Графики обратных круговых функций. Обратные тригонометрические функции, их свойства и графики

Длины сторон которого (a, b, c) известны, используйте теорему косинусов. Она утверждает, что квадрат длины любой из сторон равен сумме квадратов длин двух других, из которой вычтено удвоенное произведение длин этих же двух сторон на косинус угла между ними. Использовать эту теорему можно для расчета угла в любой из вершин, важно знать лишь его расположение относительно сторон. Например, чтобы найти угол α, который лежит между сторонами b и c, теорему надо записать так: a² = b² + c² - 2*b*c*cos(α).

Выразите из формулы косинус искомого угла: cos(α) = (b²+c²-a²)/(2*b*c). К обеим частям равенства примените функцию, обратную косинусу - арккосинус. Она позволяет по значению косинуса восстановить величину угла в градусах: arccos(cos(α)) = arccos((b²+c²-a²)/(2*b*c)). Левую часть можно упростить и вычисления угла между сторонами b и c приобретет окончательный вид: α = arccos((b²+c²-a²)/2*b*c).

При нахождении величин острых углов в прямоугольном треугольнике знание длин всех сторон не обязательно, достаточно двух из них. Если эти две стороны - катеты (a и b), разделите длину той, которая лежит напротив искомого угла (α), на длину другой. Так вы получите значение тангенса нужного угла tg(α) = a/b, а применив к обеим частям равенства обратную функцию - арктангенс - и упростив, как и в предыдущем шаге, левую часть, выведите окончательную формулу: α = arctg(a/b).

Если известные стороны - катет (a) и гипотенуза (c), для вычисления величины угла (β), образованного этими сторонами, воспользуйтесь функцией косинус и обратной ей - арккосинус. Косинус определяется отношением длины катета к гипотенузе, а формулу в окончательном виде можно записать так: β = arccos(a/c). Для расчета по этим же исходным острого угла (α), лежащего напротив известного катета, используйте то же соотношение, заменив арккосинус на арксинус: α = arcsin(a/c).

Источники:

  • формула треугольника при 2 сторонах

Совет 2: Как найти углы треугольника по длинам его сторон

Есть несколько вариантов нахождения величин всех углов в треугольнике, если известны длины трех его сторон . Один из способов заключается в использовании двух разных формул вычисления площади треугольника . Для упрощения расчетов можно также применить теорему синусов и теорему о сумме углов треугольника .

Инструкция

Воспользуйтесь, например, двумя формулами вычисления площади треугольника , в одной из которых задействованы только три его известных сторон ы ( Герона), а в другой - две сторон ы и синус угла между ними. Используя во второй формуле разные пары сторон , вы сможете определить величины каждого из углов треугольника .

Решите задачу в общем виде. Формула Герона определяет площадь треугольника , как квадратный корень из произведения полупериметра (половины всех сторон ) на разницы между полупериметром и каждой из сторон . Если заменить суммой сторон , то формулу можно записать в таком виде: S=0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c).C другой сторон ы площадь треугольника можно выразить как половину произведения двух его сторон на синус угла между ними. Например, для сторон a и b с углом γ между ними эту формулу можно записать так: S=a∗b∗sin(γ). Замените левую часть равенства формулой Герона: 0,25∗√(a+b+c)∗(b+c-a)∗(a+c-b)∗(a+b-c)=a∗b∗sin(γ). Выведите из этого равенства формулу для

Теснее из самого наименования “прямоугольного” треугольника становится ясно, что один угол в нем составляет 90 градусов. Остальные углы дозволено обнаружить, припомнив нехитрые теоремы и свойства треугольников.

Вам понадобится

  • Таблица синусов и косинусов, таблица Брадиса

Инструкция

1. Обозначим углы треугольника буквами A, B и C, как это показано на рисунке. Угол BAC равен 90º, два других угла обозначим буквами α и β. Катеты треугольника обозначим буквами a и b, а гипотенузу буквой c.

2. Тогда sinα = b/c, а cosα = a/c.Подобно для второго острого угла треугольника: sinβ = a/c, а cosβ = b/c.В зависимости от того, какие стороны нам вестимы, вычисляем синусы либо косинусы углов и глядим по таблице Брадиса значение α и β.

3. Обнаружив один из углов, дозволено припомнить, что сумма внутренних углов треугольника равна 180º. Значит, сумма α и β равна 180º – 90º = 90º.Тогда, вычислив значение для α по таблицам, можем для нахождения β воспользоваться дальнейшей формулой: β = 90º – α

4. Если незнакома одна из сторон треугольника, то применяем теорему Пифагора: a²+b²=c². Выведем из нее выражение для незнакомой стороны через две другие и подставим в формулу для нахождения синуса либо косинуса одного из углов.

Совет 2: Как обнаружить гипотенузу в прямоугольном треугольнике

Гипотенузой называют сторону в прямоугольном треугольнике, лежащую наоборот прямого угла. Гипотенуза является самой длинной стороной в прямоугольном треугольнике. Остальные стороны в прямоугольном треугольнике именуются катетами.

Вам понадобится

  • Базовые познания геометрии.

Инструкция

1. Квадрат длины гипотенузы равен сумме квадратов катетов. То есть, дабы обнаружить квадрат длины гипотенузы, нужно построить в квадрат длины катетов и сложить.

2. Длина гипотенузы равна корню квадратному из квадрата ее длины. Дабы обнаружить ее длину, извлечем квадратный корень из числа, равного сумме квадратов катетов. Полученное число и будет длиной гипотенузы.

Видео по теме

Обратите внимание!
Длина гипотенузы величина правильная, следственно при извлечении корня, подкоренное выражение должно быть огромнее нуля.

Полезный совет
В равнобедренном прямоугольном треугольнике длину гипотенузы дозволено вычислить умножив катет на корень из 2-х.

Совет 3: Как обнаружить острый угол в прямоугольном треугольнике

Прямоугольный треугольник, возможно, – одна из самых вестимых, с исторической точки зрения, геометрических фигур. Пифагоровым “штанам” конкуренцию может составить лишь “Эврика!” Архимеда.

Вам понадобится

  • – чертеж треугольника;
  • – линейка;
  • – транспортир.

Инструкция

1. Как водится, вершины углов треугольника обозначаются заглавными латинскими буквами (A, B, C), а противоположные им стороны маленькими латинскими буквами (a, b, c) либо по наименованиям вершин треугольника, образующих эту сторону (AC, BC, AB).

2. Сумма углов треугольника составляет 180 градусов. В прямоугольном треугольнике один угол (прямой) неизменно будет 90 градусов, а остальные острыми, т.е. поменьше 90 градусов весь. Дабы определить, какой угол в прямоугольном треугольнике является прямым, измерьте с подмогой линейки стороны треугольника и определите крупнейшую. Она именуется гипотенуза (AB) и располагается наоборот прямого угла (C). Остальные две стороны образуют прямой угол и именуются катетами (AC, BC).

3. Когда определили, какой угол является острым, вы можете либо измерить величину угла при помощи транспортира, либо рассчитать с поддержкой математических формул.

4. Дабы определить величину угла с поддержкой транспортира, совместите его вершину (обозначим ее буквой А) с особой отметкой на линейке в центре транспортира, катет АС должен совпадать с ее верхним краем. Подметьте на полукруглой части транспортира точку, через которую проходит гипотенуза AB. Значение в этой точке соответствует величине угла в градусах. Если на транспортире указаны 2 величины, то для острого угла необходимо выбирать меньшую, для тупого – крупную.

6. Полученное значение обнаружьте в справочных таблицах Брадиса и определите какому углу соответствует полученное числовое значение. Этим способом пользовались наши бабушки.

7. В наше время довольно взять калькулятор с функцией вычисления тригонометрических формул. Скажем, встроенный калькулятор Windows. Запустите приложение “Калькулятор”, в пункте меню “Вид” предпочтете пункт “Инженерный”. Вычислите синус желанного угла, скажем, sin (A) = BC/AB = 2/4 = 0.5

8. Переключите калькулятор в режим обратных функций, кликнув по кнопке INV на табло калькулятора, после этого кликните по кнопке расчета функции арксинуса (на табло обозначена, как sin в минус первой степени). В окошке расчета появится дальнейшая надпись: asind (0.5) = 30. Т.е. значение желанного угла – 30 градусов.

Совет 4: Как обнаружить неведомую сторону в треугольнике

Метод вычисления неведомой стороны треугольника зависит не только от условий задания, но и от того, для чего это делается. С сходственной задачей сталкиваются не только школьники на уроках геометрии, но и инженеры, работающие в различных отраслях производства, дизайнеры интерьера, закройщики и представители многих других профессий. Точность вычислений для различных целей может быть различной, но правило их остается тем же самым, что и в школьном задачнике.

Вам понадобится

  • – треугольник с заданными параметрами;
  • – калькулятор;
  • – ручка;
  • – карандаш;
  • – транспортир;
  • – лист бумаги;
  • – компьютер с программой AutoCAD;
  • – теоремы синусов и косинусов.

Инструкция

1. Начертите треугольник, соответствующий условиям задания. Треугольник дозволено возвести по трем сторонам, двум сторонам и углу между ними либо стороне и двум прилегающим к ней углам. Тезис работы в тетради и на компьютере в программе AutoCAD в этом плане идентичны. Так что в задании неукоснительно обязаны быть указаны размеры одной либо 2-х сторон и одного либо 2-х углов.

2. При построении по двум сторонам и углу начертите на листе отрезок, равный вестимой стороне. С поддержкой транспортира отложите данный угол и проведите вторую сторону , отложив данный в условии размер. Если вам дана одна сторона и два прилежащих к ней угла, начертите вначале сторону , потом от 2-х концов полученного отрезка отложите углы и проведите две другие стороны. Обозначьте треугольник как ABC.

3. В программе AutoCAD комфортнее каждого строить неверный треугольник с подмогой инструмента «Отрезок». Вы обнаружите его через основную вкладку, предпочтя окно «Рисование». Задайте координаты знаменитой вам стороны, после этого - финальной точки второго заданного отрезка.

4. Определите вид треугольника. Если он прямоугольный, то незнакомая сторона вычисляется по теореме Пифагора. Гипотенуза равна квадратному корню из суммы квадратов катетов, то есть c=?a2+b2. Соответственно, всякий их катетов будет равно квадратному корню из разности квадратов гипотенузы и знаменитого катета: a=?c2-b2.

5. Для вычисления неведомой стороны треугольника, у которого даны сторона и два прилежащих угла, воспользуйтесь теоремой синусов. Сторона а так относится к sin?, как сторона b к sin?. ? и? в данном случае - противолежащие углы. Угол, тот, что не задан условиями задачи, дозволено обнаружить, припомнив, что сумма внутренних углов треугольника равна 180°. Вычтите из нее сумму вестимых вам 2-х углов. Обнаружьте неизвестную вам сторону b, решив пропорцию обыкновенным методом, то есть умножив знаменитую сторону а на sin? и поделив это произведение на sin?. Вы получаете формулу b=a*sin?/sin?.

6. Если вам знамениты стороны a и b и угол? между ними, используйте теорему косинусов. Незнакомая сторона с будет равна квадратному корню из суммы квадратов 2-х других сторон, минус удвоенное произведение этих же сторон, умноженное на косинус угла между ними. То есть c=?a2+b2-2ab*cos?.

Видео по теме

Совет 5: Как вычислить угол в прямоугольном треугольнике

Прямоугольный треугольник составляют два острых угла, величина которых зависит от длин сторон, а также один угол неизменно постоянной величины 90°. Вычислить размер острого угла в градусах дозволено с применением тригонометрических функций либо теоремы о сумме углов в вершинах треугольника в евклидовом пространстве.

Инструкция

1. Используйте тригонометрические функции, если в условиях задачи даны лишь размеры сторон треугольника. Скажем, по длинам 2-х катетов (коротких сторон, прилегающих к прямому углу) дозволено вычислить всякий из 2-х острых углов. Тангенс того угла (?), тот, что прилегает к катету А, дозволено обнаружить делением длины противолежащей ему стороны (катета В) на длину стороны А: tg(?) = В/А. А зная тангенс, дозволено вычислить и соответствующую ему величину угла в градусах. Для этого предуготовлена функция арктангенс: ? = arctg(tg(?)) = arctg(В/А).

2. По этой же формуле дозволено обнаружить величину и иного острого угла, лежащего наоборот катета А. Примитивно поменяйте обозначения сторон. Но дозволено сделать это и напротив, с подмогой иной пары тригонометрических функций – котангенса и арккотангенса. Котангенс угла b определяется делением длины прилежащего катета А на длину противолежащего В: tg(?) = А/В. А арккотангенс поможет извлечь из полученного значения величины угла в градусах: ? = arсctg(сtg(?)) = arсctg(А/В).

3. Если в начальных условиях дана длина одного из катетов (А) и гипотенузы (С), то для вычисления углов используйте функции, обратные синусу и косинусу – арксинус и арккосинус. Синус острого угла? равен отношению длины лежащего наоборот него катета В к длине гипотенузы С: sin(?) = В/С. Значит, для вычисления величины этого угла в градусах применяйте такую формулу: ? = arcsin(В/С).

4. А значение косинуса угла? определяется отношением длины примыкающего к этой вершине треугольника катета А к длине гипотенузы С. Это значит, что для вычисления величины угла в градусах, по аналогии с предыдущей формулой, нужно применять такое равенство: ? = arccos(А/С).

5. Теорема о сумме углов треугольника делает непотребным применение тригонометрических функций, если в условиях задачи дана величина одного из острых углов. В этом случае для вычисления неведомого угла (?) легко отнимите от 180° величины 2-х вестимых углов – прямого (90°) и острого (?): ? = 180° – 90° – ? = 90° – ?.

Обратите внимание!
Высота h делит треугольник ABC на два прямоугольных треугольника, сходственных ему. Тут срабатывает знак подобия треугольников по трем углам.

О ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЯХ.

(ГОНИОМЕТРИЯ.)

III. Углы отрицательные. Углы, большие 360°.

§ 48. Обратные круговые функции.

Если мы имеем одно уравнение с двумя неизвестными, то из него можно определить любое неизвестное через другое. Например, если имеем; 2х + 3у = 6, то:

а) у = 2 - 2 / 3 х ; б) x = 3 - 3 / 2 y .

Первое уравнение дает выражение у в функции х . Второе, наоборот, дает выражение х в функции у . В общем все три уравнения выражают одну и ту же зависимость между переменными x и у , но только форма выражения этой зависимости разная; первое уравнение не решено ни относительно х , ни относительно у , в следующем за функцию принято у , за аргумент х ; в последнем за функцию принято х , за аргумент у .

Такие две функции, которые выражают одну и ту же зависимость между переменными х и у , но в одной за функцию принято у , а в другой за функцию принято х , называются взаимно-обратными . Любую из них можно принять за прямую; тогда другая будет обратная.

Примеры взаимнообратных функций:

у = 5х + 3; х = (у -3) / 5 ;

у = 2х ; х = 1 / 2 у

у = х 2 ; х = ±√ у ;

у = 3 √х ; х = у 3 .

Понятие обратности можно применить и к тригонометрическим функциям.

Например, мы употребляем равенство: y = sin x ; это значит, что у есть синус дуги х ; значит, обратно, х есть дуга, синус которой y . Точно так же: 1 / 2 = sin 30°, т. е. половина есть синус дуги в 30°. Наоборот, 30° есть дуга, синус которой равен половине.

Вместо того чтобы объяснять обратную зависимость словами, употребляют особый знак, обозначающий слово дуга: arc (читается „арк"; по-французски означает, дуга, арка).

Таким образом можно написать:

1 / 2 = sin 30°; 30° = arc sin 1 / 2 ;

1 / 2 = cos 60°; 60° = arc cos 1 / 2 ;

1= tg 45°; 45° = arc tg 1;

sin 16° = 0,276; 16° = arc sin 0,276;

cos π / 4 = 0,707; π / 4 = arc cos 0,707;

1= sin90°; 90° = arc sin 1;

1= cos 0°; 0° = arc cos 1;

1 = cos π; π = arc cos (-1);

tg π / 2 = ; π / 2 = arc tg

sin π / 4 = cos π / 4 = 1 / 2 √2 ;

π / 4 = arc sin 1 / 2 √2 = arc cos 1 / 2 √2 .

На чертеже 37 дуга обозначена через х , ее синус черзз т , ее тангенс через р . Значит, х есть дуга, синус которой т , а тангенс р ; или:

х = arc sin т ; х = arc tg p .

Пользуясь тригонометрическими таблицами, мы решаем тоже две обратные задачи и пользуемся как прямыми, так и обратными тригонометрическими функциями. Если дана дуга (или угол), то мы отыскиваем тригонометрическую функцию: наоборот, если дана тригонометрическая функция и мы отыскиваем угол, то мы вычисляем значение обратной тригонометрической функции.

Из § 47 мы знаем, что одной и той же тригонометрической функции соответствует бесчисленное множество дуг, имеющих одно и то же начало; например, синусу, равному половине, соответствуют дуги: 30°, 150°, 390°, 510°,...; основные из них, 30° и 150°, имеют синус, равный половине, но если прибавить к каждой по 360°, то и новые дуги будут иметь тот же синус. Следовательно, обратные тригонометрические функции есть функции многозначные.

§ 49. В предыдущих примерах мы ограничивались наименьшей дугой, соответствующей данной тригонометрической функции, но можно было дать и общее выражение всех дуг, имеющих данный синус, косинус, тангенс. Если имеют в виду не наименьшее, а общее выражение всех дуг, имеющих данный синус, то обозначение дуги пишут с большой буквы; например:

arc sin 1 / 2 = 30°; но Arc sin 1 / 2 = 180° m + (- l) m 30°,

arc tg 1 = 45°, но Arc tg 1= 45° + 180° m .

Эти формулы взяты из § 47 (общий вид углов, соответствующих данному значению тригонометрической функции), но там еще не употреблялось обозначение обратной функции.

Если воспользоваться формулами § 47 и обобщить их, замени числовые значения буквенными, то получим следующую таблицу прямых и обратных тригонометрических функций:

y = sin x :; Arc sin y = m π + (- l) m x ;

y = cos x ; Arc cos y = 2m π ± x ;

y = tg x ; Arc tg y = m π + x ;

y = ctg x ; Arc ctg y = m π + x .

Большею частью, однако, по данной тригонометрической функции отыскивают наименьшую дугу (arc). При этом для положительных значений всех тригонометрических функций берут дугу в I четверти (от 0 до π / 2) ; для отрицательных значений синуса, тангенса, котангенса и косеканса берут дугу в I отрицательной четверти (от 0 до - π / 2) ; для отрицательного косинуса и секанса берут дугу во II четверти (от π / 2 до π).

Таким образом, для всех возможных значений синуса, тангенса, (котангенса) и косеканса дугу берут в пределах от - π / 2 до π / 2 , а для косинуса и секанса в пределах от 0 до π.

Обратные тригонометрические функции называются также обратными круговыми вследствие их связи с кругом.

Начальный уровень

Построение графика обратной зависимости (гиперболы). Визуальный гид (2019)

Чтобы понять то, что здесь будет написано, тебе нужно хорошо знать, что такое обратная зависимость, и с чем ее едят. Если ты уверен, что знаешь все об обратной зависимости, добро пожаловать. Но если нет, тебе стоит прочитать тему « ».

Также очень советую научиться сперва строить , так как есть некоторые общие принципы для построения графика квадратичной и обратной зависимостей.

Начнем с небольшой проверки:

Что такое обратная пропорциональность?

Как выглядит функция, описывающая обратную зависимость в общем виде (формула)?

Как называется график такой функции?

Какие коэффициенты влияют на график функции, и как?

Если ты сходу смог ответить на эти вопросы, продолжай читать. Если хоть один вопрос вызвал затруднения, перейди по .

Итак, ты уже умеешь обращаться с обратной зависимостью, анализировать ее график и строить график по точкам.

Напоминаю: обратная зависимость в общем виде задается функцией

Давай вкратце вспомним, что делают коэффициенты.

Отвечает за «пологость» и направление графика: чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок). Знак коэффициента влияет на то, в каких четвертях расположен график: если, то ветви гиперболы расположены в и четвертях; если, то во и.

Дальше - число. Если внимательно посмотреть на знаменатель, видим, что - это такое число, которому не может равняться. То есть - это вертикальная асимптота , то есть вертикаль, к которой стремится график (на рисунке выше такой вертикалью является ось):

ОК, осталось еще одно число: . C ним все еще проще: если у нас уже есть гипербола (например, как на рисунке выше), а мы хотим гиперболу, то получается, что ордината каждой точки графика должны стать больше на, то есть нужно просто весь график сместить вверх на:

Как видим, теперь график стремится по горизонтали к прямой вместо оси, как было раньше. Такая прямая называется горизонтальной асимптотой .

Теперь давай научимся строить простейшую гиперболу - .

Достаточно помнить, как она выглядит, и тогда нам хватит всего трех-четырех точек.

Например, построим гиперболу.

Составим таблицу из точек, которые принадлежат одной ветке (например, правой):

Отмечаем точки на рисунке:

Проводим через них плавную линию, которая краями приближается к осям:

Это одна ветвь гиперболы. Проверить правильность построения этой кривой можно так: она должна быть симметрична относительно биссектрисы угла между осями координат :

Отлично, осталось вспомнить, что собой представляет вторая ветвь? Это точно такая же кривая, расположенная симметрично относительно начала координат. То есть как будто оси теперь направлены не снизу вверх и слева направо, а наоборот: сверху вниз и справа налево, и мы рисуем ту же самую ветвь гиперболы. Вот:

Еще один полезный факт. Посмотри на красные точки на графике. Видно, что их абсцисса совпадает с ординатой. Так вот, эти абсцисса с ординатой равны для правой ветви гиперболы, и для левой. Для функций, у которых - точный квадрат (например, или), эту точку, относительно которой ветвь гиперболы симметрична, будет очень легко поставить. В этом случае достаточно даже трех точек, чтобы построить график.

Например, построим график функции. Как и в прошлый раз, начнем с правой ветви. Точка симметрии: . Выберем еще одну точку, например, . У третьей точки координаты будут наоборот: , . Рисуем:

И теперь симметрично отображаем эту ветвь в третью координатную четверть:

Теперь выясним, что будет, если? Очень просто: если есть график функции с таким же по величине, но положительным, то нужно просто отразить его относительно оси , то есть правая ветвь теперь будет ниже оси (в четверти), а левая - выше (в четверти). Принцип построения же останется прежним:

Ну что же, осталось объединить все то, что мы уже выяснили.

Итак, вот правило построения графика функции:

2) График должен быть сдвинут вправо на. Но проще двигать не график, а оси, так что ось сдвигаем влево на .

3) График должен быть сдвинут вверх на. Но проще двигать не график, а оси, так что ось сдвигаем вниз на .

Примеры:

Решения:

1. Пойдем по порядку по пунктам.

2. Сначала преобразуем выражение:

Теперь ясно, что; ; :

Дополнительное условие означает, что на графике появится выколотая точка c абсциссой:

5. . Ты уже, наверное, догадался, что вместо того, чтобы смотреть на эту функцию квадратными глазами и говорить «Что это??!!», нужно просто взять и упростить выражение. Если не знаешь, как это делать, то тебе прямая дорога в тему « ». Да-да, прямо сейчас, все бросай и переходи по ссылке!

Итак, если ты уже усвоил тему « », то тебе не составит труда упростить нашу функцию. Вот что должно получиться:

Выколотая точка:

6. . Здесь нужно не то чтобы упростить, тут нужно привести выражение к виду обратной зависимости. Мы такие штуки делали в теме « »:

Ну вот и все, ты научился строить любую гиперболу.

Замечу также, что правила построения гиперболы оказались немного проще, чем для параболы, ведь каждое число просто сдвигает график в какую-то одну сторону. И друг с другом коэффициенты не связаны.

ПОСТРОЕНИЕ ГРАФИКА ОБРАТНОЙ ЗАВИСИМОСТИ. КОРОТКО О ГЛАВНОМ

1. Определение

Функция, описывающая обратную зависимость - это функция вида, где.

График обратной зависимости - гипербола.

2. Коэффициенты, и.

Отвечает за «пологость» и направление графика : чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок). Знак коэффициента влияет на то, в каких четвертях расположен график:

  • если, и смещение вниз, если .

    Следовательно, - это горизонтальная асимптота .

    3. Правило построения графика функции:

    0) Определяем коэффициенты, и.

    1) Строим график функции (сначала по 3-4 точкам правую ветвь, потом симметрично рисуем левую ветвь).

    2) График должен быть сдвинут вправо на. Но проще двигать не график, а оси, так что ось сдвигаем влево на .

    3) График должен быть сдвинут вверх на. Но проще двигать не график, а оси, так что ось сдвигаем вниз на .

    4) Старые оси (прямые, которые служили нам осями в пункте 1) оставляем в виде пунктирных линий. Это теперь просто вертикальная и горизонтальная асимптоты.