следствие, чтобы определить причину взрыв.

15 июня 2015 года, около 8 часов вечера по местному времени, страшный взрыв потряс окрестности городка Куэро в Техасе

Огромный столб огня был виден за 20 километров. Жители близлежащих домов были оперативно эвакуированы. К счастью, обошлось без человеческих жертв, однако люди были изрядно напуганы