Где применяются полимеры. Полимеры

Предисловие

Все виды полимерных материалов - это вещества, в которых каждая молекула представляет собой цепь из десятков или сотен тысяч последовательно соединенных одинаковых групп атомов, причем одна и та же группа атомов ритмически повторяется много раз.

Cодержание

К основным полимерным материалам относятся смолы и пластмассы. В зависимости от того, термопластичный это полимер или термореактивный, материал может либо размягчаться и затвердевать многократно, либо при однократном нагревании переходить в твердое состояние и навсегда утрачивать способность плавиться. Чаще всего используются такие современные полимерные материалы, как дисперсии, латексы и клеевые составы.

Что такое строительные полимерные материалы

Что такое полимерные материалы и как их используют в строительстве? Все виды полимерных материалов - это вещества, в которых каждая молекула представляет собой цепь из десятков или сотен тысяч последовательно соединенных одинаковых групп атомов, причем одна и та же группа атомов ритмически повторяется много раз.

Основные виды полимерных материалов делятся на термопластичные и термореактивные. Термопластичные полимеры способны многократно размягчаться и затвердевать при изменении температуры, а также легко набухать и растворяться в органических растворителях. К ним относятся полистирольные, полиэтиленовые и поливинилхлоридные (полихлорвиниловые) смолы и пластмассы.

Основное свойство термореактивных полимерных материалов – переход при нагревании в нерастворимое твердое состояние и безвозвратная утрата способности плавиться. К таким полимерам относятся фенолоформальдегидные и мочевиноформальдегидные, полиэфирные и эпоксидные смолы.

Отдельные виды полимерных материалов в строительстве под действием тепла, света и кислорода воздуха с течением времени изменяют свойства: теряют гибкость, эластичность, проще говоря, стареют.

Для предотвращения старения современных строительных полимерных материалов применяются специальные стабилизаторы (антистарители), представляющие собой различные металлоорганические соединения свинца, бария, кадмия и др. Например, в качестве стабилизатора применяется тинувин П.

Какие бывают полимерные материалы, и каковы их основные характеристики, вы узнаете на этой странице.

Полимерные материалы пластмассы и их свойства

Один из основных типов полимерных материалов – это пластмассы. Они представляют собой группу органических материалов, основу которых составляют синтетические или природные смолообразные высокомолекулярные вещества, способные при нагревании и давлении формоваться, устойчиво сохраняя приданную им форму.

Полимерные материалы пластмассы обладают хорошими теплоизоляционными и электроизоляционными качествами, коррозийной стойкостью и долговечностью. Средняя плотность пластмасс - 15-2200 кг/м3; предел прочности при сжатии - 120-160 МПа. Пластмассы наделены хорошими электро-теплоизоляционными свойствами, коррозийной стойкостью и долговечностью. Некоторые из них обладают прозрачностью и высокой клеящей способностью, а также имеют свойство образовывать тонкие пленки и защитные покрытия. Благодаря своим свойствам широкое применение эти полимерные материалы нашли в строительстве, главным образом в комбинации с вяжущими веществами, металлами и каменными материалами.

Пластмассы состоят из связующего вещества - полимера, наполнителя, пластификатора и ускорителя отверждения. При изготовлении цветных пластмасс также используются минеральные красители.

В качестве наполнителей при изготовлении этого типа полимерных материалов используются органические и минеральные порошки, асбестовые, древесные и стеклянные волокна, бумага, стеклянные и хлопчатобумажные ткани, древесный шпон, асбестовый картон и др. Наполнители не только снижают стоимость материала, но и улучшают отдельные свойства пластмасс: повышают твердость, прочность, стойкость к кислотам и теплостойкость. Они должны быть химически инертными, малолетучими и нетоксичными. Пластификаторами при изготовлении пластмасс служат цинковая кислота, стеарат алюминия и иные, которые придают материалу большую пластичность. Катализаторы (ускорители) применяются в пластмассах для ускорения отверждения. Примером катализатора могут служить известь или уротропин, которые применяются для отверждения фенолоформальдегидного полимера.

Синтетические полимерные материалы и их применение

По способу производства синтетические полимерные материалы подразделяются на два класса: класс А - полимеры, получаемые цепной полимеризацией; класс Б - полимеры, получаемые поликонденсацией и ступенчатой полимеризацией.

Процесс полимеризации представляет собой соединение одинаковых и разных молекул. Побочных продуктов при полимеризации не образуется.

Процесс поликонденсации представляет собой соединение большого количества одинаковых и различных полиреактивных молекул низкомолекулярных веществ, в результате чего образуется высокомолекулярное вещество. При процессе поликонденсации выделяются вода, хлористый водород, аммиак и другие вещества.

Кремнийорганические смолы - это особая группа высокомолекулярных соединений. Особенность этих полимерных строительных материалов состоит в том, что они обладают свойствами как органических, так и неорганических веществ.

Физические и механические характеристики этих полимерных материалов практически не зависят от колебаний температуры по сравнению с обычными смолами, к тому же они обладают высокой гидрофобностью и теплостойкостью. Кремнийорганические смолы служат для получения различных изделий, стойких к действию повышенных температур (400-500°С).

Основная область применения этих синтетических полимерных материалов – изготовление бетонов и растворов для повышения их долговечности. Также их применяют в виде защитных покрытий на природных и искусственных каменных материалах (бетоне, известняке, травертине, мраморе и т. д.). Пропитка оказывает защитное действие в течение 6-10 лет, после чего ее следует возобновить.

Для поверхностей пропитки изделий из природного камня и других строительных конструкций применяют гидрофобизирующие кремнийорганические жидкости (ГКЖ), которые перед употреблением растворяют органическими растворителями, а также водную 50%-ную эмульсию (молочно-белого цвета), которую перед употреблением смешивают с водой в соотношении 1:10.

Поливинилацетатная дисперсия (ПВА) - это продукт полимеризации винилацетата в водной среде в присутствии инициатора и защитного коллоида. Это вязкая жидкость белого цвета, однородная, без криков и посторонних включений.

ПВА в зависимости от вязкости изготавливается трех марок: Н - низковязкая, С - средневязкая, В - высоковязкая. Она применяется при изготовлении полимерцементных растворов, мастик, паст, которые используются при облицовочных работах.

Латекс синтетический СКС-65ГП - продукт совместной полимеризации бутадиена со стиролом в соотношении 35:65 (по массе) в водной эмульсии с применением в качестве эмульгатора некаля и натриевого мыла синтетических жирных кислот. Латекс СКС-65ГП используется при изготовлении полимербетонов, эмульсионных красок, мастик и паст, применяемых при облицовочных работах. Также латекс используется при нанесении различных покрытий.

Физико-химические свойства этого полимерного строительного материала латекс СКС-65ГП:

  • содержание сухого вещества, %, не менее 47;
  • содержание незаполимеризованного стирола, %, не более 0,08;
  • концентрация водородных ионов (pH), не менее 11;
  • поверхностное натяжение, дин/см2, не более 40;
  • вязкость, с - 11-15;
  • содержание золы, %, не более 1,5.

Латекс синтетический СКС-ЗОШР - продукт совместной полимеризации бутадиена со стиролом в водной эмульсии, применяется в качестве связующего или клеящего материала при облицовочных работах.

Физико-химические свойства латекса СКС-ЗОШР:

  • содержание сухого вещества, %, не менее 33;
  • температура желатинизации, °С, не выше 14;
  • содержание свободной щелочи, %, не более 0,15.

Характеристики полимерных клеящих материалов

Полимерные клеящие материалы выпускают в виде жидкостей порошков и пленок.

Жидкие клеи бывают двух типов. Первый тип клеевых составов представляет собой растворенные в органическом летучем растворителе (спирте или ацетоне) каучуки, смолы или производные целлюлозы. После испарения растворителя образуется твердое клеевое соединение. Второй тип клеевых составов - это водные растворы специально приготовленных для клеев смол. Такие растворы при правильном хранении не густеют в течение нескольких месяцев. Жидкие клеи содержат 40-70% твердого клеящего вещества.

Из жидких клеев самыми распространенными являются меламиноформальдегидные, фенолоформальдегидные, мочевиноформальдегидные, каучуковые, эпоксидные, поливинилацетатные, а также клеи с добавлением силиконов.

Клей КМЦ (натриевая соль карбоксиметилцеллюлозы) используется при изготовлении мастик и растворов, применяемых при .

Карбинольный клей (винилацетилен карболен) - это вязкая прозрачная жидкость светло-оранжевого цвета, обладающая высокой клеящей способностью. Поэтому его называют универсальным. Он способен склеивать различные материалы, даже такие, как бетон, камень, металл, дерево. Затвердевший карбинольный клей устойчив к воздействию масел, кислот, щелочей, бензина, ацетона и воды.

В качестве катализаторов для ускорения твердения карбинольного клея используются концентрированная азотная кислота или перекись бензоила. Последняя представляет собой взрывоопасный порошок, поэтому его следует хранить, оберегая от огня.

Карбинольный клей выпускается на основе карбинольного сиропа (100 мас.ч) двух составов: в 1-й добавляется в качестве отвердителя перекись бензоила (1-3 мас.ч.), во 2-й – концентрированную азотную кислоту (1-2 мас.ч.).

Карбинольный клей хранят при температуре 20°С и в темноте, так как под влиянием света он теряет клеящую способность.

Эпоксидный клей представляет собой прозрачную вязкую жидкость светло-коричневого цвета, обладающую высокой клеящейся способностью. Он применяется для склеивания камня, бетона, керамической плитк. Затвердевший шов эпоксидного клея устойчив к воздействию кислот, щелочей, растворителей, воды, а также к большим механическим нагрузкам. Отвердителями эпоксидной смолы служат полиэтиленполиамин или гексаметилендиамин, пластификатором – дибутилфтолат.

Развитие современных технологий привело к появлению материалов, которые обладают исключительными эксплуатационными качествами. Полимерные материалы могут обладать молекулярной массой от нескольких тысяч до нескольким миллионов. Основные качества подобных материалов определяют их большое распространение. С каждым годом на долю полимеров приходится все большее количество выпускаемой продукции. Именно поэтому рассмотрим их особенности подробнее.

Свойства полимеров

Применение полимеров весьма обширно. Это связано с особыми качествами, которых обладает рассматриваемый материал. Сегодня полимерные материалы встречаются в самых различных областях, присутствуют практически в каждом доме. Процесс производства полимерных материалов постоянно совершенствуется, проводится изменение состава, за счет чего он приобретает новые эксплуатационные качества.

Физические свойства полимеров можно охарактеризовать следующим образом:

  1. Низкий показатель коэффициента теплопроводности. Именно поэтому некоторые полимеры могут применяться в качестве изоляции при проведении некоторых работ.
  2. Высокий показатель ТКЛР обуславливается относительно высокой подвижностью связей и постоянной сменой коэффициента деформации.
  3. Несмотря на высокий показатель ТКЛР, полимерные материалы идеально подходят для напыления. В последнее время часто можно встретить ситуацию, когда полимер наносится на поверхность в виде тонкого слоя для придания металлу и другим материал антикоррозионных качеств. Современные технологии нанесения позволяют получать тонкую защитную пленку.
  4. Удельная масса может варьироваться в достаточно большом диапазоне в зависимости от особенностей конкретного состава.
  5. Довольно высокий предел прочности от части вызван повышенной пластичностью. Конечно, показатель существенно уступает тем, которые имеет металл или сплавы.
  6. Прочность полимеров относительно невысокая. Для того чтобы повысить значение ударной вязкости проводится добавление в состав различных дополнительных компонентов, за счет чего получаются особые разновидности полимеров.
  7. Стоит учитывать низкую рабочую температуру. Полимерные материалы плохо справляются с нагревом. Именно поэтому многие варианты исполнения могут работать при температуре не выше 80 градусов Цельсия. Если превысить рекомендуемый температурный порог, то есть вероятность, что сильный нагрев станет причиной повышения пластичности полимерного материала. Слишком высокая пластичность становится причиной снижения прочности и изменение других физических свойств.
  8. Удельное сопротивление может варьироваться в достаточно большом диапазоне. Примером таких полимеров назовем ПВХ твердый, который имеет 10 17 Ом×см.
  9. Многие полимерные материалы имеют повышенную горючесть. Этот момент определяет то, что в некоторых отраслях промышленности использовать полимеры нельзя. Кроме этого химический состав определяет то, что при горении могут выделять токсичные вещества или едкий дым.
  10. При применении особой технологии производства поверхность может иметь сниженный показатель коэффициента трения по стали. За счет этого покрытие служит намного дольше, и на нем не появляются дефекты.
  11. Коэффициент линейного расширения составляет от 70 до 200 10 -6 на градус Цельсия.

Рассматривая характеристики распространенных полимеров, не стоит забывать о нижеприведенных качествах:

  1. Хорошие диэлектрические свойства позволяют использовать полимерный материал без опаски поражения электричеством. Именно поэтому полимеры довольно часто применяют при создании инструментов и оборудования, предназначенного для работы с электричеством.
  2. Линейные полимеры способны восстанавливать свою первоначальную форму после длительного воздействия нагрузки. Примером можно назвать воздействие поперечной нагрузки, которая изгибает деталь, но после ее пропадания форма не сохраняется.
  3. Важное качество всех полимеров – существенное изменение эксплуатационных качеств при введении небольшого количества примесей.
  4. Сегодня полимерные материалы встречаются в самых различных агрегатных состояниях. Примером можно назвать клей, смазку, герметик, краски, некоторые твердые полимерные материалы. Большое распространение получили твердые пластмассы, которые используются при производстве самого различного оборудования. Как ранее было отмечено, вещество обладает высокой эластичностью, за счет чего был получен силикон, резина, поролон и другие подобные полимерные материалы.

Стоит учитывать тот момент, что химический состав полимерных материалов может существенно отличаться. В ГОСТ представлена процедура качественной оценки, которая основана на баллах.

Большое распространение полимерные материалы получили в промышленности, так как имеют повышенную стойкость к неорганическим реактивам. Именно поэтому они применяются при производстве баков для чистой воды или особо чистых реактивов.

Вся приведенная выше информация определяет то, что полимеры получили просто огромное распространение в самых различных отраслях. Однако не стоит забывать, что насчитывается несколько десятков основных типов полимерных материалов, все они обладают своими определенными качествами. Именно поэтому следует подробно рассмотреть классификацию полимерных материалов.

Классификация полимеров

Есть довольно большое количество показателей, по которым синтетические полимерные материалы могут классифицироваться. При этом классификация затрагивает и основные эксплуатационные качества. Именно поэтому рассмотрим разновидности полимерных материалов подробнее.

Классификация проводится по агрегатному состоянию:

  1. Твердые. Практически все люди знакомы с полимерами, так как они используются при изготовлении корпусов бытовой техники и других предметов быты. Другое название этого материала – пластмасса. В твердой форме полимерный материал обладает достаточно высокой прочностью и пластичностью.
  2. Эластичные материалы. Высокая эластичность структуры получила применение при производстве резины, поролона, силикона и других подобных материалов. Большая часть встречается в строительстве в качестве изоляции, что также связано с основными эксплуатационными качествами.
  3. Жидкости. На основе полимеров производится достаточно большое количество самых различных жидких веществ, большая часть которых также применима в строительстве. Примером назовем краски, лаки, герметики и многое другое.

Жидкие полимеры — краски
Эластичные полимеры — резиновое покрытие

Различные виды полимерных материалов обладают разными эксплуатационными качествами. Именно поэтому следует рассматривать их особенности. Есть в продаже полимеры, которые до соединения находятся в жидком состоянии, но после вступления в реакцию становятся твердыми.

Классификация полимеров по происхождению:

  1. Искусственные вещества, характеризующиеся высокомолекулярной массой.
  2. Биополимеры, которые еще называют природными.
  3. Синтетические.

Большее распространение получили полимерные материалы синтетического происхождения, так как за счет смешивания самых различных веществ достигаются исключительные эксплуатационные качества. Искусственные полимеры сегодня встречаются практически в каждом доме.

Классификация синтетических материалов проводится также по особенностям молекулярной сетки:

  1. Линейные.
  2. Разветвленные.
  3. Пространственные.

Классификация проводится и по природе гетероатома:

  1. В главную цепь может входить атом кислорода. Подобное строение цепочки позволяет получить сложные и простые полиэфиры и перекиси.
  2. ВМС, которые характеризуются наличием атома серы в основной цепочке. За счет подобного строения получают политиоэфиры.
  3. Можно встретить и соединения, в главной цепочке которых есть атомы фосфора.
  4. В главную цепочку могут входить и атомы кислорода и с азотом. Наиболее распространенным примером подобного строения можно назвать полиуретаны.
  5. Полиамины и полиамиды – яркие представители полимерных материалов, которые в своей главной цепочке имеют атомы азота.

Кроме этого выделяют две большие группы полимерных материалов:

  1. Карбоцепные – вариант, который имеет основную цепочку макромолекулы ВМС с одним атомом углерода.
  2. Гетероцепные – структура, которая кроме атома углерода имеет и атомы других веществ.

Существует просто огромное количество разновидностей карбоцепных полимеров:

  1. Высокомолекулярные соединения, которые называют тефлоном.
  2. Полимерные спирты.
  3. Структуры с насыщенными главными цепочками.
  4. Цепочки с насыщенными основными связями, которые представлены полиэтиленом и полипропиленом. Отметим, что сегодня подобные разновидности полимеров получили просто огромное распространение, их применяют при производстве строительных материалов и других вещей.
  5. ВМС, которые получаются на основе переработки спиртов.
  6. Вещества, полученные при переработке карбоновой кислоты.
  7. Вещества, полученные на основе нитрилов.
  8. Материалы, которые были получены на основе ароматических углеводородов. Самым распространенным представителем этой группы является полистирол. Он получил широкое применение по причине высоких изоляционных качеств. Сегодня полистирол используют для изоляции жилых и нежилых помещений, транспортных средств и другой техники.

Вся приведенная выше информация определяет то, что существует просто огромное количество разновидностей полимерных материалов. Этот момент также определяет их широкое распространение, применение практически во всех отраслях промышленности и сферах деятельности человека.

Применение полимеров

Современная экономика и жизнь людей просто не может обойтись без полимерных материалов. Это связано с тем, что они обладают относительно невысокой стоимостью, при необходимости основные эксплуатационные качества могут изменяться под конкретные задачи.

Применение полимерных материалов

Рассматривая применение полимеров, следует уделить внимание нижеприведенным моментам:

  1. Активное производство началось в начале 20 века. Изначально технология производства заключалась в переработке низкомолекулярного сырья и целлюлозы. В результате их переработки появились краски и пленки.
  2. Современные полимеры повлияли на развитие всех отраслей промышленности. В момент развития кинематографа появление прозрачных пленок позволило снимать первые картины.
  3. В современном мире рассматриваемые полимерные материалы применяется практически во всех отраслях промышленности. Примером можно назвать использование полимеров при производстве игрушек, оборудования, лекарственных средств, тканей, строительных материалов и многого другого. Кроме этого они становятся частью других материалов для изменения их основных эксплуатационных качеств, применяются при обработке натуральной кожи или резины. За счет применения пластика производители смогли снизить стоимость компьютеров и мобильных девайсов, сделать их легче и тоньше. Если сравнить металл и полимеры, то разница в стоимости может быть просто огромной.
  4. Совершенствование технологии производства полимерных материалов привело к появлению более современных композитов, которые стали использовать в машиностроении и многих других отраслях промышленности.
  5. Применение полимера связано и с космосом. Можно назвать примером создание как летальных аппаратов, так и различных спутников. Существенное снижение массы позволяет с меньшими затратами преодолеть земное притяжение. Кроме этого полимеры хорошо известны тем, что выдерживают воздействие окружающей среды, представленное перепадами температуры и влажности.

Изначально в качестве сырья при производстве полимеров использовали низкокачественные низкомолекулярные вещества. Именно поэтому у них было огромное количество недостатков. Однако совершенствование технологий производства привело к тому, что сегодня полимеры обладают высокой безопасностью при применении, не выделяют вредных веществ в окружающую среду. Поэтому они стали все чаще использоваться при изготовлении вещей, применяемых в быту.

В заключение отметим, что рассматриваемая область постоянно развивается, за счет чего стали появляться композитные материалы. Они обходятся намного дороже полимеров, но при этом обладают исключительными физическими, химическими и механическими качествами. В ближайшее время полимерные материалы будут все также активно применяться в самых различных областях, так как альтернативы для их замены пока не существует.

Полимер - сложное соединение, имеющее высокую молекулярную массу и состоящее из ряда составных звеньев, которые соединяются между собой посредством химических связей. Наиболее часто в основе структуры полимера - мономер - структурный фрагмент, состоящий из нескольких атомов.

Большую часть полимеров производят синтетическим путем (хотя существуют и природные полимеры) - с помощью реакций полимеризации и поликонденсации. Так, например, этилен превращается в полиэтилен, пропилен в полипропилен и т.д.

Свойства полимеров

Свойства полимеров во многом определяются их составом, однако некоторые особенности едины для большинства полимеров. Собственно говоря, именно эти особенности, обеспечивают их широчайшее практическое назначение. Полимеры эластичны, гибки и не хрупки. Макромолекулы, составляющие полимер, могут менять свою ориентацию под действием определенного механического поля, данная особенность применяется в производстве пленок.

Еще одно интересное свойство полимеров - способность к резкой смене физико-механических свойств при воздействии на них небольшим количеством реагента. Эта особенность используется при вулканизации каучука, дублении кож и т.д.

Виды полимеров

Полимеры классифицируются по ряду признаков. Наиболее значительные классификации - по происхождению и химическому составу.

По происхождению бывают полимеры:

  • Природные - существующие в природе (крахмал, белки и т.д.);
  • Синтетические - получаемые синтетически (полиэтилен, полипропилен и т.д.);
  • Искусственные - получаемые синтетически из природных полимеров (нитроцеллюлоза, метилцеллюлоза и т.д.).

По химическому составу различают полимеры:

  • Органические;
  • Неорганические;
  • Элементоорганические - содержат в своем составе как органические, так и неорганические структуры.

Полимеры на практике

Полимеры находят широкое применение в самых разных областях - машиностроении, текстильной промышленности, медицине, сельском хозяйстве. В быту также находится место полимерным соединениям. Вещи, частью которых являются полимеры, окружают нас повсюду - различные виды тканей (шерсть, шелк, кожа и т.д.), пластмассовые изделия, связующие строительные смеси (цемент, глина и т.д.), резиновые изделия, посуда… В общем, роль полимерных соединений в нашей жизни по-настоящему огромна. Теперь вы знаете, что такое полимер.

Большая часть современных строительных материалов, лекарственных средств, тканей, предметов быта, упаковочных и расходных веществ является полимерами. Это целая группа соединений, имеющих характерные отличительные признаки. Их очень много, но несмотря на это, число полимеров продолжает расти. Ведь химики-синтетики ежегодно открывают все новые и новые вещества. При этом особенное значение во все времена имел именно природный полимер. Что же собой представляют эти удивительные молекулы? Каковы их свойства и в чем заключаются особенности? Ответим на эти вопросы в ходе статьи.

Полимеры: общая характеристика

С точки зрения химии, полимером принято считать молекулу, имеющую огромную молекулярную массу: от нескольких тысяч до миллионов единиц. Однако, помимо этого признака, существует и еще несколько, по которым вещества можно классифицировать именно как природные и синтетические полимеры. Это:

  • постоянно повторяющиеся мономерные звенья, которые соединяются при помощи разных взаимодействий;
  • степень полимеразии (то есть число мономеров) должна быть очень высокой, иначе соединение будет считаться олигомером;
  • определенная пространственная ориентация макромолекулы;
  • набор важных физико-химических свойств, характерных только для данной группы.

В целом вещество полимерной природы отличить от других достаточно легко. Стоит лишь взглянуть на его формулу, чтобы понять это. Типичным примером может служить всем известный полиэтилен, широко применяемый в быту и промышленности. Он является продуктом в которую вступает этен или этилен. Реакция в общем виде записывается следующим образом:

nCH 2 =CH 2 →(-СН-СН-) n , где n - это степень полимеризации молекул, показывающая, сколько мономерных звеньев входит в ее состав.

Также в качестве примера можно привести природный полимер, который всем хорошо известен, это крахмал. Кроме того, к данной группе соединений принадлежат амилопектин, целлюлоза, куриный белок и многие другие вещества.

Реакции, в результате которых могут образоваться макромолекулы, бывают двух типов:

  • полимеризации;
  • поликонденсации.

Разница в том, что во втором случае продукты взаимодействия являются низкомолекулярными. Строение полимера может быть различным, это зависит от тех атомов, что его образуют. Часто встречаются линейные формы, но есть и трехмерные сетчатые, очень сложные.

Если же говорить о силах и взаимодействиях, которые удерживают мономерные звенья вместе, то можно обозначить несколько основных:

  • Ван-Дер-Ваальсовы силы;
  • химические связи (ковалентные, ионные);
  • электроностатическое взаимодействие.

Все полимеры нельзя объединять в одну категорию, так как они имеют совершенно различную природу, способ образования и выполняют неодинаковые функции. Свойства их также разнятся. Поэтому существует классификация, которая позволяет делить всех представителей этой группы веществ на разные категории. В ее основе может лежать несколько признаков.

Классификация полимеров

Если брать за основу качественный состав молекул, то все рассматриваемые вещества можно определить в три группы.

  1. Органические - это те, в состав которых входят атомы углерода, водорода, серы, кислорода, фосфора, азота. То есть те элементы, которые являются биогенными. Примеров можно привести массу: полиэтилен, поливинилхлорид, полипропилен, вискоза, нейлон, природный полимер - белок, нуклеиновые кислоты и так далее.
  2. Элементорганические - такие, в состав которых входит какой-то посторонний неорганический и не Чаще всего это кремний, алюминий или титан. Примеры подобных макромолекул: стеклополимеры, композиционные материалы.
  3. Неорганические - в основе цепи лежат атомы кремния, а не углерода. Радикалы же могут быть частью боковых ответвлений. Они открыты совсем недавно, в середине XX века. Используются в медицине, строительстве, технике и прочих отраслях. Примеры: силикон, киноварь.

Если разделять полимеры по происхождению, то можно выделить три их группы.

  1. Природные полимеры, применение которых широко осуществлялось с самой древности. Это такие макромолекулы, для создания которых человек не прилагал никаких усилий. Они являются продуктами реакций самой природы. Примеры: шелк, шерсть, белок, нуклеиновые кислоты, крахмал, целлюлоза, кожа, хлопок и прочие.
  2. Искусственные. Это такие макромолекулы, которые создаются человеком, но на основе природных аналогов. То есть просто улучшаются и изменяются свойства уже имеющегося природного полимера. Примеры: искусственный
  3. Синтетические - это такие полимеры, в создании которых участвует только человек. Природных аналогов для них нет. Ученые разрабатывают методы синтеза новых материалов, которые отличались бы улучшенными техническими характеристиками. Так рождаются синтетические полимерные соединения разного рода. Примеры: полиэтилен, полипропилен, вискоза, и прочее.

Есть и еще один признак, который лежит в основе разделения рассматриваемых веществ на группы. Это реакционная способность и термоустойчивость. Выделяют две категории по этому параметру:

  • термопластичные;
  • термореактивные.

Самым древним, важным и особенно ценным является все же природный полимер. Его свойства уникальны. Поэтому дальше рассмотрим именно эту категорию макромолекул.

Какое вещество является природным полимером?

Чтобы ответить на этот вопрос, сначала оглянемся вокруг себя. Что нас окружает? Живые организмы вокруг нас, которые питаются, дышат, размножаются, цветут и дают плоды и семена. А что они представляют собой с молекулярной точки зрения? Это такие соединения, как:

  • белки;
  • нуклеиновые кислоты;
  • полисахариды.

Так вот, природным полимером является каждое из приведенных соединений. Таким образом, выходит, что жизнь вокруг нас существует только благодаря наличию этих молекул. С самых древних времен люди использовали глину, строительные смеси и растворы для укрепления и создания жилища, ткали пряжу из шерсти, применяли для создания одежды хлопок, шелк, шерсть и кожу животных. Природные органические полимеры сопровождали человека на всех ступенях его становления и развития и во многом помогли ему добиться тех результатов, что мы имеем сегодня.

Сама природа давала все для того, чтобы жизнь людей была максимально комфортной. Со временем был открыт каучук, выяснены его замечательные свойства. Человек научился использовать в пищевых целях крахмал, в технических - целлюлозу. Природным полимером является и камфора, которая также известна с древних времен. Смолы, белки, нуклеиновые кислоты - все это примеры рассматриваемых соединений.

Строение природных полимеров

Не все представители данного класса веществ устроены одинаково. Так, природные и синтетические полимеры могут существенно различаться. Их молекулы ориентируется так, чтобы максимально выгодно и удобно существовать с энергетической точки зрения. При этом многие природные виды способны набухать и структура их в процессе меняется. Можно выделить несколько самых распространенных вариантов строения цепи:

  • линейные;
  • разветвленные;
  • звездчатые;
  • плоские;
  • сетчатые;
  • ленточные;
  • гребневидные.

Искусственные и синтетические представители макромолекул имеют очень большую массу, огромное число атомов. Их создают со специально заданными свойствами. Поэтому и строение их изначально планируется человеком. Натуральные же полимеры чаще всего либо линейные, либо сетчатые по своей структуре.

Примеры природных макромолекул

Природные и искусственные полимеры очень близки друг другу. Ведь первые становятся основой для создания вторых. Примеров подобных превращений много. Приведем некоторые из них.

  1. Обычная пластмасса молочно-белого цвета - это продукт, получаемый при обработке азотной кислотой целлюлозы с добавлением природной камфоры. Реакция полимеризации приводит к затвердеванию полученного полимера и превращению в нужный продукт. А пластификатор - камфора, делает его способным размягчаться при нагревании и менять свою форму.
  2. Ацетатный шелк, медно-аммиачное волокно, вискоза - все это примеры тех нитей, волокон, которые получают на основе целлюлозы. Ткани из натурального хлопка и льна не так прочны, не блестящи, легко сминаемы. А вот искусственные аналоги их этих недостатков лишены, что и делает их использование весьма привлекательным.
  3. Искусственные камни, строительные материалы, смеси, кожзаменители - это также примеры полимеров, полученных на основе натурального сырья.

Вещество, являющееся природным полимером, может использоваться и в истинном виде. Таких примеров тоже немало:

  • канифоль;
  • янтарь;
  • крахмал;
  • амилопектин;
  • целлюлоза;
  • шерсть;
  • хлопок;
  • шелк;
  • цемент;
  • глина;
  • известь;
  • белки;
  • нуклеиновые кислоты и так далее.

Очевидно, что рассматриваемый нами класс соединений очень многочисленный, практически важный и значимый для людей. Теперь рассмотрим более подробно несколько представителей природных полимеров, которые являются очень востребованными в настоящее время.

Шелк и шерсть

Формула природного полимера шелка сложна, ведь его химический состав выражается следующими компонентами:

  • фиброин;
  • серицин;
  • воски;
  • жиры.

Сам главный белок - фиброин, насчитывает в своем составе несколько разновидностей аминокислот. Если представить его полипептидную цепочку, то она будет выглядеть примерно так: (-NH-CH 2 -CO-NH-CH(CH 3)-CO-NH-CH 2 -CO-) n. И это лишь ее часть. Если представить, что к данной структуре при помощи сил Ван-Дер-Ваальса присоединяется не менее сложная молекула белка серицина, вместе они смешиваются в единую конформацию с воском и жирами, то понятно, почему сложно изобразить формулу натурального шелка.

На сегодняшний день большую часть данного продукта поставляет Китай, ведь на его просторах существует естественная среда обитания основного производителя - тутового шелкопряда. Раньше, начиная с самых древних времен, натуральный шелк очень ценился. Позволить себе одежду из него могли лишь знатные, богатые люди. Сегодня многие характеристики этой ткани оставляют желать лучшего. Например, он сильно намагничивается и мнется, кроме того, от пребывания на солнце теряет блеск и тускнеет. Поэтому больше в обиходе искусственные производные на его основе.

Шерсть - это тоже природный полимер, так как является продуктом жизнедеятельности кожи и сальных желез животных. На основе этого белкового продукта изготавливают трикотаж, который, как и шелк, является ценным материалом.

Крахмал

Природный полимер крахмал является продуктом жизнедеятельности растений. Они производят его в результате процесса фотосинтеза и накапливают в разных частях тела. Его химический состав:

  • амилопектин;
  • амилоза;
  • альфа-глюкоза.

Пространственная структура крахмала очень разветвленная, неупорядоченная. Благодаря входящему в состав амилопектину, он способен набухать в воде, превращаясь в так называемый клейстер. Этот используется в технике и промышленности. Медицина, пищевая отрасль, изготовление обойных клеев - это также области использования данного вещества.

Среди растений, содержащих максимальное количество крахмала, можно выделить:

  • кукурузу;
  • картофель;
  • пшеницу;
  • маниок;
  • овес;
  • гречиху;
  • бананы;
  • сорго.

На основе этого биополимера выпекают хлеб, изготавливают макаронные изделия, варят кисели, каши и прочие пищевые продукты.

Целлюлоза

С точки зрения химии, данное вещество - это полимер, состав которого выражается формулой (С 6 Н 5 О 5) n . Мономерным звеном цепи является бета-глюкоза. Основные места содержания целлюлозы - это клеточные стенки растений. Именно поэтому древесина - ценный источник этого соединения.

Целлюлоза - природный полимер, который имеет линейное пространственное строение. Она используется для производства следующих видов изделий:

  • целлюлозно-бумажной продукции;
  • искусственного меха;
  • разных видов искусственных волокон;
  • хлопка;
  • пластмассы;
  • бездымного пороха;
  • кинопленок и так далее.

Очевидно, что промышленное значение ее велико. Чтобы данное соединение возможно было использовать в производстве, его следует для начала извлечь из растений. Это делают путем длительной варки древесины в специальных устройствах. Дальнейшая обработка, а также реагенты, используемые для вываривания, различаются. Есть несколько способов:

  • сульфитный;
  • азотнокислый;
  • натронный;
  • сульфатный.

После подобной обработки продукт все еще содержит примеси. В основе это лигнин и гемицеллюлоза. Чтобы избавиться от них, массу обрабатывают хлором или щелочью.

В организме человека не существует таких биологических катализаторов, которые сумели бы расщепить этот сложный биополимер. Однако некоторые животные (травоядные) приспособились к этому. В их желудке поселяются определенные бактерии, которые делают это за них. Взамен микроорганизмы получают энергию для жизни и среду обитания. Такая форма симбиоза является крайне выгодной для обеих сторон.

Каучук

Это природный полимер, имеющий ценное хозяйственное значение. Впервые он был описан еще Робертом Куком, который в одном из своих путешествий его обнаружил. Произошло это так. Высадившись на острове, на котором жили неизвестные ему туземцы, он был гостеприимно встречен ими. Его внимание привлекли местные дети, которые играли необычным предметом. Это шарообразное тело отталкивалось от пола и подпрыгивало высоко вверх, затем возвращалось.

Поинтересовавшись у местного населения о том, из чего сделана эта игрушка, Кук узнал, что так застывает сок одного из деревьев - гевеи. Много позже было выяснено, что это и есть биополимер каучук.

Химическая природа данного соединения известна - это изопрен, подвергшийся естественной полимеризации. Формула каучука (С 5 Н 8) n . Его свойства, благодаря которым он так высоко ценится, следующие:

  • эластичность;
  • износостойкость;
  • электроизоляция;
  • водонепроницаемость.

Однако есть и недостатки. На холоде он становится хрупким и ломким, а на жаре - липким и тягучим. Именно поэтому появилась необходимость синтеза аналогов искусственной или синтетической основы. Сегодня каучуки широко используются в технических и промышленных целях. Самые главные продукты на их основе:

  • резины;
  • эбониты.

Янтарь

Является природным полимером, поскольку по своей структуре представляет смолу, ископаемую ее форму. Пространственная структура - каркасный аморфный полимер. Очень горюч, зажечь его можно пламенем спички. Обладает свойствами люминесценции. Это очень важное и ценное качество, которое используется в ювелирном деле. Украшения на основе янтаря очень красивы и востребованы.

Кроме того, этот биополимер используют и в медицинских целях. Из него же изготовляют наждачную бумагу, лаковые покрытия для различных поверхностей.

Полимер

Полимер - высокомолекулярное соединение, вещество с большой молекулярной массой (от нескольких тысяч до нескольких миллионов. ), состоит из большого числа повторяющихся одинаковых или различных по строению атомных группировок - составных звеньев , соединенных между собой химическими или координационными связями в длинные линейные (например, целлюлоза) или разветвленные (например, амилопектин) цепи, а также пространственные трёхмерные структуры.

Часто в его строении можно выделить мономер - повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, называют например поливинилхлорид (-СН2-СНСl-) n , каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами .

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки , нуклеиновые кислоты , полисахариды , каучук и другие органические вещества . В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров . Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли- : поли этилен, поли пропилен, поли винилацетат...

Благодаря ценным свойствам полимеры применяются в машиностроении , текстильной промышленности , сельском хозяйстве и медицине , автомобиле- и судостроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки , украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины , волокна , пластмассы , пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Наука о полимерах

Синтетические полимеры. Искусственные полимерные материалы

Человек давно использует природные полимерные материалы в своей жизни. Это кожа , меха , шерсть , шелк , хлопок и т.п., используемые для изготовления одежды, различные связующие (цемент , известь , глина), образующие при соответствующей обработке трехмерные полимерные тела, широко используемые как строительные материалы . Однако промышленное производство цепных полимеров началось в начале XX в., хотя предпосылки для этого создавались ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях – путем переработки природных органических полимеров в искусственные полимерные материалы и путем получения синтетических полимеров из органических низкомолекулярных соединений.

В первом случае крупнотоннажное производство базируется на целлюлозе . Первый полимерный материал из физически модифицированной целлюлозы – целлулоид – был получен еще в начале XX в. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят пленки, волокна , лакокрасочные материалы и загустители . Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной пленки из нитроцеллюлозы .

Производство синтетических полимеров началось в 1906 г., когда Л. Бакеланд запатентовал так называемую бакелитовую смолу – продукт конденсации фенола и формальдегида , превращающийся при нагревании в трехмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов , телевизоров , розеток и т.п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Классификация полимеров

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

  • Органические полимеры. Образованы с участием органических радикалов (CH3, C6H5, CH2). Это смолы и каучуки .
  • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель – кремнийорганические соединения.
  • Неорганические полимеры. Их основу составляют оксиды Si, Al, Mg, Ca и др. Углеводородный скелет отсутствует. К ним относятся керамика , слюда , асбест .

Следует отметить, что в технических материалах часто используют сочетания отдельных групп полимеров. Это композиционные материалы (например, стеклопластики).

По форме макромолекул полимеры делят на линейные, разветвленные, ленточные, пространственные, плоские.

По фазовому составу полимеры подразделяются на аморфные и кристаллические.

Аморфные полимеры однофазны и построены из цепных молекул, собранных в пачки. Пачки могут перемещаться относительно других элементов.

Кристаллические полимеры образуются тогда, когда их макромолекулы достаточно гибкие и образуют структуру.

По полярности полимеры подразделяют на полярные и неполярные. Полярность определяется наличием в их составе диполей – молекул с разобщенным распределением положительных и отрицательных зарядов. В неполярных полимерах дипольные моменты связей атомов взаимно компенсируются.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные.

Природные органические полимеры

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды , белки и нуклеиновые кислоты , из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных – высокомолекулярных.

Особенности полимеров

Особые механические свойства:

  • эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
  • малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
  • способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

Особенности растворов полимеров:

  • высокая вязкость раствора при малой концентрации полимера;
  • растворение полимера происходит через стадию набухания.

Особые химические свойства:

  • способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают уникальным для неживой природы свойством - гибкостью.