Валки прокатных станов. Общая характеристика

Валки прокатных станов по сравнению с другими деталями работают в неблагоприятных условиях, так как они воспринимают большие знакопеременные изгибающие усилия и тепловые нагрузки. Поверхность валка, работающая при прокатке металла на истирание, должна обладать высокой твердостью и износостойкостью, т. е. материал валков должен быть одновременно вязким в сердцевине и достаточно твердым на рабочей поверхности бочки (не менее 90 ед. по Шору), а глубина закаленного слоя должна составлять не менее 3% от величины радиуса валка. Поковки валков холодной прокатки изготовляются способом свободной ковки на гидравлических прессах; в качестве заготовок используют крупные слитки массой 40...90 т. Перед окончательным получением заготовки валка слиток или часть его предварительно проковывается. Основная цель ковки заключается в обеспечении проработки литой структуры металла слитка, полном разрушении карбидной сетки и измельчении зерна, достижении наиболее выгодного расположения волокон в поковке и получении необходимых механических свойств металла в поперечном, продольном направлениях и по сечению поковки. Из двух существующих схем ковки: «круг -- круг» и «круг -- квадрат -- круг» более предпочтительной является последняя, так как с ее помощью обеспечивается получение более качественной структуры металла поковки, достигается лучшая прорабатываем ость слоев сердцевины и завариваемость макро- и микронесплошностей металла, что определяется его металлургическими свойствами. Поковки крупных валков массой более 3 т следует изготовлять с двумя осадками слитков. Правильный выбор степени деформации при осадке слитков обеспечивает улучшение качества поковок и повышение прочности и износостойкости валков. Технологическая схема ковки валков предусматривает биллетировку слитка, осадку, предварительную протяжку, а также ковку на окончательные размеры.

Особое место в технологии изготовления валков холодной прокатки занимает термическая обработка, с помощью которой обеспечивается получение необходимых свойств материала валка.

В качестве предварительной термообработки при изготовлении валков используют изотермический отжиг, сущность которого заключается в перекристаллизации стали при температуре 950...960 .° С, последующем охлаждении в печи до 300...350.° С, изотермической выдержке при температуре 700...710СС и медленном охлаждении. Предварительная термообработка производится после обдирки поковки валка с припуском 8...12 мм и глубокого сверления центрального отверстия. Для подготовки структуры под поверхностную закалку применяется нормализация с отпуском: нормализация производится при температурах 850...870.°С с последующим охлаждением валков на воздухе и нагревом под отпуск до 600,..620.° С; отпуск обеспечивает получение требуемой твердости на шейках валков в пределах 35...55 ед. по Шору. Закалка валков осуществляется путем нагрева током промышленной 50 Гц или высокой частоты 1000 Гц, а также с помощью газопламенного нагрева. Износостойкость и долговечность работы валков в значительной степени зависят от величины и распределения остаточных напряжений, возникающих при термообработке. Рабочие валки тяжелонагруженных станов холодной прокатки нуждаются в закалке с предварительным подогревом по всему сечению валка до температуры 600...650.°С или с предварительным подогревом поверхности валка до 800...820.° С с помощью тока промышленной частоты. Дополнительное охлаждение должно осуществляться через поверхность осевого отверстия валка, в результате чего получается наиболее рациональное распределение остаточных напряжений по сечению валка.

Малонагруженные валки холодной прокатки закаливают с подогревом внутренних слоев до 500...550 . С; это снижает уровень растягивающих напряжений на поверхности валка и не вызывает образования больших напряжений растяжения во внутренних слоях.

Крупные валки, работающие в легких условиях эксплуатации, можно закаливать с подогревом центральной зоны бочки до 300...400 .° С без дополнительного внутреннего охлаждения. После закалки током промышленной частоты при температуре 900...910.°С и последующего отпуска при 400...520. С достигается твердость рабочей поверхности валка в пределах 45...90 ед. по Шору (в зависимости от технических требований на изготовление валка). Термическая обработка, результатом которой является сочетание высокой вязкости металла в сердцевине с высокой твердостью поверхности валка, повышает долговечность работы валков прокатных станов. Последовательность обработки валка состоит из следующих этапов: черновая обработка поверхности валка под изотермический отжиг и нормализация с припуском 8...12 мм; глубокое сверление центрального канала и растачивание камеры; изотермический отжиг и нормализация; обработка под закалку поверхности бочки с припуском 0,5...1,5 мм и шеек с припуском 5...6 мм; обработка всех мелких поверхностей; закалка токами промышленной частоты с отпуском; обработка закаленных валков под второй отпуск; второй отпуск для снятия напряжений; окончательная механическая обработка. Обработка крупных валков начинается с разметки осевых линий и центров. После центрования отверстий валок устанавливается на токарном станке, где обрабатываются шейки под люнеты и базовые поверхности установки на станке для глубокого сверления; торцы валка намечаются с припуском 5...6 мм; концы заготовки отрезаются по намеченным надрезам. Центральное отверстие обрабатывается сверлом для глубокого сверления с последующим растачиванием камеры. В процессе глубокого сверления возникают значительные технологические трудности, связанные со сверлением консольным инструментом, имеющим значительный вылет, трудностью получения прямолинейной оси и цилиндрической формы отверстия, ухудшением теплоотвода и охлаждения инструмента. Для глубокого сверления применяются перовые, пушечные, двух - и четырех-кромочные и кольцевые сверла; последние используют при сверлении отверстий диаметром свыше 70 мм.

Четырех кромочные сверла с напайными твердосплавными пластинками для сверления глубоких отверстий диаметром до 70 мм. Двухперое четырехкромочное сверло при сверлении валков длиной до 7500 мм дает увод отверстия 10...15 мм; четырехкромочное сверло с центральной выточкой позволяет уменьшить увод до 1...1.5 мм на той же длине сверления. При сверлении глубоких отверстий диаметром более 70 мм применяют кольцевые сверла. С помощью режущих пластинок сверла, закрепленных в корпусе, выбирают кольцевую канавку в обрабатываемой заготовке. Прочность шеек вала зависит от диаметра осевого отверстия, поэтому в полости бочки растачивается камера с плавными переходами от осевого отверстия. Растачивание ведется при работе борштанги на сжатие или на растяжение. Производительность расточки повышается при работе борштанги на сжатие. После изотермического отжига и нормализации валок обрабатывают под закалку; устанавливают в отверстие временные пробки и на токарном станке протачивают на шейках две выточки под люнеты, пробки удаляют. Поверхность валка не должна иметь острых кромок и рисок, переход от одной поверхности к другой должен выполняться плавно, через галтели. Перед закалкой следует обрабатывать различные мелкие поверхности. Трефы обрабатываются на специальных трефофрезерных станках в размер. На продольно-фрезерных станках фрезеруются шпоночные пазы или квадраты с припуском на сторону 2 мм; радиальные отверстия сверлятся в размер. После закалки валок устанавливают в патроне и люнете с точностью до 0,25 мм, используя бочку как базовую поверхность, после чего растачивают отверстия под центровые пробки. Пробки после охлаждения в жидком азоте запрессовывают в отверстие. Деталь устанавливают в центрах и протачивают бочку до устранения биения. Для повышения производительности при обработке закаленных валков используют точение резцами с широкими лезвиями, оснащенными минералокерамическими пластинками из сплава ВЗ.

Задний угол резца с широким лезвием--6е, передний угол -- (--6а), угол наклона режущей кромки -- 13°, ширина фаски режущей кромки --0,5 мм. Валки площадью до 26 м обрабатывают резцами с такими геометрическими параметрами. Шероховатость поверхности при этом не превышает Ra = 1,25 мкм. При шлифовании валок устанавливается в центрах, поверхность бочки шлифуется до снятия следов токарной обработки. При этом необходимо поддерживать правильный режим охлаждения и правки круга во избежание появления прижогов, которые снижают поверхностную твердость валков и способствуют появлению микротрещин. Затем проводится окончательная обработка мелких поверхностей -- пазов, трефов, шлицев н. т. п. После второго отпуска выполняют чистовое шлифование поверхности бочки и окончательную обработку шеек валков. Заправку галтелей после шлифования производят твердосплавными радиусными резцами на токарном станке. В качестве материала для изготовления валков горячей прокатки используют легированные стали, а также чугун с отбеленной поверхностью. Валок для горячей прокатки. Валок изготовляется из стали 55Х, масса детали 20 890 кг, масса заготовки 26 000 кг. Технологический процесс обработки валка для горячей прокатки аналогичен процессу обработки валков для холодной прокатки, но несколько проще, Обработка валка делится на три стадии: черновую обработку заготовки, термическую и чистовую обработки. На заготовку наносят осевые линии и центры, а затем проверяются величина и расположение припусков на обработку. Целью токарной черновой операции является снятие основной массы металла припуска с поверхности валка и с торцов, а также подготовка валка к термической обработке.

При этом надрезается прибыль, которая удаляется на слесарной операции; здесь же проверяется твердость бочки и шеек валка, а также размечается лопатка под черновую обработку. Деталь передается на термическую обработку, которая производится с целью улучшения структуры, устранения внутренних напряжений и получения твердости.

После термообработки исправляются центровые гнезда детали, и производится чистовая токарная обработка, которая должна обеспечить точность и концентричность всех цилиндрических поверхностей, перпендикулярность к ним торцов детали и требуемую шероховатость поверхности. Перед шлифованием или упрочняющим обкатыванием роликом предварительно протачивают шейки валка. Обкатка шеек валков производится на тяжелых токарных станках специальными рычажными или гидравлическими устройствами. На токарном станке за счет натяжения суппорта винтом поперечной подач» нельзя получить силу обкатки выше 3000 ДаН.

Гидравлическое обкатное устройство для обработки валов большого диаметра. Усилие обкатки (до 6000 ДаН) создается автономным гидравлическим цилиндром установленным в корпусе; оно передается на поверхность детали через тарельчатые пружины, снижающие жесткость системы. Недопустимые перекосы цилиндрических роликов во время обкатки устраняются за счет их самоустановки; для этого головка, несущая рабочий ролик диаметром 32 мм, свободно поворачивается на цапфах вокруг оси, перпендикулярной к линии контакта ролика с деталью. Под действием момента, возникающего при перекосах, ролик поворачивается до восстановления равномерного контакта с деталью по всей длине образующей. После разметки трефы обрабатывают начерно, а затем начисто на расточном станке. При изготовлении валков из отбеленного чугуна твердость на поверхности бочки составляет НВ 500...650, что способствует увеличению их стойкости. При механической обработке отбеленных чугунных валков трудно обеспечить требуемую производительность процесса. Значительного увеличения производительности при изготовлении валков из отбеленного чугуна можно добиться, применяя шлифование только для снятия литейной корки, а лезвийную обработку использовать в качестве основной обдирочной операции. Для увеличения стойкости резцов из сплавов ВК применяют резание при вводе в зону обработки низкого напряжения, а также резание с предварительным подогревом поверхности заготовки. Прокатные валки. Валки для прокатных станов

ковка заготовка сортовый листовой

). В. п. выполняется основная операция прокатки - деформация (обжатие) металла для придания ему требуемых размеров и формы. В. п. состоят из трёх элементов (рис. ): бочки, двух шеек (цапф), приводного конца валка («трефа»). В. п. делятся на листовые и сортовые. Листовые применяют для прокатки листов, полос и ленты; бочка у этих валков цилиндрическая либо слегка выпуклая или вогнутая; такие валки называют также гладкими. Сортовые служат для прокатки фасонного (сортового) металла (круглого и квадратного сечения, рельсов, двутавровых балок и др.); на поверхности бочки этих В. п. делают углубления, соответствующие профилю прокатываемого металла. Эти углубления называют ручьями (ручьи двух В. п. образуют калибры), а В. п. - ручьевыми (калиброванными).

Основные размеры В. п. (диаметр и длина бочки) зависят от сортамента прокатываемой продукции. Диаметр В. п. для горячей прокатки составляет от 250-300 мм (прокатка проволоки) до 1000-1400 мм (прокатка блюмов и слябов). Для холодной прокатки применяют В. п. диаметром от 5 мм (на 20-валковых станах при прокатке фольги) до 600 мм (на 4-валковых станах при прокатке тонких полос).

В. п. чугунные твёрдостью 35-45 единиц по Шору (изготавливаются отливкой в глиняные формы) наиболее дешёвые и применяются при горячей прокатке мягкой полосовой стали; чугунные В. п. твёрдостью 55-75 единиц по Шору (изготавливаются отливкой в металлической формы - кокили) - на листовых станах и чистовых клетях сортовых и проволочных станов; легированные (хромом, никелем, молибденом) чугунные В. п. твёрдостью 40-70 единиц по Шору - на сортовых рельсобалочных и тонколистовых станах горячей прокатки; стальные В. п. - на блюмингах, слябингах, обжимных клетях сортовых станов и на станах холодной прокатки. Рабочие В. п. небольших многовалковых станов, а также станов для плющения проволоки из высокопрочных сталей изготовляют из керамических твёрдых сплавов типа карбида вольфрама (с добавкой кобальта); износостойкость таких валков в 30-50 раз выше, чем стальных легированных. Износостойкие и прочные В. п. для сортовой и листовой прокатки получают наплавкой их поверхности твёрдыми и сверхтвёрдыми сплавами.

Изношенные В. п. восстанавливают переточкой на вальцетокарных станках или перешлифовкой (валки листовых станов) на вальцешлифовальных станках.

Лит.: Целиков А. И., Смирнов В. В., Прокатные станы, М., 1958; Королев А. А., Механическое оборудование прокатных цехов, 2 изд., М., 1965.

П. И. Полухин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Валки прокатные" в других словарях:

    Рабочий орган прокатного стана, выполняющий деформацию металла для придания ему требуемых размеров и формы. * * * ВАЛКИ ПРОКАТНЫЕ ВАЛКИ ПРОКАТНЫЕ, рабочий орган прокатного стана, выполняющий деформацию металла для придания ему требуемых размеров… … Энциклопедический словарь

    Рабочий орган прокатного стана, выполняющий деформацию металла для придания ему требуемых размеров и формы … Большой Энциклопедический словарь

    Рабочий орган (инструмент) прокатного стана. В. п. выполняют осн. операцию прокатки деформацию (обжатие) металла для придания ему требуемых размеров и формы. В. п. подразделяют на 2 группы: листовые (для прокатки листов, полос и лент) и сортовые… …

    ВАЛКИ ПРОКАТНЫЕ Металлургический словарь

    Валки - (Смотри также Валок). Смотри также: шовсжимающие валки сортовые валки прошивные валки промежуточные валки …

    См. Валки прокатные … Большой энциклопедический политехнический словарь

    прокатные валки - Технологич. инструмент прокатного стана, выполняющий основную операцию прокатки деформацию металла для придания ему требуемых размеров, формы и свойств. Осн. элементы п. в.: бочка (рабочая часть наружной поверхности валка, к рая непосредственно… … Справочник технического переводчика

    ВАЛКИ, ов, ед. валок, лка, муж. Механизм или часть механизма в виде спаренных валов 2. Прокатные в. | прил. валковый, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Ов; мн. (ед. валок, лка; м.). Механизм (или его часть) в виде спаренных валов (2.В.). Прокатные в. ◁ Валковый, ая, ое. В. прокат. * * * ВАЛКИ ВАЛКИ, город на Украине, Харьковская область (см. ХАРЬКОВСКАЯ ОБЛАСТЬ), близ железнодорожной станции… … Энциклопедический словарь

    прокатные валки - технологический инструмент прокатного стана, выполняющий основную операцию прокатки деформацию металла для придания ему требуемых размеров, формы и свойств. Основные элементы прокатных валков: бочка (рабочая часть наружной… … Энциклопедический словарь по металлургии

Около 2/3 продукции в металлургии подвергаются на том или ином этапе производства деформации на станах холодной и горячей прокатки. Основным инструментом, изменяющим форму металла, придающих ему заданные размеры, чистоту поверхности и механические свойства, являются прокатные валки.

К рабочим валкам, подвергающимся механическим и тепловым стрессам, различным видам износа и локальным повышенным давлениям в процессе эксплуатации, предъявляются всё более высокие требования. Для каждого случая всё время проходит поиск компромисса между твёрдостью и вязкостью, абразивным износом и усталостью металла, а также достаточной прочностью. Путём комбинаций химического состава и тщательного подбора параметров термической обработки достигаются подходящие свойства прокатных валков.

Ниже приводятся различные типы рабочих прокатных валков изготовляемых компанией Kolding d.o.o. (Словения) по собственным спецификациям, а так же на заказ, по индивидуальным требованиям заказчика, включая прокатные валки для прокатного многовалкового стана Зендзимира (Sendzimir Mills) и 20-ти валкового стана фирмы Зундвиг (Sundwig) для прокатки тончайшей фольги.

Валки для листопрокатных станов

Прокатные валки для листопрокатных станов горячей и холодной прокатки являются одним из распространённых видов прокатных валков. Здесь у многих производителей накоплен большой опыт, основанный и подкреплённый производственными возможностями.

В основном на рынке России и СНГ представлены кованные рабочие и опорные валки выполненные из инструментальной и быстрорежущей обработанной стали, которая так же может быть подвергнута дополнительному улучшению в процессе электрошлакового переплава. Гораздо меньше предложений на рынке на литые прокатные валки из легированного чугуна с шаровидной формой графита обеспечивающие больший накат и срок службы валка. Литые прокатные валки обычно изготовляются методом центробежного литья. Данный способ более дорогой, однако он позволяет максимально уплотнить структуру металла ближе к наружной рабочей поверхности, что обеспечивает более долгий срок службы валка.

Компания Kolding d.o.o. имеет особенно сильные позиции, когда речь заходит о специальных требованиях и заказчик ставит перед собой задачу по сокращению простоев производства за счёт более редкой замены валков, а так же уменьшение затрат на закупки прокатных валков и повышению пропускной способности стана с увеличение качества поверхности листа.

Рабочие прокатные валки с насечкой

Для получения стальных или алюминиевых листов с препятствующей скольжению поверхностью используются рабочие валки прокатных станов с текстурированной рабочей поверхностью, обеспечивающей необходимый рельеф. Прокатанные таким образом листы широко используются при изготовлении металлических ковриков для площадок и трапов в судостроении и на промышленных объектах.

Валки для стана фирмы Зундвиг и стана Зендзимира

Рабочие валки прокатных станов немецкой фирмы «Зундвиг» (SUNDWIG GmbH), ориентированные на производство тончайшей ленты, фольги (толщиной менее 0,15 мм) из стали и цветных металлов (прецизионных магнитомягких сплавов, электротехнической ленты), а так же прокатный стан Зендзимира требуют дополнительный опыт и технологические возможности в изготовлении рабочих валков, т.к. для получения высококачественной сверхтонкой ленты из холоднокатаных сталей и сплавов со сверхнизким содержанием углерода и заданным уровнем механических и физических свойств к рабочим валкам предъявляются повышенные требования.

Компания Kolding d.o.o. обладает необходимым многолетним опытом и технологиями при подборе идеального соотношения между твёрдостью и вязкостью, абразивным износом и усталостью металла, а также достаточной прочностью в зависимости от вида металла и поставленной задачи. Компания является регулярным поставщиком рабочих валков и приводных промежуточных валков ряда Европейских компаний имеющих на вооружении прокатные станы фирмы Зундвиг.

Сортовые прокатные валки, изготовленные из углеродистых сталей, нержавеющих сталей, жаропрочных и прецизионные сплавов применяются для прокатки стали и цветных металлов с получением круглого, квадратного или других сечений (в т.ч. прокатка рельсов и балок), а так же прокатки различных конфигураций швеллеров, уголков, бимсов и других профилей. Валки для среднесортных прокатных станов, мелкосортных прокатных станов, проволочных прокатных станов, станов прокатки арматуры, комбинированные мелкосортно-проволочные станы и другие в сочетании с компонентами системы привода находятся на передовой производственного процесса и конечного результата, поэтому к качеству и сроку службы валков для сортовых станов предъявляются повышенные требования. Основными видами продукции являются строительная арматура, катанка, проволока.

В основном на производстве валков для сортовых станов используются инструментальная и среднелегированная сталь (KOLD-2, KOLD-ZA, KOLD-3, KOLD-3A, KOLD-4, KOLD-5). В компании есть планы в ближайшей перспективе начать производство валков из быстрорежущей и порошковой стали. Помимо стандартного подхода с использованием термообработки, при изготовлении сортовых прокатных валков компанией Kolding d.o.o. так же применяется криогенная обработка (-160 °C).

Валки для рельсобалочных станов

Производство KOLDING в г. Равне (Словения) предлагает точный по размерам диапазон прокатных валков для рельсобалочных (крупносортовых) станов используемых для проката двутавровых балок, швеллеров, рельсов, а также других тяжёлых профилей. Изготовление прокатных валков производится как на основе существующих Европейских и Российских стандартов, так и по индивидуальных требованиям. При этом на металлургических крупносортовых агрегатах горячей прокатки в основном используются в чистовых и черновых клетях прокатные валки из инструментальной стали KOLD-12, помимо среднелегированной стали KOLD-2.

Специальные валки

Помимо производства прокатных валков для прокатных станов имеющих широкое распространение на металлургических производствах, компания Kolding d.o.o. благодаря высокой технической оснащённости и опыту выделяет в качестве своего отличительного конкурентного преимущества и фокусируется на изготовление специальных валков под специфические требования заказчика.

Рабочие валки для трубоправильного и волочильного стана
Хромированные валки
Обеспечение: хорошей адгезии к материалам, высокой износостойкости, антикоррозионной защиты, твёрдости (до 64 HRc), температурной устойчивости и защищённости поверхности от химически активного негативного влияния
Валки с резиновым покрытием
Используются в целлюлозно-бумажной промышленности, производстве машин и оборудования, а так же в металлургии и текстильной промышленности
Валки с полиуретановым покрытием
Применяются для лакировки, чистовой обработки, протягивания или транспортировки.

РАБОЧИЕ ВАЛКИ ДЛЯ СТАНОВ ХОЛОДНОЙ И ГОРЯЧЕЙ ПРОКАТКИ ТРУБ

Компания производит все типы прокатных валков для станов производства холоднокатаных и горячекатаных бесшовных труб цилиндрического, шестигранного или квадратного поперечного сечения высокой точности из различных марок стали, а также сплавов цветных металлов.

- валки для станов холодной прокатки труб (включая пильгерстан);
- валки редукционного стана;
- валки прошивного стана;
- валки трёхвалкового раскатного стана;
- валки калибровочного стана;
- валки раскатного стана;
- транспортировочные валки;
- другие виды валков для трубопрокатных станов.

Данные стали применяют для рабочих, опорных и прочих валков прокатных станов, бандажей составных опорных валков, ножей для холодной резки металла, обрезных матриц и пуансонов. К валковым сталям относят такие марки стали, как 90ХФ, 9X1, 55Х, 60ХН, 7Х2СМФ.

Требования к стали для валков

Высокая прокаливаемость. Для обеспечения высокой закаливаемости необходимо использование таких марок стали, устойчивость переохлажденного аустенита которых в обеих областях превращения, во возможности, достаточна для развития мартенситного превращения при минимальных скоростях охлаждения, например, в масле.

Глубокая прокаливаемость. Прокаливаемость - это глубина закаленного слоя или, другими словами, глубина проникновения мартенсита. Она зависит от химического состава, размеров деталей и условий охлаждения. Легирующие элементы, а также увеличение содержания углерода (0,8%) в стали способствуют увеличению ее прокаливаемости, поэтому необходимую прокаливаемость обеспечивают за счет оптимизации химического состава стали. Для данного типа стали необходима практически сквозная прокаливаемость, так как при этом обеспечивается жесткость валка, без которой затруднительно получение высокой точности проката. Среди элементов, увеличивающих прокаливаемость - кремний и бор.

Высокая износостойкость. Необходима для безаварийной работы стана. При высокой износостойкости образование абразивных частиц износа не происходит, система подшипников работает более надежно.

Высокая контактная прочность. Контактная прочность рабочего слоя валков должна быть выше контактных напряжений, возникающих в процессе прокатки с учетом естественных нагрузок.

Минимальная склонность к деформации и короблению в процессе термической обработки и неизменность размеров в процессе эксплуатации.

Удовлетворительная обрабатываемость при мехобработке, хорошая шлифуемость и полируемость для обеспечения высокой чистоты поверхности валков и, следовательно, высокого качества поверхности прокатываемого материала.

К числу эффективных мероприятий по повышению износостойкости, являющейся наиболее важной эксплуатационной характеристикой качества валков, можно отнести повышение их поверхностной твердости и увеличение содержания углерода и хрома в валковых сталях.

Однако установлено, что повышение твердости валков и увеличение содержания углерода в стали оказывают отрицательное влияние на сопротивление выкрошиванию.

Химический состав материала стальных валков неоднозначно влияет на их служебные свойства. Так, с повышением содержания углерода возрастает износостойкость валков. Например, увеличение до 0,6 - 0,8% С повышает износостойкость металла вследствие уменьшения в его структуре малоизносостойкого феррита; дальнейшее увеличение содержания углерода в стали вызывает образование избыточных карбидов, которые, кроме повышения износостойкости валков, способствуют улучшению качества поверхности проката. Марганец в количестве 0,5...0,9 %, являясь хорошим раскислителем, способствует очищению стали от неметаллических включений и придает им сферическую форму. Одновременно он легирует феррит, повышая прочность стали. Увеличение до 1,4...2,2 % Мn благоприятно сказывается и на термической обработке валков вследствие переохлаждения стали в процессе нормализации. Содержание от 0,25...0,60 % Si способствует раскислению стали, а при увеличении его содержания до 0,8...1,2 % происходит легирование феррита, что повышает прочность металла. Легирующие элементы (Ni, Сr, Mo и др.) способствуют модифицированию, получению мелкозернистой и дисперсной структуры, упрочнению структурных составляющих стали и улучшению ее термической обработки.

Износ прокатных валков во многом зависит от их структуры и химического состава. При применении стальных валков наибольшим сопротивлением износу обладают заэвтектоидные валки; они истираются в 2...3 раза медленнее, чем равные им по твердости эвтектоидные валки. Износостойкость тем выше, чем дисперсией структура эвтектоидных валков и чем большее количество избыточных карбидов содержится в заэвтектоидных валках.

Механизм разрушения рабочей поверхности валков эвтектоидного и заэвтектоидного химического состава различен.

Валки эвтектоидного класса обладают высокой пластичностью и вязкостью. Износ их, отличаясь значительной неравномерностью, происходит в виде смещения тончайших слоев рабочей поверхности калибров. В результате этого гладкая поверхность валков нарушается, на ней появляется перемежающийся ряд углублений и выступов, постепенно увеличивающихся в объеме.

Механизм износа заэвтектоидных валков, в структуре которых содержатся избыточные карбиды, состоит в равномерном скалывании мельчайших частиц рабочей поверхности в процессе прокатки. Такие валки во время прокатки изнашиваются более равномерно и сохраняют достаточно гладкую поверхность на протяжении всего периода работы валков.

Природа разрушения рабочей поверхности чугунных валков несколько иная. Проведенные наблюдения показали, что при разрушении поверхности калибров полутвердых чугунных валков можно отметить две последовательные стадии: стадию точечной выработки (после переточки валков), когда выкрашиванию подвергаются только отдельные микроплощадки поверхности бочки валка, и стадию интенсивного разрушения всей рабочей поверхности валка.

Точечная выработка первоначально возникает в местах выхода свободного графита на поверхность валка и далее развивается по всему перлитному полю, ослабленному включениями графита.

По мере увеличения количества прокатанного металла число разрушенных микроплощадок непрерывно возрастает. Они распространяются по рабочей поверхности валка (вторая стадия износа) и охватывают целые участки, а затем и все рабочее поле калибра; тем самым ухудшается качество поверхности валков и готового проката.

К числу факторов, ускоряющих механический износ прокатных валков, следует отнести внутренние превращения в металле, наличие в кристаллической решетке слабых участков, различные дефекты и в некоторых случаях стыки кристаллов. В процессе деформации эти слабины являются зародышами микротрещин и микрощелей, которые с течением времени все больше увеличиваются в объеме. Начавшись, разрушение будет продолжаться, если продолжают действовать усилия деформации.

Резкое повышение стойкости прокатных валков может быть достигнуто путем увеличения твердости их рабочего слоя. Чем больше твердость валков и выше их стойкость, тем большее количество металла можно прокатать за период между перевалками. Износостойкость стальных валков тем выше, чем меньше в металлической основе структурно свободного феррита и больше избыточных карбидов. Чем больше суммарная поверхность карбидных включений, чем мельче зерно и карбидные частицы, тем больше твердость валков и выше их стойкость против истирания.

Износостойкость чугунных отбеленных валков зависит от количества неметаллических включений в рабочем слое валков с перлито-графитной и перлито-цементито-графитной структурой, от количества и формы графитных включений, степени дисперсности металлической основы и количества избыточных карбидов.

Высокие эксплуатационные качества присущи валкам, в которых графитные включения шаровидной формы. Высокая износостойкость таких валков объясняется формой графита, который в процессе работы выкрашивается с минимальным нарушением металлической основы. При этом сама основа благодаря большой стойкости тоже выкрашивается меньше.

Износостойкость чугуна с графитом шаровидной формы больше, чем стали с повышенной поверхностной твердостью. При изменении пластинчатой формы графита на шаровидную стойкость прокатных валков из серого чугуна повышается на 30...40 %, так как уменьшается разгар и износ калибров.

Высокими служебными свойствами характеризуются валки, отлитые в профилированные формы. Твердость таких валков высокая (380...440 НВ на бурте), они отличаются повышенной износостойкостью (в 2...3 раза больше обычной) не только у поверхности бочки, но и в глубине вреза в валок.

Перспективно применение валков из чугуна с низким содержанием фосфора, выполненных из магниевого, особенно низколегированного чугуна.

Валки из низкофосфористого чугуна характеризуются более высокими механическими свойствами (прочностью, удлинением, ударной вязкостью, стойкостью) по сравнению с валками из обычного чугуна. Они на 30...50% прочнее обычных, причем их стойкость почти в 3 раза выше. Увеличение стойкости против износа, выкрашивания и поломок достигается за счет уменьшения фосфора, количество которого равно 0,06...0,10 %. При пониженном содержании фосфора в микроструктуре валков почти отсутствуют фосфиды (хрупкие составляющие структуры валкового чугуна), содержится большое количество феррита в серой зоне.

Отсутствие в микроструктуре валков хрупких составляющих, образующихся в чугуне, содержащем более 0,10 % фосфора, способствует повышению прочности сердцевины, увеличению вязкости и износостойкости отбеленного рабочего слоя.

Недостатком валков из низкофосфористого чугуна является пониженная твердость отбеленной и серой зон. Снижение фосфора (без специальных мер) на 0,1 % приводит к уменьшению твердости рабочей поверхности валков на 8...10 единиц по Бринеллю.

Прогрессивным средством увеличения стойкости прокатных валков против износа и поломок является легирование металла. Замечено, что в чугуне положительное влияние легирующих элементов на износ часто превосходит их влияние на механические свойства. Легирующие элементы способствуют измельчению зерна, изменяют форму графита, структуру металлической Прогрессивным средством увеличения стойкости прокатных валков против износа и поломок является легирование металла. Замечено, что в чугуне положительное влияние легирующих элементов на износ часто превосходит их влияние на механические свойства. Легирующие элементы способствуют измельчению зерна, изменяют форму графита, структуру металлической основы, состав и строение карбидов, повышают эффективность термической обработки, сообщают валкам повышенную прочность, твердость и стойкость. Повышению твердости поверхности способствует легирование чугуна хромом, ванадием, молибденом, никелем и бором.

Технология производства

Прокатные валки, наряду с шарикоподшипниками, рельсами и железнодорожными колесами относят к изделиям с контактной поверхностью. Для такого рода продукции очень важно отсутствие в поверхностном и подповерхностном слоях твердых недеформируемых включений. При оказании давления на такие включения они разрушаются, выкрашиваются и тем самым формируют очаг зарождения трещины, приводящей в итоге к разрушению изделия. К подобным нежелательным включениям относятся, прежде всего, включения Al 2 O 3 , CaO и MgO. Силикаты (оксиды на основе SiO 2) отличаются повышенной пластичностью по сравнению с названными ранее типами включений и поэтому они более приемлемы в такого рода изделиях. Именно поэтому ранее сталь для валков выплавляли в кислых печах (мартеновских и дуговых); стойкость валков в этом случае была существенно выше, чем у валков из стали, выплавленной в основных печах. Это обусловлено именно изменением состава включений при переходе от основной футеровке к кислой.

Прокатные валки и станы

1. Прокатные валки - основной рабочий инструмент для про­катки. Они могут быть гладкими (рис. III. 4, a), калиброванными (ручьевыми) (рис. 14. 7, 6) и специальными.

Гладкие валки применяют при прокатке листов, полос и т. п. На калиброванных валках прокатывают все виды сортового про­ката.

На рабочей поверхности калиброванных валков имеются ка­навки - ручьи. Совокупность ручьев пары валков называется калибром. На каждой паре валков размещается несколько калиб­ров. Калибры могут быть открытыми (рис. III. 4, в) и закрытыми (рис. III. 4, г).

Валки имеют рабочую часть (бочку) 1 (рис. III. 4, а), две шейки 2 для установки в подшипниках и крестообразные концы 3 (трефы) для соединения валка с приводом.

2. Калибровка валков - это разработка схемы прокатки и размещения калибров, обеспечивающая получение заданного профиля проката при минимальном числе проходов. Одна из основ­ных задач калибровки - расчет режима обжатия при прокатке. По назначению калибры прокатных станов разделяют на обжим­ные (или вытяжные), черновые (или подготовительные) и чистовые (или отделочные).

Обжимные калибры предназначены только для уменьшения сечения прокатываемого металла. Чаще всего они имеют прямо­угольную, квадратную, ромбическую и овальную формы.

В черновых калибрах уменьшается площадь, изменяется форма поперечною сечения прокатываемого металла с постепенным при­ближением к готовому изделию. Чистовые калибры отличаются от прокатываемого профиля тем, что в них учтены коэффициент ли­нейного расширения и допуски на размеры профиля.

Для прокатки одного и того же профиля, исходя из технико­экономических показателей, можно применить различные схемы калибровки. Например, при прокатке квадратного и круглого профиля наиболее часто используют системы калибров: ромб - квадрат, овал - квадрат или овал - круг (рис. III. 4, д). При пере­даче заготовки из ручья в ручей для улучшения обжатия ее кантуют на 90°.

Рис. III. 4. Прокатные валки и схемы калибровки.

3. Устройство прокатного стана. Прокатный стан состоит из одной или нескольких рабочих клетей и привода, включающего электродвигатель и передаточный механизм.

Рабочая клеть состоит из станины 1 (рис. III. 5, a) с установ­ленными в ней в подшипниках валками 2. Для изменения зазора между ними верхний валок вместе с подшипниками перемеща­ется в пазах станины с помощью нажимного устройства 3. Дви­жение от электродвигателя 8 к валкам передается через редук­тор 7, шестеренную клеть 6 и трефовые шпиндели 5, которые со­единены с валками трефовыми муфтами 4.

4. Классификация прокатных станов. Прокатные станы клас­сифицируют по трем признакам: назначению, числу и расположе­нию валков в клетях, числу и взаимному расположению клетей.

По назначению прокатные станы делят на станы для прокатки полупродукта (блюминги, слябинги и заготовочные станы) и ста­ны для прокатки готовых изделий (сортовые, листопрокатные, рельсобалочные, трубопрокатные, для специального проката).

Рис. III. 5. Схема прокатного стана, расположения валков и рабочих клетей.

По числу и размещению валков в клетях станы бывают: с гори­зонтальными валками; универсальные с горизонтальными и вер­тикальными валками; с косо расположенными валками. Станы с горизонтальными валками по числу их в рабочей клети подразде­ляют на двух-, трех- и многовалковые. Двухвалковые станы (дуо) могут быть нереверсивные и реверсивные (рис. III. 5, б). На трех­валковых (трио) станах (рис. III. 5, в) заготовка в одну сторону идет между нижним и средним, а в обратном направлении - меж­ду средним и верхним валками. Двух- и трехвалковые станы при­меняют при производстве всех видов сортового проката и листов.

Многовалковые станы (рис. III. 5, г) имеют два рабочих валка малого диаметра, а остальные валки большего диаметра являются опорными. Они предотвращают прогиб тонких рабочих валков, благодаря чему повышается точность изделий. Такие станы применяют для горячей и холодной прокатки тонких листов и полос.

Универсальные станы (рис. III. 5, д) используют при прокатке слябов, толстых листов и широкополочных двутавровых балок.

Станы с косо расположенными валками приме­няют при поперечно-винтовой прокатке бесшовных труб, периоди­ческого проката, шаров.

В зависимости от числа взаимного расположения клетей прокат­ные станы могут быть одноклетьевыми и многоклетьевыми с ли­нейным и последовательным расположением клетей.

У линейных станов клети 10 (рис. III. 5, д) расположены в одну линию и имеется один привод 9. Они характеризуются невысокими скоростями прокатки (до 4 м/с) и производительностью. Последова­тельное расположение валков используется в непрерывных станах (рис. III. 5, ж). Для них характерны высокая скорость прокатки (до 45 м/с) и производительность (1...4 млн т проката в год). Не­прерывные станы-основное оборудование современных прокатных цехов.