Способ получения монокристаллов сплава вольфрам-тантал. Что такое тантал? Особенности, изделия, свойства и применение

Непрерывные ряды твёрдых растворов тантал образует с металлами, имеющими изоморфную кристаллическую структуру, примерно тот же размер атома и близко расположенными в ряду электроотрицательности, например с Nb, W, Mo, V, β-Ti и др. Ограниченные твёрдые растворы и металлиды образуются при большем различии в размерах атома и электроотрицательности, например с Al, Au, Be, Si, Ni. С Li, К, Na, Mg и некоторыми др. элементами тантал практически не образует ни твёрдых растворов, ни соединений.

Т. с. характеризуются высокими механическими свойствами при обычной температуре, жаропрочностью, коррозионной устойчивостью; они более экономичны, чем чистый тантал. Очень важны Т. с. с ниобием, наиболее близкие по свойствам к танталу, которые могут заменить дефицитный тантал во многих областях его применения. Особый интерес представляют жаропрочные Т. с. Тантал наряду с вольфрамом, молибденом и ниобием относят к «большой четвёрке» металлов, наиболее перспективных для создания на их основе высокотемпературных конструкционных материалов для самолётов, ракет, космических кораблей и т. п. Обычно тантал легируют W, Mo, V, Nb, Ti, Zr, Hf, Re, Cr, С и др. элементами. Из многих жаропрочных Т. с. наиболее важны сплавы с вольфрамом. Так, предел прочности при растяжении сплава с 10% W равен (Мн/м 2) 1265 (20 °С), то есть намного больше, чем для тантала; 661 (980 °С); 148 (1430 °С); 84 (1650 °С), или соответственно 126,5; 66,1; 14,8 и 8,4 кгс/мм 2 , относительное удлинение при тех же температурах 4,0; 4,2; 17,0 и 33,0%. Этот сплав более пластичен, чем вольфрам, не уступает ему по прочности и превосходит по сопротивлению окислению при температурах до 2800 °С; из него изготовляют детали камеры сгорания и сопла реактивных двигателей, передние кромки оперения самолётов. Для тех же целей применяют сплав с 8% W и 2% Hf, имеющий по сравнению со всеми другими деформируемыми жаропрочными сплавами наибольшую удельную прочность при высоких температурах. Пластичный сплав с 8% W и 2,5% Re предложен для изготовления нагревателей промышленных печей, теплозащитной обшивки и деталей ядерных силовых установок космических аппаратов.

В электронной технике применяют Т. с. с высокими электрическим сопротивлением и термоэмиссионными свойствами, содержащие до 7,5% W. По коррозионной стойкости Т. с., как правило, не могут конкурировать с чистым танталом, но иногда легированием удаётся повысить коррозионную стойкость металла; например, Т. с., содержащие более 18% W, почти не корродируют в 20%-ной плавиковой кислоте.

В производстве высокотемпературных и др. материалов перспективны бериллид тантала (в конструкциях авиационной и космической техники для изготовления деталей, работающих при температурах около 1500 °С), бориды тантала (покрытие листов тантала, контактирующих с расплавленными ураном и кальцием), силициды, нитриды и карбиды (материал оболочки тепловыделяющих элементов (См. Тепловыделяющий элемент)) тантала. Карбид TaC - важная составная часть некоторых металлокерамических твёрдых сплавов; например, в Японии в 1972 из общего количества потребленного тантала, равного 83т, 40т израсходовано в твердосплавной промышленности, а в США в 1973 из 600 т тантала 85-90 т использовано в виде карбида в производстве твёрдых сплавов. Ферротанталониобий иногда применяют для присадки в некоторые стали с целью предотвращения межкристаллитной коррозии и улучшения др. свойств, но из-за дефицитности тантала в этом случае предпочтительнее феррониобий. Дефицитность и относительно высокая стоимость тантала препятствуют его широкому применению и в виде Т. с.

Лит.: Тугоплавкие материалы в машиностроении. Справочник, М., 1967.

О. П. Колчин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Танталовые сплавы" в других словарях:

    Сплавы на основе тантала с добавками ниобия, вольфрама, циркония, гафния и др. элементов. Характеризуются высокой жаропрочностью и корроз. стойкостью в агрессивных в жидкометаллич. средах; на воздухе стойки до 500 оС, для работы при высоких темп… … Большой энциклопедический политехнический словарь

    Танталовые сплавы Энциклопедический словарь по металлургии

    ТАНТАЛОВЫЕ СПЛАВЫ - сплавы на основе Та с добавками Nb, W, Mo, V и других элементов. Характеризуются высокой жаропрочностью и коррозионной стойкостью в различных средах. Применяются для изготовления сопел ракет, деталей реактивных двигателей и т. д … Металлургический словарь

    Тантал (латинское Tantalum), Та, химический элемент V группы периодической системы Менделеева; атомный номер 73, атомная масса 180,948; металл серого цвета со слегка свинцовым оттенком. В природе находится в виде двух изотопов: стабильного 181Та… …

    I Тантал в древнегреческой мифологии лидийский или фригийский царь, сын Зевса, отец Пелопса и Ниобы (См. Ниоба). За то, что разгласил тайны олимпийцев, похитил с пира богов нектар и амбросию и, пригласив богов на пир, угостил их блюдом,… … Большая советская энциклопедия

    index - 01 ОБЩИЕ ПОЛОЖЕНИЯ. ТЕРМИНОЛОГИЯ. СТАНДАРТИЗАЦИЯ. ДОКУМЕНТАЦИЯ 01.020 Терминология (принципы и координация) 01.040 Словари 01.040.01 Общие положения. Терминология. Стандартизация. Документация (Словари) 01.040.03 Услуги. Организация фирм,… … Стандарты Международной организации по стандартизации (ИСО)

    - (France), Французская Pеспубликa (Republique Francaise), гос во в Зап. Eвропе. Пл. 551,0 тыс. км2. Hac. 55,6 млн. чел. (1987). Cтолица Париж. B адм. отношении разделена на 96 департаментов. B состав Ф. входят заморские департаменты… … Геологическая энциклопедия

    Полезные ископаемые в недрах Земли, запасы которых оценены по геологическим данным. Месторождения полезных ископаемых распределены в земной коре неравномерно. Большинство видов минерального сырья представлено рудами, состоящими из минералов, т.е … Энциклопедия Кольера

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и изготовливают штабики путем гидростатического прессования смеси при давлении 140÷160 МПа в течение 3÷5 минут. Далее проводят термическую обработку штабиков в вакууме с остаточным давлением Р≤8·10-3 Па при температуре до 800°С. Затем продолжают обработку штабиков в восстановительной среде при избыточном давлении не менее 0,2 ати и температуре 800÷1000°С в течение не менее двух часов. После чего осуществляют процесс спекания штабиков в вакууме с остаточным давлением Р≤8·10-3 Па при температуре Т≥1500°С в течение не менее 2 часов с последующим охлаждением. Нагрев и охлаждение в условиях вакуума и восстановительной среды осуществляют со скоростью 300÷400°С/час. Монокристаллический слиток выращивают посредством бестигельной плавки с электронно-лученвым нагревом и заканчивают четной плавкой с затравлением на конец слитка нечетной плавки. Обеспечивается получение монокристаллов сплава вольфрам - тантал с повышенной степенью однородности распределения тантала по длине слитка. 2 з.п. ф-лы, 1 табл.

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам-тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП).

Известен способ получения сплавов монокристаллов молибдена и вольфрама с помощью легирования проволокой или прутком, используемых в качестве лигатуры и закрепляемых на боковой поверхности исходной поликристаллической заготовки (Ястребков А.А., Афанасьев Н.Г., Репий В.А., Смирнов В.П. «Разработка жаропрочных монокристаллических сплавов на основе молибдена и вольфрама», Цветные металлы, 2007, №11, с.10-18).

Недостаток известного способа заключается в получении значительной неоднородности распределения легирующей примеси по длине монокристаллического слитка. Это в полной мере относится к монокристаллам сплава вольфрам-тантал, т.к. проволока или пруток плавятся раньше, чем вольфрам и лигатура попадают в расплав неравномерными порциями.

Наиболее близким к изобретению является принятый в качестве прототипа способ получения монокристаллов тугоплавких металлов с использованием штабиков, полученных методом порошковой металлургии. В известном способе штабики получают путем гидростатического прессования предварительно смешанных исходных порошков, термическую обработку штабиков в восстановительной среде, спекание их с последующим переплавом в поликристаллическую заготовку и выращивание из нее монокристаллического слитка посредством бестигельной зонной плавки с электронно-лучевым нагревом. Качество получаемых монокристаллов во многом определяется составом и количеством примесей, присутствующих в исходном штабике. Основной примесью в порошках тугоплавких металлов (соответственно и в штабиках) является кислород, присутствующий в виде различных оксидов металлов. Для их удаления штабики подвергают термической обработке в осушенном водороде или водородосодержащей среде. Это приводит к снижению содержания кислорода примерно на два порядка. Затем штабики переплавляют для получения поликристаллических заготовок, из которых на установке ЭБЗП выращивают монокристаллы тугоплавких металлов, в том числе и сплавов вольфрам-тантал (Савицкий Е.М., Бурханов Г.С., Поварова Е.Б. и др. «Тугоплавкие металлы и сплавы», М.: Металлургия, 1986, с.32-85).

Однако известный способ не позволяет получить монокристаллы сплава вольфрам-тантал с однородным распределением легирующего компонента (тантала) по длине монокристалла из-за невозможности получения штабиков вольфрама, легированного танталом, соответствующего качества. Вольфрам практически не взаимодействует с водородом, в то время как тантал интенсивно его поглощает с образованием широкой области твердых растворов и гидридных фаз. При термообработке это приводит к растрескиванию и частичному разрушению штабиков.

Технической задачей изобретения является получение монокристаллов сплава вольфрам-тантал с однородным распределением тантала по длине слитка.

Технический результат изобретения заключается в получении бездефектных штабиков сплава вольфрам-тантал и в повышении степени однородности распределения тантала по длине слитка.

Решение поставленной задачи и получение технического результата достигается тем, что в способе получения монокристаллов сплава вольфрам-тантал, включающем изготовление штабиков путем гидростатического прессования предварительно смешанных исходных порошков, термическую обработку штабиков в восстановительной среде, спекание их с последующим переплавом в поликристаллическую заготовку и выращивание из нее монокристаллического слитка посредством бестигельной зонной плавки с электронно-лучевым нагревом, согласно изобретению гидростатическое прессование осуществляют при давлении 140÷160 МПа в течение 3÷5 минут, термическую обработку штабиков сначала проводят в вакууме с остаточным давлением Р≤8·10 -3 Па при температуре до 800°С, а затем продолжают обработку в восстановительной среде при избыточном давлении не менее 0,2 ати и температуре 800-1000°С в течение не менее двух часов, после чего осуществляют процесс спекания штабиков в вакууме с остаточным давлением Р≤8·10 -3 Па при температуре Т≥1500°С в течение не менее 2 часов с последующим охлаждением, причем нагрев и охлаждение в условиях вакуума и восстановительной среды осуществляют со скоростью 300÷400°С/ч, а процесс выращивания монокристаллического слитка заканчивают четной плавкой с затравлением на конец слитка нечетной плавки.

В способе получения монокристаллов сплава вольфрам-тантал в качестве восстановительной среды может быть использована аргоно-водородная смесь с содержанием водорода 5÷7% об.

В качестве исходных компонентов может использоваться порошок вольфрама со средним размером зерна (по Фишеру) 1-5 мкм и порошок тантала со средним размером зерна 10-15 мкм. При использовании порошков с разными размерами частиц плотность упаковки и распределение исходных компонентов будут более равномерными, поскольку мелкие частицы заполняют пустоты между крупными.

Известно, что реакция водорода с танталом происходит при относительно низких (Т≤600°С) температурах. Осуществив нагрев заготовки до Т=800°С в условиях вакуума, дальнейшую термообработку при более высокой температуре можно проводить в водородосодержащей среде без каких-либо негативных последствий. В результате многочисленных экспериментов было установлено, что применение этого метода решило проблему целостности штабиков при проведении восстановительного отжига.

Формование длинномерных штабиков (отношение длины к диаметру ≥10) обычно проводится методом гидростатического прессования. Величина давления прессования ограничивается, с одной стороны, сохранением межчастичных контактов после снятия нагрузки, т.е. целостностью самого сформированного штабика, а с другой стороны, образованием сколов и трещин при больших удельных нагрузках. Кроме того, для эффективности восстановительных реакций в процессе спекания поверхность металлического «скелета» должна быть полностью доступна для газовой атмосферы, иначе говоря, не должно быть объемов с закрытой пористостью и, следовательно, полученная прессовка не должна иметь плотность более 60% от теоретической.

С учетом этих ограничений экспериментально было установлено, что давления прессования для порошков с размером зерна от 1 до 5 мкм составляет от 140 до 160 МПа. При этом плотность полученных штабиков варьировалась от 50 до 55% от теоретической.

Для предотвращения взрывоопасных ситуаций и снижения затрат на обеспечение безопасных условий труда спекание штабиков проводили в аргоно-водородной смеси с малыми добавками (от 5 до 7%) водорода.

При высоких температурах спекания (выше 1500°С) в штабиках происходит значительная усадка, при этом пористость уменьшается до значений от 20 до 25%, что сопровождается переходом от открытой пористости до закрытой. Закрытые (изолированные) поры непроницаемы для газовой среды и это приводит к неполному восстановлению пор и окружающих частиц. В процессе выращивания монокристаллов эти участки выделяют летучие окислы, что приводит к возникновению электрических разрядов и «отравлению» катода нагревательного узла электронно-лучевой пушки установки бестигельной зонной плавки. Поэтому восстановительный отжиг необходимо проводить в области температур, не приводящих к образованию закрытых пор. Экспериментально установлено, что выдержка штабиков при температуре от 800 до 1000°С в аргонно-водородной среде в течение 2 часов приводит к полному устранению большинства окисных примесей, практически не изменяя исходной пористости.

Реализацию предлагаемого способа получения монокристаллов сплава вольфрам-тантал рассмотрим на примере сплава вольфрам-тантал, содержащего 3 мас.% тантала.

В качестве исходных компонентов использовали порошки вольфрама и тантала. Вольфрамовый порошок имел средний размер зерна (по Фишеру) от 1 до 3 мкм, порошок тантала состоял из более крупных частиц - от 10 до 15 мкм. Для увеличения текучести исходные порошки сушили в вакуумном сушильном шкафу ШСВ-65 при 300°С в течение 2 часов, после чего в расчетных количествах засыпали в емкость смесителя С 2,0 «Турбула» и перемешивали смесь в течение от 4 до 6 час. Подготовленную таким образом смесь засыпали в эластичную оболочку и прессовали в гидростате 4,2/5,3 МН при давлении жидкости от 140 до 160 МПа в течение от 3 до 5 минут. Прессованные штабики представляли собой цилиндры диаметром от 18 до 30 мм и длиной от 140 до 240 мм, которые затем помещали в электропечь типа СШВЛ 1,25/25 или СНВЭ 1.31/20. Печь вакуумировали до давления Р=8·10 -3 Па и поднимали температуру до Т=800°С со скоростью от 300 до 400°С/час, выдерживали при этой температуре 30 мин и заполняли камеру печи аргонно-водородной смесью до избыточного давления Р=0,2 ати. Затем температуру поднимали до Т=1000°С и выдерживали в течение 2 час. После выдержки печь снова вакуумировали до остаточного давления Р=8·10 -3 Па и поднимали температуру со скоростью от 300 до 400°С/ч до необходимых от 1500-1800°С и выдерживали при конечной температуре 2 ч. Охлаждение печи проводили с той же скоростью, что и нагрев. Полученные штабики переплавляли в поликристаллическую заготовку методом бестигельной зонной плавки. Диаметр заготовки задавали равным диаметру монокристалла или на 10-20% меньше. Выполнение данного требования отвечает, в числе прочих, условиям стабильного роста монокристалла. В процессе роста монокристалла сплава вольфрам-тантал формируется определенная картина распределения тантала по длине слитка. Равновесный коэффициент распределения тантала в вольфраме равен 0,8. Это означает, что в процессе роста монокристалла концентрация тантала будет от начало слитка к концу возрастать. Для уменьшения эффекта неоднородного распределения примеси по длине слитка необходимо провести второй или любой четный процесс роста, затравляясь каждый раз на конец слитка нечетного процесса. В этом случае будет наблюдаться процесс выравнивания концентрации примеси (тантала) по длине слитка.

В обоснование достижения технического результата были выращены по два слитка монокристаллов сплава W+3 мас.% Та по следующим технологическим схемам:

1 - по известной из литературы технологии легирования монокристалла проволокой или прутком;

2 - по предлагаемой технологии с использованием штабиков, полученных методом порошковой металлургии;

3 - по предлагаемой технологии с использованием штабиков, полученных методом порошковой металлургии, когда выращивание монокристаллического слитка заканчивают четной плавкой с затравлением на конец слитка нечетной плавки. В этом случае будет наблюдаться дальнейший процесс выравнивания концентрации примеси (тантала) по длине слитка.

Концентрацию тантала измеряли спектральным методом (Вольфрам. Методы спектрального анализа. ГОСТ 14339.5-9) на шайбах толщиной 5 мм, отрезанных через каждые 50 мм, начиная с нижнего торца слитка. Результаты измерений по каждому из трех способов представлены в таблице.

Таблица
Концентрация тантала, мас.%
0 мм 50 мм 100 мм 150 мм 200 мм 250 мм 300 мм 350 мм 400 мм
1 2.5 2,6 2,8 3,0 3,2 3,3 3,3 3,4 3,5
2 2,6 2,8 2,9 2,9 3,0 3,0 3,1 3,1 3,3
3 3,2 3,2 3,1 3,0 2,9 2,9 3,0 3,0 3,1

Как видно из данных таблицы, разброс концентрации тантала между максимальными и минимальными значениями в монокристалле сплава вольфрам-тантал для известного способа составляет более 25%, а для предложенного способа - 10%.

1. Способ получения монокристаллов сплава вольфрам-тантал, включающий изготовление штабиков путем гидростатического прессования предварительно смешанных исходных компонентов, термическую обработку штабиков в восстановительной среде, спекание их с последующим переплавом в поликристаллическую заготовку и выращивание из нее монокристаллического слитка посредством бестигельной зонной плавки с электроннолучевым нагревом, отличающийся тем, что гидростатическое прессование осуществляют при давлении 140÷160 МПа в течение 3÷5 мин, термическую обработку штабиков сначала проводят в вакууме с остаточным давлением Р≤8·10 -3 Па при температуре до 800°С, а затем продолжают обработку в восстановительной среде при избыточном давлении не менее 0,2 ати и температуре 800÷1000°С в течение не менее 2 ч, после чего осуществляют процесс спекания штабиков в вакууме с остаточным давлением Р≤8·10 -3 Па при температуре Т≥1500°С в течение не менее 2 ч с последующим охлаждением, причем нагрев и охлаждение в условиях вакуума и восстановительной среды осуществляют со скоростью 300÷400°С/ч, а процесс выращивания монокристаллического слитка заканчивают четной плавкой с затравлением на конец слитка нечетной плавки.

2. Способ получения монокристаллов сплава вольфрам-тантал по п.1, отличающийся тем, что в качестве восстановительной среды используют аргоно-водородную смесь с содержанием водорода 5÷7 об.%.

3. Способ получения монокристаллов сплава вольфрам-тантал по п.1, отличающийся тем, что в качестве исходных компонентов используют порошок вольфрама со средним размером зерна 1-5 мкм и порошок тантала со средним размером зерна 10-15 мкм.

Похожие патенты:

Изобретение относится к технологии восстановления поверхности монокристаллической или полученной направленной кристаллизацией металлической детали, имеющей толщину Ws менее 2 мм, в которой лазерный луч и поток металлического порошка, имеющего ту же природу, что и металлическая деталь, подают на деталь с помощью сопла для получения, по меньшей мере, одного слоя монокристаллического или подвергшегося направленной кристаллизации от детали металла, при этом лазерный луч имеет мощность «Р» и перемещается вдоль детали со скоростью «v», в котором луч лазера и поток порошка подают на деталь соосно и отношение P/v находится в определенном диапазоне.

ТАНТАЛ-TANTALUM (ТА). ВОЛЬФРАМ-WOLFRAM (W)

Тантал-Tantalum (Та). Вольфрам-Wolfram (W)

Тантал в греческой мифологии - любимый сын Зевса. Будучи на правах любимца Зевса допущенным к трапезам богов. Тантал возгордился этим и, пригласив богов к себе на пир, подал им в виде угощения мясо собственного сына Пелопа, желая проверить их всеведение. За это преступление Тантал был наказан голодом и жаждой. Он был "заточен" в пруд, где стоял по горло в воде, под деревом, ветви которого свисали и гнулись под тяжестью спелых плодов. Всякий раз, когда Тантал, томимый жаждой, открывал рот, чтобы напиться, вода утекала от него; когда, мучимый голодом, он поднимал руку, чтобы сорвать плод, ветка с плодами уклонялась в сторону. Так древний миф описывал "танталовы муки".

Такие же муки перенесли химики, изучавшие свойства тантала, и особенно те ученые, которые пытались выделить тантал в чистом виде.

150 лет в коллекции Британского музея в Лондоне лежал ничем не примечательный минерал темного, почти черного цвета. От куска угля он отличался только очень тяжелым весом да прожилками золотистой слюды. Своей тяжестью минерал и привлек внимание химика К. Гэтчета, который исследовал неописанные минералы коллекции. Анализ показал наличие в минерале железа, кислорода и еще одного неизвестного элемента. По имени минерала, названного в честь Америки, где он был найден,- колумбита - открытый элемент назвали колумбием, а минерал... положили в коллекцию. Это было в 1801 г. Год спустя химик Экеберг в минералах Скандинавского полуострова нашел новый элемент, который из-за мучительной трудности выделения был назван танталом. Изучая свойства колумбита, некоторые исследователи все более и более склонялись к мысли, что колумбий и тантал тесно смешаны в минерале колумбите.

В 1844 г. известный немецкий химик Г; Розе доказал, что в колумбите находятся два трудно разделимых элемента - ниобий и тантал. Они же вместе присутствуют и в минерале танталите, в манганотанталите, в ферротанталите и в некоторых других редких минералах. Наконец, было установлено, что колумбий и тантал почти всегда находятся вместе и что разделить их очень трудно.

В чистом виде тантал представляет собой серо-стальной, тяжелый (плотность 16,6), тугоплавкий (плавится при 3000°С) металл. Твердый и вместе с тем пластичный, он совмещает в себе химическую стойкость платины и ковкость золота, которое можно прокатать в тончайшие листочки. Тантал не растворим в кислотах и их смесях. Не растворяет его и "царская водка", пожирающая все металлы. Только смесь плавиковой кислоты с азотной действует на тантал.

Тантал явился конкурентом платины, он оказался незаменимым для изготовления химической аппаратуры. На одном из предприятий, использующих газообразный хлористый водород, детали аппарата из нержавеющей стали полностью разрушались за 2 месяца. Достаточно было заменить нержавеющую сталь танталом, и срок службы самых тонких частей (0,3-0,5 мм) увеличился до 20 лет. В прошлом тантал применялся для изготовления нитей в электрических лампочках, которые так и назывались танталовыми. Ныне он заменен более дешевыми металлами.

Одна из областей человеческого знания считает тантал совершенно незаменимым. Это - хирургия. В противоположность другим металлам тантал обладает замечательным свойством: вшитый в живые ткани (мышцы, кости), он совершенно не раздражает их. И это ценное свойство тантала используется в восстановительной хирургии. В виде тонких пластинок, проволоки, шурупов, гвоздей он находит себе применение в костной и пластической хирургии для скрепления обломов костей, закрывания отверстий в костях черепа и т. д. В экспериментальной хирургии.

Важным сырьем для получения тантала и ниобия служат колумбитоносные граниты, залежи которых особенно велики в районе Плато Джое (Северная Нигерия). Соединенные Штаты Америки вывозят из Нигерии обогащенную руду и накапливают концентраты, ибо считают тантал важнейшим стратегическим металлом.

Вольфрам-Wolfram (W)

Температура нити электрической лампочки превышает 2500°С. Большинство металлов при такой температуре плавится, некоторые же кипят и быстро испаряются. В данном случае выручает вольфрам - самый тугоплавкий из всех металлов. Температура плавления вольфрама достигает 3410°С. Трудно переоценить значение вольфрама в производстве электрических ламп, особенно если учесть, что в мире ежегодно изготавливают несколько миллиардов электрических лампочек. Несколько миллиардов! Чтобы составить себе представление о грандиозности этих цифр, достаточно сказать, что, например, миллиард минут составляет более 19 столетий.

В изломе куска чугуна или стали можно различить отдельные кристаллы. Иногда они крупные и видимы простым глазом, чаще - мелкие, различимые с помощью лупы или только под микроскопом.

Но всегда таких кристаллов множество и, как говорят в таких случаях, кусок металла имеет поликристаллическую структуру. Совсем иначе выглядит волосок электролампы: прежде всего - это один кристалл, или, как говорят в технике, монокристалл (от греческого "монос"-один). Много усилий потратили исследователи, пока нашли условия, при которых из вольфрамового порошка можно получить монокристалл в виде проволочки большой длины. Если учесть, что температура плавления вольфрама равна 3410°С, можно представить, как трудно его получить в чистом виде. В этом состоит, главным образом, объяснение тому, что вольфрам, открытый еще в 1781 г. и выделенный с. примесями в 1783 г. Дон-Фаусто-Дель-Гюаром, был получен в чистом виде лишь через 67 лет.

Вольфрам растворяется лишь в смеси двух кислот: плавиковой и азотной. В "царской водке" происходит лишь медленное окисление; вольфрама с поверхности.

Так, волосок электролампы - это монокристалл вольфрама толщиной всего в несколько сотых долей миллиметра. Из вольфрама же делают и антикатода мощных рентгеновских трубок.

При случае осмотрите контакты прерывателя на магнето, установленном в моторе трактора. В тех местах, где сотни раз в секунду вспыхивает и гаснет электрическая искра,- на контактах прерывателей - укреплена тоненькая табличка из вольфрама. При использовании любого другого материала двигатель не мог бы долго работать: контакты будут "пригорать", окисляться, и продукты окисления надо убирать, счищать. Хорошо, если зачистку контактов можно осуществить на земле, а как быть, например, в воздухе, если откажет мотор самолета? Вольфрам и здесь оказывается незаменимым.

Так называемые сверхтвердые сплавы представляют собой смесь порошков карбидов, сцементированных кобальтом. К тому же получают эти "сплавы" не сплавлением, а, как уже упоминалось, спеканием. Обязательной составной частью сверхтвердых материалов являются карбиды вольфрама. Такие сплавы содержат 78-88 % вольфрама, 6-15 % кобальта и 5-6 % углерода. Допуская огромные скорости обработки металла, они не теряют твердости даже при нагревании до 1000°С. Аналогичный "сверхтвердый сплав" называется "видиа" - от сокращенного слова; "ви диамант" - "как алмаз". В известной мере такое сравнение законно: пластинки для резцов успешно заменяют роль алмаза в коронках для бурения нефтяных и газовых скважин. По твердости "победит" приближается к алмазу, но выгодно отличается от него меньшей хрупкостью и большей дешевизной. Много вольфрама используется для получения высокопроцентного сплава вольфрама (50-80%) с железом-ферровольфрама, расходуемого для разнообразных нужд металлургической промышленности.

Специальные сплавы тантала в промышленности используют-ся для применения при высоких температурах, для изготовле-ния резцов, имеющих высокие скорости резания, и для изготов-ления устойчивой против действия кислот аппаратуры. Сплавы с высокой температурой плавления содержат от L до40 А 1а в комбинации с различными количествами Mo, W, С, Mn, Ni, v и Si В указанных сплавах тантал может замещать полностью или часть вольфрама и молибдена. Тантал в этих случаях вво-дится в сплав в виде чистого металла.Как важная составная часть в определенных сплавах алю-миния (типа цералюмина) широко применяется ниобии. Коли-чество его, вводимое в сплавы, обычно невелико и составляет О 05—0 1 % действие его состоит в модифицировании спла-вов и предотвращении образования хрупкой железо-алюминие-вой составляющей.Ниобий применяется так же, как легирующая добавка к не которым медным сплавам. Добавление ниобия в количестве до 1,5% к меди, латуни или бронзе в значительной мере обеспечи-вает сохранение твердости при повышенных температурах.Карбид тантала вместе с карбидом вольфрама и карбидом титана входит в состав некоторых марок твердых металлорежу-щих сплавов, а также в состав литых карбидов вольфрама.Известны твердые сплавы на основе только одного карбида тантала с никелем или кобальтом в качестве цементирующей добавки.Добавление карбида тантала в состав твердых сплавов суще-ственно повышает их режущие свойства. Так, по данным добавление к твердому сплаву ВКб 2% позволяет повысить ско-рость обработки чугуна на 10%, а добавление 4% ТаС к титановольфрамокобальтовым твердым сплавам марок ТК повышает скорость обработки ими сталей на 20%. Добавки карбида тан-тала к титановольфрамокобальтовым твердым сплавам повышают также их окалиностойкость. Сообщается также, что режу-щие инструменты с карбидом тантала обладают лучшей теплопроводностью, чем инструменты других типов, и что термическое расширение даже при использовании в жестких условиях очень мало.Литые сплавы с добавлением карбида тантала (и ниобия) противостоят химической коррозии и износоустойчивы.Хотя большое количество тантала и ниобия применяется в виде различных сплавов, применение этих металлов в чистом виде имеет не менее важное значение. Одними из главнейших областей их применения являются электровакуумная техника и химическая промышленность.Начало широкого применения металлического тантала свя-зано с электровакуумной техникой, с производством радиотех-нической, радиолокационной и рентгеновской аппаратуры.Впервые тантал начал применяться в качестве нитей нака-ливания электроосветительных ламп, заменив угольные нити, откуда затем был вытеснен вольфрамом. Электрические лампы с нитями накаливания из тантала в ряде случаев все же оказа-лись более пригодными, чем лампы с вольфрамовыми нитями, например на железных дорогах, где более упругие нити из тан-тала лучше противостоят вибрациям и толчкам. Однако такие лампы могут работать только на постоянном токе. При исполь-зовании переменного тока происходит постепенная рекристалли-зация танталовых нитей в так называемых криотронах—сверхпроводящих элементах например для вычислительных машин. Криотрон представ-ляет собой отрезок охлаждаемой танталовой проволоки (диа-метром 0,2 мм) длиной 3 см, на который наматывается один слои изолированной ниобиевой проволоки диаметром 80 мк танталовая проволока служит сверхпроводником. Периодиче-ски через ниобиевую обмотку пропускается ток, создающий магнитное поле, разрушающее сверхпроводимость тантала. Та-ким образом, с помощью криотрона можно размыкать ток, не-зависимо от направления последнего. При применении тантала (или ниобия), в качестве материала анода в кислых электролитах он вступает в реакцию с выделяю-щимся из растворов кислородом, образуя устойчивую окисную пленку. Вследствие этого, прохождение тока прекращается до тех пор, пока не будет повышено напряжение, что влечет за со-бой образование нового равновесного состояния. Этот процесс продолжается приблизительно до 200 в, после чего пленка начи-нает разрушаться.Способность тантала образовывать устойчивые анодные окисные пленки в сочетании с его пассивностью к кислым элек-тролитам позволяет применять этот металл в электролитических выпрямителях и конденсаторах. Миниатюрные танталовые кон-денсаторы широко используются для передаточных радиостанции, радарных установок и других различных электронных схемтанталовые выпрямители используются для железнодорож-ных сигналов, в телефонных коммутаторах, противопожарных и других сигнальных системах.В качестве выпрямителя переменного тока низкого напря-жения может быть использован и ниобий.Танталовые конденсаторы могут быть изготовлены двух ти-пов: с прокладками из листового тантала и с применением по-ристого тантала. В первом случае используются кислые элек-тролиты на основе гликолей, обладающие большой вязкостью во втором жидкие, обладающие высокой электропроводно-стью, например водный раствор хлорида лития.В качестве катодов для прокладочных конденсаторов приме-няются медные ленты, покрытые серебром, во втором случае сам сосуд является электродом; изготавливается он из серебра при неполярном конденсаторе из тантала.Особенностью танталовых конденсаторов являются их ма-лые размеры. Танталовые сплавы применяются в промышленности повсеместно.

Купить тантал по привлекательным ценам вы можете перейдя по ссылкам ниже.

  1. Мы предлагаем следующую продукцию из тантала: танталовый круг, танталовый лист, танталовую проволоку, танталовую ленту.

Тантал (Та) — относится к категории тугоплавких , атомный номер — 73, атомная масса — 180,9, плотность — 16,6г/см3, температура плавления — 2996ОС, коэффициент линейного расширения — 6,5.10-6, удельная электропроводность — 6,85м/ом.мм2, удельное электрическое сопротивление — 15,0мком/см3(20ОС);0,156ом/мм2/м, модуль упругости — 19000 кг/мм2, предел прочности при растяжении — 91,5 кг/мм2, относительное удлинение — 50% для тонкого листа, 1,5% — для прутков, твёрдость по Бринелю — 75-125кг/мм2.

Тантал был открыт в 1802 году. Шведский химик Экеберг нашёл новый элемент в минералах Скандинавского полуострова и назвал его танталом, из-за того, что его окисел оказался нерастворимым даже в кислотах. По греческой мифологии — Тантал, любимый сын Зевса, который за совершённые им преступления был обречён на вечные муки голода и жажды (танталовы муки). Название тантала символизирует трудности его получения. Тантал был открыт вместе с ниобием в минерале колумбите, они же вместе присутствуют в минералах танталите, манганотанталите, ферротанталите. Тантал и ниобий всегда находятся в минералах вместе и очень трудно разделимы.

В природе известно около120 минералов содержащих ниобий и тантал, но только некоторые из них являются промышленными-ниобий добывается из колумбита (до 77% пентаксида ниобия, есть тантал), тантал из танталита (до 84% пентаксида тантала). Общие мировые запасы пентаксида тантала оцениваются в 150 млн тонн, подтверждённые — одна треть от общих.

Тантал — серебристо-белый металл, по своей химической стойкости против действия ряда реагентов (HCl,H2SO4,HNO3) не уступает платине, а по стойкости против царской водки, даже превосходит её. Чистый от примесей металл весьма пластичен: куётся, прокатывается в тонкий лист и проволоку. Присутствие примесей, в том числе растворённых в металле газов, сильно увеличивает твёрдость и снижает пластичность тантала.

Тантал немагнитен, его можно сваривать, но не дуговой сваркой. При нагреве на воздухе до 400ОС, поверхность тантала покрывается голубой плёнкой окисла, при 600ОС цвет переходит в чёрно-серый, при более высокой температуре окись становится белой.

При нагреве до температуры каления тантал поглощает 740 объёмов водорода, который может быть удалён только в вакууме при температуре, близкой к температуре плавления тантала. Присутствие водорода в тантале делает его твёрдым и хрупким.

Углерод и азот дают с танталом карбиды и нитриды. Тантал достаточно стоек против действия большинства кислот, из них активны только олеум (H2SO4+SO2),фосфорная кислота (выше 145ОС), плавиковая кислота, смесь HNO3+HF. Щёлочи действуют на тантал только в виде горячих концентрированных растворов или в расплавленном состоянии.

ПОЛУЧЕНИЕ.

Исходным сырьём для получения тантала являются танталит Fe(TaO3)2, тантало-колумбит и некоторые другие минералы, выделяемые в виде богатых концентратов. Способов «вскрытия» танталовых, так же как и ниобиевых концентратов существует несколько, в том числе:

а) тонкоизмельчённый концентрат сплавляется с NaOH, образуя танталаты натрия и щелочные соединения примесей; обработкой плава слабой, затем крепкой соляной кислотой удаляют примеси, остающийся осадок Ta2O3 растворяют в HF и добавкой KF переводят в двойную соль K2TaOF7, которая плохо растворима в воде, что способствует её отделению от соли ниобия K2NbOF5, хорошо растворяющейся в воде.

б) концентрат обрабатывают смесью серной и щавелевой кислот при нагревании, тантал переходит в раствор, из которого выделяется в виде окиси.

Кроме этого способа, тантал может быть получен восстановлением его соединений такими активными металлами как кальций, натрий, магний. Наиболее чистый металл получается посредством нагревом тантала, содержащего примеси, в глубоком вакууме при температуре выше 2000ОС. Малая летучесть тантала, в этих условиях, и сильная летучесть примесей, включая связанные водород, кислород и углерод, даёт возможность получить чистый и пластичный металл тантал.

Очень чистый металл тантал получают электролизом расплавленных солей, в которых содержится 0,06%С, 0,02%Fe, 0,01%Ni, 0,002%Mn.

Наиболее широкое промышленное применение нашли способы восстановления комплексных фтористых солей (K2TaF7 и K2NbF7), так как эти соли конечный продукт переработки танталовых и колумбитовых концентратов. В результате длительных и сложных технологических процессов ниобий и тантал получают в виде порошка. Переработка порошков в компактные слитки, пригодные для различных целей, осуществляется главным образом спеканием порошков или плавкой их в высоком вакууме.

ПРИМЕНЕНИЕ.

Области применения тантала весьма разнообразны. Первоначально тантал служил заменой угольных нитей накаливания в электрических лампах, пока его не вытеснил вольфрам. Благодаря высокой стойкости против действия ряда кислот тантал находит широкое применение в химической промышленности: лопасти мешалок турбин, аэраторы, теплообменники, конденсаторы для соляной кислоты. Тюбинги покрывают танталом для обеспечения большей стойкости и сохранности. Особое значение тантал приобрёл в электронной технике. Сплавы тантала с вольфрамом, никелем и другими металлами широко применяются. На базе тантала готовят высокотвёрдые сплавы.

При термической обработке тантал приобретает высокую твёрдость. Тантал обладает свойством пропускать электрический ток только в одном направлении и, в этом качестве, применяется в выпрямителях переменного тока. Из тантала и его сплавов изготавливают режущие инструменты, нержавеющие части машин, нити ламп накаливания, детали электронных ламп, фильеры для протяжки целлюлозных нитей, покрытия внутренних стенок химических реакторов, лабораторную посуду.

Сплавы ниобия с цирконием и танталом, благодаря их термостойкости — замечательные материалы для изготовления корпусов космических кораблей, ракет, управляемых снарядов. Сплавы тантала (90%) с вольфрамом(10%), выдерживающие температурные режимы до 2500-3000ОС, применяются для производства выхлопных труб, форсунок, деталей систем газового контроля и других узлов двигателей ракет. Тантал, подобно ниобию, отличается сверхпроводимостью и используется в этом качестве в электронных приборах.

Карбиды тантала приближаются по твёрдости к алмазу и обладают чрезвычайно высокой тугоплавкостью. Самые тугоплавкие из всех веществ на Земле сегодня — это твёрдый раствор карбидов тантала и гафния, температура плавления которых составляет 4215ОС.

Благодаря своим свойствами внешней красоте, тантал в ювелирных изделиях иногда заменяет платину, так как дешевле её во много раз. Из тантала изготавливают часы, браслеты. Международное бюро мер и весов во Франции и Бюро стандартов в США, используют тантал для изготовления эталонов высокой точности.

Самой важной отраслью применения тантала, является химическое машиностроение. Из тантала изготавливают нагреватели, реакторы, клапаны трубопроводы и другие детали оборудования для производства сильно агрессивных веществ, соляной, серной и других кислот и многих органических и неорганических соединений. Относительно высокая стоимость танталовой аппаратуры окупается длительностью срока службы.