Коррозионностойкие мартенситные стали легированные азотом. Азот в стали, растворимость азота в железе, влияние азота на свойства стали, способы удаления азота из металла, легирование стали азотом

4.1. Кислород в стали

4.2. Водород в стали

4. 3. Азот в стали

4.4. Неметаллические включения

В любой стали в некоторых количествах содержатся газы: кислород, водород, азот. Газы содержатся в металлах в виде газовых пузырей, соединений (оксидов, гидридов, нитридов) и жидких или твердых растворов, т.е. в виде атомов или ионов, распределенных между атомами и ионами жидкого металла или внедренных в кристаллическую решетку металла. Газы (даже при содержании их в сотых и тысячных долях процента) оказывают существенное влияние на свойства металла, поэтому вопросам удаления газов из металла всегда уделяют особое внимание.

Растворимость газов в стали в сильной степени зависит от температуры (рис. 4.1).


Рис. 4.1. Изменение растворимости в стали кислорода (а), водорода (6) и азота (в)

4.1. Кислород в стали

Атмосфера сталеплавильных агрегатов-окислительная . При этом какое-то количество кислорода всегда переходит из газовой фазы в металл. Источником кислорода могут быть также добавочные материалы, содержащие оксиды железа (например, ржавчина на поверхности металлического лома).

Растворимость кислорода в железе, находящемся под шлаком, с повышением температуры растет. Но если металл содержит примеси, сродство которых к кислороду выше, чем у железа, то происходит окисление этих примесей и концентрация кислорода в металле уменьшается. Если эти примеси вводят в ванну специально для того, чтобы уменьшить содержание кислорода, то их называют раскислителями. В качестве таких элементов-раскислителей используют марганец, кремний, алюминий, кальций, редкоземельные элементы .

Раскислителем является также углерод (рис. 4.2). Кислород, растворенный в металле, реагирует с углеродом, и в результате реакции происходит кипение металла
.Если уменьшить давление (например, при помещении ковша с жидким металлом в вакуумную камеру), то равновесие этой реакции сместится вправо, металл, содержащий углерод, вскипит, содержание кислорода уменьшится.

Рис. 4.2. Влияние углерода на содержание кислорода, растворенного в стали:

I - равновесная кривая [С] [О]; ІІ - область концентраций фактически наблюдаемых при кипении металла

4.2. Водород в стали

Атмосфера почти любого сталеплавильного агрегата содержит какое-то количество водорода или паров Н 2 О. Некоторое количество влаги может попасть вместе с шихтой и добавочными материалами. Из атмосферы агрегата водород переходит в металл по реакции

Растворимость водорода в твердом металле для различных модификаций железа различна (рис. 4.1, б). Скачкообразное изменение растворимости при переходе металла из одного аллотропического состояния в другое вызывает интенсивное выделение из него водорода, сплошность металла нарушается, образуются такие дефекты, например, как флокены (особой формы газовые пузыри). Оставшийся в твердом растворе водород искажает кристаллическую решетку металла, в результате чего его хрупкость возрастает, а пластичность уменьшается, качество металла ухудшается. Для снижения содержания водорода в металле и ослабления его вредного влияния на качество применяют следующие методы:

Обработка металла вакуумом . При помещении металла в вакуумную камеру давление водорода в газовой фазе уменьшается, и он начинает удаляться из металла. Вакуум является очень эффективным средством уменьшения содержания водорода в металле.

Организация кипения ванны. При протекании реакций окисления углерода образуется оксид углерода. Пузырьки СО, проходя через ванну, создают эффект кипения. Парциальное давление водорода в пузырьке, состоящем из СО, равно нулю, поэтому пузырьки СО по отношению к водороду (а также к азоту) являются как бы маленькими вакуумными камерами, и эти газы уходят из металла в пузырьки СО и вместе с ним покидают ванну. Таким образом, при кипении металл очищается от растворенных в нем газов.

Продувка инертными газами. При продувке металла инертными газами (обычно для этой цели используется самый дешевый и доступный инертный газ - аргон) парциальное давление водорода в пузырьках равно нулю, поэтому они очищают металл от водорода. Одновременно с удалением газов продувка аргоном обеспечивает перемешивание металла, выравнивание его состава, температуры и т.д.

Выдержка закристаллизовавшегося мегалла при повышенных температурах . Размеры атомов водорода очень малы, они свободно диффундируют через кристаллическую решетку закристаллизовавшейся стали, особенно при повышенных температурах. Из образцов сравнительно небольшого сечения, охлаждаемых медленно в печи или на воздухе, растворенный при высоких температурах водород удаляется почти полностью. Принято содержание водорода в металле выражать в кубических сантиметрах на 100 г массы пробы. Обычно содержание водорода в жидкой стали в зависимости от метода работы колеблется от 4 до 10 см 3 на 100 г металла. Чем больше масса изделия, тем затруднительнее организовать удаление водорода из затвердевшего металла. Поэтому все слитки качественного металла (или заготовки из них) длительное время выдерживают при относительно высоких температурах, для чего в цехах существуют специальные пролеты. Для очень больших слитков (30 т), такой способ уже не дает должного эффекта, и такие слитки отливают под вакуумом.

Добавки гидридообразующих элементов. Некоторые металлы (например, редкоземельные) способны вступать с водородом во взаимодействие, образуя гидриды. При введении этих элементов в металл развитие таких дефектов, как флокены, уменьшается.

Наложение электрического поля. Водород, растворенный в жидком металле, находится там в виде катионаа в шлаке-в видеПри наложении достаточно сильного электрического поля на катоде выделяется атомарный водород атомы которого ассоциируются в молекулы .На аноде из шлака выделяются парыи В промышленных условиях этот способ удаления водорода применения не нашел.

Сталь содержит определенные количества водорода, азота, кисло­рода и неметаллических включений в виде сульфидов, оксидов и ни­тридов различного состава. Как правило, высокие требования к каче­ству электростали означают в числе прочих и минимальное содержа­ние в металле водорода, азота и кислорода. Существуют специальные марки стали, для которых азот используется как легирующий эле­мент и его содержание в металле нормировано.

Газообразные водород, азот и кислород в твердой стали могут на­ходиться в форме газовых пузырей или в виде твердого раствора и хи­мических соединений. На растворимость газов в стали влияют темпе­ратура и давление.

Растворимость водорода и азота в стали при определенной темпе­ратуре зависит от их парциальных давлений в атмосфере над метал­лом и выражается уравнением Сивертса:

[Н] = Кн√р H2 , = К N √p N2 ,

[Н] и — количество соответственно водорода и азота, раствореннах в стали, %;

Кн и К N — коэффициенты, зависящие от температуры;

р H2 и p N2 — парциональные давления соответственно водорода и азота.

Чем выше парциальное давление газа, тем в большем количестве он растворяется в металле. При попадании влаги в атмосферу печи вместе с шихтовыми материалами, воздухом и кислородом происхо­дит разложение водяных паров в процессе взаимодействия, напри­мер, с железом по реакции: Н 2 0 + = 2[Н] + , т. е. имеет ме­сто насыщение металла водородом и монооксидом железа. Водород и азот растворяются в стали в атомарном состоянии. С железом и дру­гими элементами, присутствующими в стали, водород не образует химических соединений. Кислород оказывает влияние на раствори­мость водорода в железе.

В жидкой стали, содержащей 0,02-0,05% С и повышенное содержание кислорода, растворимость водорода существенно ниже, чем в стали с более высоким содержанием углеро­да. Азот в стали может быть в виде раствора и нитридов - химических соединений азота с железом, марганцем, кремнием, алюминием, хромом, цирконием, титаном и другими элементами, входящими в состав стали.

Азот для ряда сталей используют как легирующий элемент (до 0,5%), так какой, подобно никелю, повышает ударную вязкость и со­противление стали коррозии и способствует образованию в высоко­хромистых сталях аустенитной структуры. Легирование стали азотом осуществляют различными приемами:

  • присадкой в металл кусков азотированных ферросплавов (содержание азота до 7%);
  • продувкой расплава в ковшах через погружные фурмы газообразным азотом или порошком цианомида кальция (19% азота и 20% углерода).

Металл существенно обогащается водородом при использовании обожженной извести длительного хранения, так называемой «пу­шонки». Обожженная известь активно поглощает влагу из атмосферы и гасится с образованием Са (ОН)2, который, попадая в печь, разлагается при температуре 600 0 С по реакции Са (ОН)2 →саО + Н2О.

Существенное влияние на повышение содержания в стали водо­рода могут оказывать недоброкачественная подготовка и недостаточ­ная сухость сливного желоба печи, разливочного и промежуточного ковшей, утепляющих смесей, изложниц, надставок, вкладышей и разливочного припаса.

С понижением температуры растворимость газов в металле резко уменьшается. При кристаллизации часть водорода удаляется из ме­талла в атмосферу, но частично водород остается в металле в виде пу­зырей и раствора. После затвердевания выделение растворенного во­дорода из стали продолжается, сопровождаясь образованием в метал­ле различных дефектов - флокенов, трещин и др., приводящих к браку металлопроката.

Повышенное содержание в стали азота приводит к увеличению загрязненности металла неметаллическими включениями, сниже­нию ее механических свойств и ухудшению свариваемости. Поэтому технологические процессы выплавки, внепечной обработки и раз­ливки электростали должны обеспечивать по возможности наиболь­шее удаление водорода и азота из металла и максимальное снижение его чувствительности к возникновению различных пороков матрицы (пузырей, флокенов и др.).

В окислительный период плавки при интенсивном обезуглерожи­вании и кипении ванны из металла с пузырьками СО удаляются в значительных количествах водород и азот, которые диффундируют в полость пузырьков из раствора. Увеличение в печных газах в процес­се кипения ванны содержания СО снижает парциальное давление азота и водорода в пузырьках СО и тем самым также способствует очищению стали от этих газов. При использовании прокаленной ру­ды или агломерата и свежеобожженной извести удается к концу ки­пения снизить содержание водорода в металле до 0,0003-0,0005% и азота до 0,006-0,09%.

В восстановительный период (период доводки) содержание азота и водорода в металле несколько повышается за счет добавок ферросплавов, раскислителей и шлакообразующих, а также за счет перехода из шлака. При выпуске плавки из печи в ковш имеет место обогащение расплава водородом и азотом воздуха, увлекаемого падающей струей металла.

Кислород достаточно хорошо растворяется в жидком железе. Одновременно железо
окисляется с образованием монооксида железа, который передает кислород металлу по реакции: (FеО) = + [О] — 121,8 кДж/моль.

Кислород в железе может присутствовать в виде химического соединения с железом и в виде раствора. Химические соединения кислорода с марганцем, кремнием, хромом и другими компонентами стали образуют так называемые неметаллические включения.

При разливе стали, содержащей углерод и избыточное количество кислорода, в изложницы или на УНРС температура расплава и растворимость кислорода снижаются и в результате взаимодействия углерода и кислорода образуется оксид углерода, который частично выделяется в атмосферу, а частично остается в металле в виде газовых пузырей.

Наиболее распространенными раскислителями являются кремний и алюминий. Введение в сталь кремния в количестве не менее 0,18-0,23% предотвращает образование и выделение из стали оксида углерода в виде пузырей. При одновременном с кремнием введении в металл алюминия концентрация кремния, обеспечивающая отсут­ствие пузырей в слитке, может быть снижена. Оксиды, образующие­ся в ванне жидкой стали и в ковше, частично всплывают в шлак, а ча­стично увлекаются металлом в изложницы или кристаллизаторы УНРС и, не успевая всплыть, остаются в стали.

Неметаллические включения ухудшают свойства стали. Для сни­жения в стали как кислорода, так и кислородсодержащих неметалли­ческих включений прибегают к технологическим приемам воздейст­вия на металл:

  • обработкой раскислителями;
  • наведением восстановительного шлака;
  • интенсивным перемешиванием шлака и металла;
  • внепечной рафинирующей обработкой металла (продувка в ковше инертным газом, вакуумирование, обработка порошкооб­разными веществами и др.).

С железом азот образует нитриды двух типов Fe 4 N и Fe 2 N . Для сварки большее значение имеет нитрид железа Fe 4 N , так как обычно избытка азота не бывает. Нитриды железа образуются в области пониженных температур (в интервале 550-700 °С), при более высоких температурах они диссоциируют. Таким образом, в железе азот может, находиться в твердом растворе a – Fe и в виде включений нитридов Fe 4 N .

Рис. 2.8 – Кривые зависимости растворимости азота и водорода от температуры

Растворимость азота в железе сильно зависит от температуры. По мере роста температуры растворимость азота увеличивается, претерпевая скачкообразные изменения в момент полиморфных превращений железа.

Процесс насыщения металла азотом возможен следующими путями:

1. Диссоциированный азот непосредственно растворяется в металле капель. При последующем охлаждении металла образуются нитриды.

2. Диссоциированный азот образует в области высоких температур стойкие нитриды, которые растворяясь в жидком металле насыщают его азотом. В этом случае по мере охлаждения металла сварочной ванны из раствора может выделиться атомарный азот, который, вступая во взаимодействие с железом образует при соответствующей температуре нитриды железа.

3. Дисоциированный азот образует, в высокотемпературной зоне монооксид азота NO , которая растворяется в каплях. При температуре металла ниже 1000 °С монооксид азота выпадает из твердого раствора и диссоциирует, при этом атомарный азот образует нитриды, а кислород оксиды.

В общем случае азот является нежелательной примесью в металле шва, так как он снижает пластические свойства стали особенно ударную вязкость. Появляется склонность металла к старению, повышенная склонность к хладноломкости и синеломкости, увеличивается способ­ность к закалке, понижается магнитная проницаемость и увеличивается электрическое сопротивление металла.

Однако в условиях сварки высоколегированных сталей аустенитного класса, азот повышает устойчивость аустенита и является легирую­щей добавкой, способной заменить некоторое количество никеля.

При выплавке сталей первого класса раньше других был применен метод ввода азота в сталь посредством использования специальных азотированных ферросплавов. Но все-таки самым дешевым является способ легирования жидкой стали газообразным азотом, успешно реализуемый при использовании сталеразливочных ковшей с пористыми днищами.

При производстве сталей второго класса используют следующие четыре метода; плавка металла в индукционных печах с разливкой его в автоклавах под давлением, порошковая металлургия, диффузионное насыщение стали в твердом состоянии и плазменная металлургия.

2.3 Химическое взаимодействие

В настоящее время еще невозможно достаточно точно изобразить тройную диаграмму состояния железо - азот - углерод. Уже при самых малых добавках углерода эвтектоид, называемый браунитом, становится особенно мелкодисперсным и микроскопически распознается труднее, чем в азотированном электролитическом железе. Одновременно при введении углерода эвтектоидная точка сдвигается в сторону низких концентраций азота. В присутствии углерода γ"- и ε-нитриды окрашиваются при травлении различно, что и позволяет сделать заключение о наличии в сплаве кристаллов с различной растворимостью в них углерода. В сталях с 0,7% С исследователи нашли светло-желтые участки сорбитной структуры, которые получили название флавита (рисунок 10).

В присутствии азота в сплавах железа с углеродом цементит испытывает изменения, причиной которых является либо замещение атомов углерода атомами азота, либо внедрение атомов азота в решетку цементита. Ферромагнитная точка Кюри цементита при введении азота снижается, а разложение содержащего азот цементита начинается при более высокой температуре, чем чистого цементита. Таким образом, азот повышает устойчивость карбида и устойчивость метастабильных состояний в системе железо - углерод.

Изучение воздействия 0,6% N в эвтектоидных углеродистых сталях на превращение аустенита в промежуточной области показало, что в результате введения азота латентный период значительно увеличивается (почти в 1000 раз) и сам процесс превращения в промежуточной области вследствие введения азота значительно замедляется. Если невозможно дать более точные указания о составе соответствующих структурных составляющих в тройных сплавах железа с углеродом и азотом, то при переходе к легированным, улучшаемым сталям, например хромоникелевым, затруднения еще более увеличиваются.

2.4 Влияние азота на свойства стали

2.4.1 Азот как легирующий элемент

Влияние азота на сталь подобно влиянию углерода: он точно так же расширяет γ-область и приводит к эвтектоидному превращению. Однако из-за того, что в нелегированные и низколегированные стали не удается в процессе плавки ввести азот в повышенных количествах и удержать его после затвердевания в твердом растворе, подобные безуглеродистые, легированные азотом стали не нашли применения. В углеродистых сталях введение азота приводит к большей прокаливаемое, снижению чувствительности к перегреву, повышению стабильности карбидов, например в чугунах, вследствие чего становится возможным применение в определенных случаях стали или чугуна с повышенным содержанием азота (до 0,02 %). Особые преимущества азота как стабилизирующего аустенит элемента проявляются в высоколегированных, особенно в полуферритных и ферритных хромистых сталях.

В присутствии хрома поглощение азота ванной значительно возрастает (рисунок 11) и достигает при содержании 18% Сr примерно 0,2%.

Резкое снижение растворимости азота при переходе стали из жидкого состояния в твердое и при полиморфных превращениях приводит к получению перенасыщенного азотом твердого раствора (раствора внедрения), из которого в процессе эксплуатации по границам зерен выделяются нитриды, повышающие твердость, увеличивающие хрупкость, снижающие пластичность и штампуемость («старение» металла). Азот ухудшает свариваемость стали. Высокое содержание азота (0,006-0,008%) недопустимо в стали для металлоконструкций, служащих при отрицательных температурах, в листовом металле для глубокой вытяжки, в котельных сталях и изделиях, работающих в повышенных температурах. В средне- и малоуглеродистых легированных сталях присутствие азота вызывает хрупкий (интеркристаллитный) излом. Интеркристаллитный излом связывают чаще всего с ослаблением границ зерен аустенита вследствие выделения лисперсных включений нитридов Fe4N и особенно AlN.

В жидкую сталь N поступает с шихтовыми материалами. Металлический лом, скрап, чугун содержат обычно 0,002 - 0,008 % N. Дополнительно N переходит в металл из печной атмосферы в области дуг при выплавке стали в дуговой электропечи. В зоне действия дуг молекулярныйNдиссоциирует на атомарный. Это интенсифицирует процесс насыщения стали N.РастворимостьN в стали по закону Сивертса: Выводы: 1.растворимостьN в Feα и Feδ увеличивается с увеличением температуры, а в Feγ снижается; снижение связано с уменьшением стойкости нитрида железа Fe4N;2.растворимость N при переходе из жидкого состояния в твердое и из одной фазы в другую изменяется скачкообразно

Максимальное количество нитридов алюминия выделяется при 800-1000 градусов. С выделением нитридов алюминия при этих температурах связывают пониженную пластичность и прочность корочки стали в зоне вторичного охлаждения при непрерывной разливке. Это приводит к возникновению внутренних трещин в заготовке. Для некоторых деформируемых сталей в присутствии нитридов алюминия наблюдается пониженная технологическая пластичность при температурах прокатки и ковки, что ведет к образованию внутренних и поверхностных разрывов и трещин. В связи с отрицательным влиянием азота для многих марок стали вводятся ограничения по содержанию этого элемента.

Растворимостью газа называется его количество, переходящее в раствор в металле при нормальном парциальном давлении газа. Предельная растворимость равна 0,46%.

По влиянию на растворимость азота в жидкой стали примеси металла можно разбить на две группы:

1) Нитридообразующие (ванадий, ниобий, лантан, церий, титан, алюминий). Эти элементы повышают растворимость азота в железе. Такие примеси, как хром, молибден, марганец, обычно нитридов не образуют, но они характеризуются большим сродством к азоту, чем к железу, поэтому тоже заметно увеличивают растворимость азота в железе.

2) Не образующие нитридов (углерод, никель, медь, фосфор) или образующие с азотом соединения менее прочные, чем с железом (кремний). Эти элементы заметно снижают растворимость азота в железе.

Получению металла с минимальным содержанием азота и водорода способствуют следующие мероприятия:

1) Использование чистых шихтовых материалов

2) Ведение плавки в атмосфере с минимальным содержанием водорода и азота

3) Организация по ходу плавки кипения ванны

4) Обработка металла вакуумом

5) Продувка металла инертными газами

6) Введение в металл нитридообразующих элементов

Имеются сорта стали (так называемые «азотистые») с карбонитридным упрочнением, в которых специально повышают концентрацию азота путем введения азотированных ферросплавов (феррохрома, ферромарганца, феррованадия) или продувки расплавленной стали газообразным азотом на агрегатах ковш-печь – рельсы повышенной износостойкости и контактной выносливости. Соотношение концентраций алюминия и азота (0,012% Al и 0,007% N) в электрохимической анизотропной стали позволяет при определенных температурах и условиях прокатки формировать в металле нитриды алюминия AlN, препятствующие росту зерна (нитридное ингибирование), и получать прокат с желаемой структурой и текстурой. Азот нашел широкое применение в машиностроении для азотирования поверхности деталей, работающих в условиях повышенного износа, а также для повышения их коррозионной стойкости.