Появление электронного микроскопа. Виды микроскопов: описание, основные характеристики, назначение

Московский институт электронной техники

Лаборатория электронной микроскопии С.В. Седов

[email protected]

Принцип работы современного растрового электронного микроскопа и его использование для исследования объектов микроэлектроники

Цель работы: знакомство с методиками исследования материалов и микроэлектронных структур при помощи растрового электронного микроскопа.

Продолжительность работы: 4 ч.

Приборы и принадлежности: растровый электронный микроскоп Philips-

SEM-515, образцы микроэлектронных структур.

Устройство и принцип работы растрового электронного микроскопа

1. Введение

Растровая электронная микроскопия - это исследование объекта путем облучения тонко сфокусированным электронным пучком, который развертывается в растр по поверхности образца. В результате взаимодействия сфокусированного электронного пучка с поверхностью образца возникают вторичные электроны, отраженные электроны, характеристическое рентгеновское излучение, ожэ-электроны и фотоны различных энергий. Они рождаются в определенных объемах - областях генерации внутри образца и могут быть использованы для измерения многих его характеристик, таких как топография поверхности, химический состав, электрофизические свойства и т д.

Основной причиной широкого использования растровых электронных микроскоов является высокое разрешение при исследовании массивных объектов, достигающее 1,0 нм (10 Å). Другой важной чертой изображений, получаемых в растровом электронном микроскопе является их объемность, обусловленная большой глубиной резкости прибора. Удобство применения растрового микроскопа в микро-и нанотехнологии объясняется относительной простотой подготовки образца и оперативностью исследования, что позволяет использовать его для межоперационного контроля технологических параметров без значительных потерь времени. Изображение в растровом микроскопе формируется в виде телевизионного сигнала, что существенно упрощает его ввод в компьютер и дальнейшую программную обработку результатов исследований.

Развитие микротехнологий и появление нанотехнологий, где размеры элементов существенно меньше длины волны видимого света, делает растровую электронную микроскопию практически единственной неразрушающей методикой визуального контроля при производстве изделий твердотельной электроники и микромеханики.

2. Взаимодействие электронного луча с образцом

При взаимодействии пучка электронов с твердой мишенью возникает большое число различного рода сигналов. Источником этих сигналов являются области излучения, размеры которых зависят от энергии пучка и атомного номера бомбардируемой мишени. Размерами этой области, при использовании определенного сорта сигнала, определяется разрешение микроскопа. На рис. 1 показаны области возбуждения в образце для разных сигналов.

Полное распределение по энергии электронов, излучаемых образцом

приведено на рис.2. Оно получено при энергии падающего пучка Е 0= 180эВ, по оси ординат отложено число эмиттированых мишенью электронов J s (E), а по оси абсцисс - энергия Е этих электронов. Заметим, что вид зависимости,

приведенной на рис.2, сохраняется и для пучков с энергией 5 – 50 кэВ, используемых в растровых электронных микроскопах.

Г
руппуI составляют упруго отраженные электроны с энергией, близкой к энергии первичного пучка. Они возникают при упругом рассеянии под большими углами. С увеличением атомного номера Z растет упругое рассеяние и увеличивается доля отраженных электронов . Распределение отраженных электронов по энергиям для некоторых элементов приведено на рис.3.

Угол рассеяния 135 0
, W=E/E 0 - нормированная энергия, d/dW - число отраженных электронов на падающий электрон и на единицу энергетического интервала. Из рисунка видно, что при увеличении атомного номера не только растет число отраженных электронов, но и их энергия становится ближе к энергии первичного пучка. Это приводит к возникновению контраста по атомному номеру и позволяет исследовать фазовый состав объекта.

Группа II включает в себя электроны, подвергшиеся многократному неупругому рассеянию и излученные к поверхности после прохождения более или менее толстого слоя материала мишени, потеряв при этом определенную часть своей первоначальной энергии.

Э
лектроны группыIII являются вторичными электронами с малой энергией (менее 50 эВ), которые образуются при возбуждении первичным пучком слабосвязаных электронов внешних оболочек атомов мишени. Основное влияние на количество вторичных электронов оказывает топография поверхности образца и локальные электрические и магнитные поля. Количество выходящих вторичных электронов зависит от угла падения первичного пучка (рис.4). Пусть R 0 – максимальная глубина выхода вторичных электронов. Если образец наклонен, то длина пути в пределах расстояния R 0 от поверхности возрастает: R = R 0 sec 

Следовательно возрастает и количество соударений, при которых рождаются вторичные электроны. Поэтому незначительное изменение угла падения приводит к заметному изменению яркости выходного сигнала. Благодаря тому, что генерация вторичных электронов происходит в основном в приповерхностной области образца (рис.1), разрешение изображения во вторичных электронах близко к размерам первичного электронного пучка.

Характеристическое рентгеновское излучение возникает в результате взаимодействия падающих электронов с электронами внутренних K, L, или М оболочек атомов образца. Спектр характеристического излучения несет информацию о химическом составе объекта. На этом основаны многочисленные методы микроанализа состава. Большинство современных растровых электронных микроскопов оснащено энергодисперсионными спектрометрами для качественного и количественного микроанализа, а так же для создания карт поверхности образца в характеристическом рентгеновском излучении определенных элементов.

3 Устройство растрового электронного микроскопа .

Трансмиссионный электронный микроскоп – прибор для получения увеличенного изображения микроскопических предметов, в котором используются пучки электронов. Электронные микроскопы имеют большее разрешение по сравнению с оптическими микроскопами, кроме того они могут применяться также для получения дополнительной информации относительно материала и структуры объекта.
Первый электронный микроскоп был построен в 1931 году немецкими инженерами Эрнст Руска и Максом ствола. Эрнст Руска получил за это открытие Нобелевскую премию по физике в 1986 году. Он разделил ее с изобретателями туннельного микроскопа, поскольку Нобелевский комитет чувствовал, что изобретателей электронного микроскопа несправедливо забыли.
В электронном микроскопе для получения изображения используются фокусированные пучки электронов, которыми бомбардируется поверхность исследуемого объекта. Изображение можно наблюдать разными способами – в лучах, которые прошли через объект, в отраженных лучах, регистрируя вторичные электроны или рентгеновское излучение. Фокусировки пучка электронов с помощью специальных электронных линз.
Электронные микроскопы могут увеличивать изображение в 2 млн. раз. Высокое разрешение электронных микроскопов достигается за счет малой длины волны электрона. В то время как длина волны видимого света лежит в диапазоне от 400 до 800 нм, длина волны электрона, ускоренного в потенциале 150 В, составляет 0,1 нм. Таким образом, в электронные микроскопы можно практически рассматривать объекты размером с атом, хотя практически осуществить это трудно.
Схематическая строение электронного микроскопа Строение электронного микроскопа можно рассмотреть на примере прибора, работающего на пропускание. Монохроматический пучок электронов формируется в электронной пушке. Его характеристики улучшаются конденсорною системой, состоящей из конденсорнои диафрагмы и электронных линз. В зависимости от типа линз, магнитных или электростатических, различат магнитные и электростатические микроскопы. В дальнейшем пучок попадает на предмет, рассеиваясь на нем. Рассеянный пучок проходит через апертуру и попадает в объективную линзу, которая предназначена для растягивания изображения. Растянутый пучок электронов вызывает свечение люминофора на экране. В современных микроскопах используются несколько степеней увеличения.
Апертурная диафрагма объектива электронного микроскопа очень мала, составляет сотые доли миллиметра.
Если пучок электронов от объекта потраплае непосредственно на экран, то объект будет выглядеть на нем темным, а вокруг образовываться светлый фон. Такое изображение называется свитлопольним. Если же в апертуру объективной линзы попадает не основы пучок, а рассеянный, то образуется темнопольный изображения. Темнопольный изображение контрастнее, чем свитлопольне, но разрешение у него меньше.
Существует много различных типов и конструкций электронных микроскопов. Основными среди них являются:

Просвичуюючий электронный микроскоп – прибор, в котором электронный пучок просвечивает предмет насквозь.

Сканирующий просвичуюючий электронный микроскоп позволяет изучать отдельные участки объекта.

Сканирующий электронный микроскоп использует для исследования поверхности объекта, выбитые электронным пучком вторичные электроны.

Рефлекторный электронный микроскоп использует упруго-рассеянные электроны.

Электронный микроскоп можно, также, снарядить системой детектирования рентгеновских лучей, которые излучают сильно возбуждены, при столкновении с высокоэнергетическими електоронамы, атомы вещества. При выбивании электрона из внутренней электронных оболочек, образуется характеристическое рентгеновское излучение, исследуя которое можно установить химический состав материала.
Изучение спектра неупругие-рассеянных электронов позволяет получать информацию о характерных электронные возбуждения в материале исследуемого предмета.
Электронные микроскопы широко используются в физике, материаловедении, биологии.

Вчера сфотографировал белую Ауди. Получилось отличное фото audi сбоку. Жалко, что тюнинг на фотографии не видно.

Чтобы понять принцип работы светового микроскопа, необходимо рассмотреть его строение.

Главный прибор биологии является оптической системой, которая состоит из штатива, осветительной и оптической части. В штатив входят башмак; предметный столик с держателем предметного стекла и двумя винтами, перемещающими столик в двух перпендикулярных направлениях; тубус, тубусодержатель; макро- и микровинты, передвигающие тубус в вертикальном направлении.

Для освещения объекта используют естественное рассеянное или искусственное освещение, которое осуществляется посредством стационарно вмонтированного в башмак микроскопа или соединенного через планку осветителя.

В осветительную систему также входят зеркало с плоской и вогнутой поверхностями и конденсор, расположенный под предметным столиком и состоящий из 2 линз, ирисовой диафрагмы и откидывающейся оправы для светофильтров. Оптическая часть включает наборы объективов и окуляров, которые позволяют изучать клетки на разных увеличениях.

Принцип работа светового микроскопа заключается в том, что пучок света от источника освещения собирается в конденсаторе и направляется на объект. Пройдя через него, лучи света попадают в систему линз объектива. Они выстраивают первичное изображение, которое увеличивается при помощи линз окуляра. В целом объектив и окуляр дают обратное мнимое и увеличенное изображение объекта.

Основными характеристиками любого микроскопа являются разрешающая способность и контраст.

Разрешающая способность - это минимальное расстояние, на котором находятся две точки, демонстрируемые микроскопом раздельно.

Разрешение микроскопа вычисляет по формуле

где л - длина волны света осветителя,

б - угол между оптической осью объектива и наиболее отклоняющимся лучом, попадающим в него,

n - коэффициент преломления среды.

Чем меньше длина волны луча, тем более мелкие детали мы сможем наблюдать через микроскоп. И чем выше нумерическая апертура объектива (n, тем выше разрешение объектива.

Световой микроскоп может повысить разрешающую способность человеческого глаза примерно в 1000 раз. Это является "полезным" увеличением микроскопа. При использовании видимой части спектра света конченый предел разрешения светового микроскопа составляет 0,2-0,3 мкм.

Однако следует отметить, что световая микроскопия позволяет нам увидеть частицы, меньшие предела разрешения. Это можно осуществить благодаря методу "Темного поля" или "Ультрамикроскопии".

Рис. 1 Световой микроскоп: 1 - штатив; 2 - предметный столик; 3 - насадка; 4 - окуляр; 5 - тубус; 6 - устройство смены объективов; 7 - микрообъектив; 8 - конденсор; 9 - механизм перемещения конденсора; 10 - коллектор; 11 - осветительная система; 12 - механизм фокусировки микроскопа.

Строение электронного микроскопа

Основная часть электронного микроскопа - полый вакуумный цилиндр (воздух откачан, чтобы исключить взаимодействие электронов с его составляющими и оксисления нити катода). Между катодом и анодом подаётся высокое напряжение, для дополнительного ускорения электронов. В конденсорной линзе(которая представляет собой электромагнит, как и все линзы электронного микроскопа) пучок электронов фокусируется и попадает на изучаемый объект. Прошедшие электроны, формируют на объективной линзе увеличенное первичное изображение, которое увеличивает проекционная линза, и проецируется на экран, который покрыт люминесцентным слоем для свечения при попадании на него электронов.

Рис. 2. Электронный микроскоп: 1 - электронная пушка; 2 - анод; 3 - катушка для юстировки пушки; 4 - клапан пушки; 5 - 1-я конденсорная линза; 6 - 2-я конденсорная линза; 7 - катушка для наклона пучка;8 - конденсор 2 диафрагмы; 9 - объективная линза; 10 - блок образца; 11 -дифракционная диафрагма; 12 - дифракционная линза; 13 - промежуточная линза; 14 - 1-я проекционная линза; 15 - 2-я проекционная линза; 16 - бинокуляр (увеличение 12); 17 - вакуумный блок колонны; 18 - камера для 35-миллиметровой катушечной пленки; 19 - экран для фокусировки; 20 - камера для пластинок; 21 - главный экран; 22 - ионный сорбционный насос.

В современном мире микроскоп считается незаменимым оптическим устройством. Без него сложно представить такие сферы человеческой деятельности как биология, медицина, химия, космические исследования, генная инженерия.


Микроскопы используются для изучения самых разных объектов и позволяют в мельчайших деталях рассмотреть структуры, которые невидимы невооруженным глазом. Кому же человечество обязано появлением этого полезного прибора? Кто изобрел микроскоп и когда?

Когда появился первый микроскоп?

История возникновения устройства уходит корнями в далекую старину. Способность изогнутых поверхностей отражать и преломлять солнечный свет была замечена еще в III столетии до нашей эры исследователем Евклидом. В своих работах ученый нашел объяснение зрительного увеличения предметов, но тогда его открытие не нашло практического применения.

Самая ранняя информация о микроскопах восходит к XVIII веку. В 1590 году нидерландский мастер Захарий Янсен поместил в одну трубку две линзы от очков и смог увидеть предметы, увеличенные от 5 до 10 раз.


Позже известный исследователь Галилео Галилей изобрел подзорную трубу и обратил внимание на интересную особенность: если ее сильно раздвинуть, то можно существенно увеличить небольшие объекты.

Кто соорудил первую модель оптического устройства?

Настоящий научно-технический прорыв в развитии микроскопа произошел в XVII веке. В 1619 году голландский изобретатель Корнелиус Дреббель придумал микроскоп с выпуклыми линзами, а в конце столетия другой нидерландец – Христиан Гюйгенс – презентовал свою модель, в которой можно было регулировать окуляры.

Более совершенное устройство было придумано изобретателем Антони Ван Левенгуком, который создал прибор с одной большой линзой. На протяжении последующих полутора столетий это изделие давало наивысшее качество изображения, поэтому Левенгука нередко называют изобретателем микроскопа.

Кто придумал первый сложный микроскоп?

Существует мнение, что оптическое устройство изобрел не Левенгук, а Роберт Гук, который в 1661 году усовершенствовал модель Гюйгенса, добавив к ней дополнительную линзу. Полученный тип прибора стал одним из наиболее популярных в научной среде и широко использовался до середины XVIII столетия.


В дальнейшем свою руку к развитию микроскопа прикладывали многие изобретатели. В 1863 году Генри Сорби придумал поляризационное устройство, позволявшее исследовать , а в 1870-х годах Эрнст Аббе разработал теорию микроскопов и открыл безразмерную величину «число Аббе», что способствовало изготовлению более совершенного оптического оборудования.

Кто является изобретателем электронного микроскопа?

В 1931 году ученый Роберт Руденберг запатентовал новый прибор, который мог увеличивать предметы с помощью пучков электронов. Устройство получило название электронный микроскоп и нашло широкое применение во многих науках благодаря высокой разрешающей способности, в тысячи раз превосходящей обычную оптику.

Спустя год Эрнст Руска создал прототип современного электронного прибора, за что был удостоен Нобелевской премии. Уже в конце 1930-х годов его изобретение стало массово применяться в научных исследованиях. Тогда же фирма Siemens приступила к выпуску электронных микроскопов, предназначенных для коммерческого использования.

Кто автор наноскопа?

Самой инновационной разновидностью оптического микроскопа на сегодняшний день является наноскоп, разработанный в 2006 году группой ученых под руководством немецкого изобретателя Штефана Хелля.


Новое устройство позволяет не только преодолевать барьер числа Аббе, но и предоставляет возможность наблюдать за объектами, имеющими размеры 10 нанометров и меньше. Кроме того, устройство дает высококачественные трехмерные изображения объектов, что ранее было недоступно обычным микроскопам.

ЭЛЕКТРОННЫЙ МИКРОСКОП -прибор для наблюдения и фотографирования многократно (до 10 6 раз) увеличенного изображения объекта, в к-ром вместо световых лучей используются , ускоренных до больших энергий (30-1000 кэВ и более) в условиях глубокого . Физ. основы корпускулярно-лучевых оптич. приборов были заложены в 1827, 1834-35 (почти за сто лет до появления Э. м.) У. P. Гамильтоном (W. R. Gamil-ton), установившим существование аналогии между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Целесообразность создания Э. м. стала очевидной после выдвижения в 1924 гипотезы о волнах де Бройля, а техн. предпосылки были созданы X. Бушем (H. Busch), к-рый в 1926 исследовал фокусирующие свойства осесимметричных полей и разработал магн. электронную линзу. В 1928 M. Кнолль (M. Knoll) и E. Руска (E. Ruska) приступили к созданию первого магн. просвечивающего Э. м. (ПЭМ) и спустя три года получили изображение объекта, сформированное пучками электронов. В последующие годы были построены первые растровые Э. м. (РЭМ), работающие на принципе сканирования, т. е. последовательного от точки к точке перемещения тонкого электронного пучка (зонда) по объекту. К сер. 1960-х гг. РЭМ достигли высокого техн. совершенства, и с этого времени началось их широкое применение в науч. исследованиях. ПЭМ обладают самой высокой разрешающей способностью , превосходя по этому параметру световые микроскопы в неск. тысяч раз. П р ед е л р а з р е ш е н и я, характеризующий способность прибора отобразить раздельно две максимально близко расположенные детали объекта, у ПЭМ составляет 0,15- 0,3 HM, т. е. достигает уровня, позволяющего наблюдать атомарную и молекулярную структуру исследуемых объектов. Столь высокие разрешения достигаются благодаря чрезвычайно малой длине волны электронов. Линзы Э. м. обладают аберрациями, эффективных методов коррекции к-рых не найдено в отличие от светового микроскопа (см. Электронная и ионная оптика ).Поэтому в ПЭМ магн. электронные линзы (ЭЛ), у к-рых аберрации на порядок величины меньше, полностью вытеснили электростатические. Оптимальным диафрагмированием (см. Диафрагма в э л е к т р о н н о й и и о н н о й о п т и к е) удаётся снизить сферич. аберрацию объектива, влияющую

на разрешающую способность Э. м. Находящиеся в эксплуатации ПЭМ можно разделить на три группы: Э. м. высокого разрешения, упрощённые ПЭМ и уникальные сверхвысо-коврльтные Э. м.

ПЭМ с высокой разрешающей способностью (0,15- 0,3 нм) - универсальные приборы многоцелевого назначения. Используются для наблюдения изображения объектов в светлом и тёмном поле, изучения их структуры электро-нографич. методом (см. Электронография ),проведения локального количеств. при помощи спектрометра энергетич. потерь электронов и рентгеновских кристаллич. и полупроводникового и получения спектроскопич. изображения объектов с помощью фильтра, отсеивающего электроны с энергиями вне заданного энергетич. окна. Потери энергии электронов, пропущенных фильтром и формирующих изображение, вызываются присутствием в объекте какого-то одного хим. элемента. Поэтому контраст участков, в к-рых присутствует этот элемент, возрастает. Перемещением окна по энергетич. спектру получают распределения разл. элементов, содержащихся в объекте. Фильтр используется также в качестве монохроматора для повышения разрешающей способности Э. м. при исследовании объектов большой толщины, увеличивающих разброс электронов по энергиям и (как следствие) хроматическую аберрацию.

С помощью дополнит. устройств и приставок изучаемый в ПЭМ объект можно наклонять в разных плоскостях на большие углы к оптич. оси, нагревать, охлаждать, деформировать. Ускоряющее электроны напряжение в высокоразрешающих Э. м. составляет 100-400 кВ, оно регулируется ступенчато и отличается высокой стабильностью: за 1 - 3 мин не допускается изменение его величины более чем на (1-2)·10 -6 от исходного значения. От ускоряющего напряжения зависит толшина объекта, которую можно "просветить" электронным пучком. В 100-киловольтных Э. м. изучают объекты толщиной от 1 до неск. десятков нм.

Схематически ПЭМ описываемого типа приведён на рис. 1. В его электронно-оптич. системе (колонне) с помощью вакуумной системы создаётся глубокий вакуум (давление до ~10 -5 Па). Схема электронно-оптич. системы ПЭМ представлена на рис. 2. Пучок электронов, источником к-рых служит термокатод, формируется в электронной пушке и высоковольтном ускорителе и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное "пятно" малых размеров (при регулировке диаметр пятна может меняться от 1 до 20 мкм). После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной электронной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя - проекционная - линза формирует изображение на катодолюминесцентном экране, который светится под воздействием электронов. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, структура и хим. состав объекта меняются от точки к точке. Соответственно изменяется число электронов, прошедших через апертурную диафрагму, а следовательно, и плотность тока на изображении. Возникает амплитудный контраст, к-рый преобразуется в световой контраст на экране. В случае тонких объектов превалирует фазовый контраст , вызываемый изменением фаз , рассеянных в объекте и интерферирующих в плоскости изображения. Под экраном Э. м. расположен магазин с фотопластинками, при фотографировании экран убирается и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется объективной линзой с помощью плавной регулировки тока, изменяющей её магн. поле. Токами др. электронных линз регулируется увеличение Э. м., к-рое равно произведению увеличений всех линз. При больших увеличениях яркость свечения экрана становится недостаточной и изображение наблюдают с помощью усилителя яркости. Для анализа изображения производятся аналогово-цифровое преобразование содержащейся в нём информации и обработка на компьютере. Усиленное и обработанное по заданной программе изображение выводится на экран компьютера и при необходимости вводится в запоминающее устройство.

Рис. 1. Электронный микроскоп просвечивающего типа (ПЭМ): 1 -электронная пушка с ускорителем; 2-конден сорные линзы; 3 -объективная линза; 4 - проекционные линзы; 5 -световой микроскоп, дополнительно увели чивающий изображение, наблюдаемое на экране; б -ту бус со смотровыми окнами, через которые можно наблю дать изображение; 7 -высоковольтный кабель; 8 - вакуумная система; 9 - пульт управления; 10 -стенд; 11 - высоковольтное питающее устройство; 12 - источник питания линз .

Рис. 2. Электронно-оптическая схема ПЭМ: 1 -катод; 2 - фокусирующий цилиндр; 3 -ускоритель; 4 -пер вый (короткофокусный) конденсор, создающий уменьшенное изображение источника электронов; 5 - второй (длиннофокусный) конденсор, который переносит уменьшенное изображение источника электронов на объект; 6 -объект; 7 -апертурная диа фрагма объектива; 8 - объектив; 9 , 10, 11 -система проекционных линз; 12 -катодолюминесцентный экран .

Упрощённые ПЭМ предназначены для науч. исследований, в к-рых не требуется высокая разрешающая способность. Их используют также для предварит. просмотра объектов, рутинной работы и в учебных целях. Эти приборы просты по конструкции (один конденсор, 2-3 электронные линзы для увеличения изображения объекта), имеют меньшее (60-100 кВ) ускоряющее напряжение и более низкую стабильность высокого напряжения и токов линз. Их разрешающая способность 0,5-0,7 нм.

Сверхвысоковольтные Э. м . (СВЭМ) - приборы с ускоряющим напряжением от 1 до 3,5 MB - представляют собой крупногабаритные сооружения высотой от 5 до 15 м. Для них оборудуют спец. помещения или строят отдельные здания, являющиеся составной частью комплекса СВЭМ. Первые СВЭМ предназначались для исследования объектов большой (1 -10 мкм) толщины, при к-рой сохраняются свойства массивного твёрдого тела. Из-за сильного влияния хроматич. аберраций разрешающая способность таких Э. м. снижается. Однако по сравнению со 100-киловольтными Э. м. разрешение изображения толстых объектов в СВЭМ в 10-20 раз выше. Так как энергия электронов в СВЭМ больше, то длина их волны меньше, чем в ПЭМ высокого разрешения. Поэтому после решения сложных техн. проблем (на это ушло не одно десятилетие) и реализации высокой виброустойчивости, надёжной виброизоляции и достаточной механич. и электрич. стабильности на СВЭМ была достигнута самая высокая (0,13- 0,17 нм) для просвечивающих Э. м. разрешающая способность, позволившая фотографировать изображения атомарных структур. Однако сферич. аберрация и дефокусировка объектива искажают изображения, полученные с предельным разрешением, и мешают получению достоверной информации. Этот информационнный барьер преодолевается с помощью фокальных серий изображений, к-рые получают при разл. дефокусировке объектива. Параллельно для тех же дефокусировок проводят моделирование изучаемой атомарной структуры на компьютере. Сравнение фокальных серий с сериями модельных изображений помогает расшифровать микрофотографии атомарных структур, сделанные на СВЭМ с предельным разрешением. На рис. 3 представлена схема СВЭМ, размещённого в спец. здании. Осн. узлы прибора объединены в единый комплекс с помощью платформы, к-рая подвешена к потолку на четырёх цепях и амортизационных пружинах. Сверху на платформе находятся два бака, наполненные электроизоляционным газом под давлением 3-5 атм. В один из них помещён высоковольтный генератор, в другой- электростатич. ускоритель электронов с электронной пушкой. Оба бака соединены патрубком, через к-рый высокое напряжение от генератора передаётся на ускоритель. Снизу к баку с ускорителем примыкает электронно-оптич. колонна, расположенная в нижней части здания, защищённой перекрытием от рентг. излучения, возникающего в ускорителе. Все перечисленные узлы образуют жёсткую конструкцию, обладающую свойствами физ. маятника с большим (до 7 с) периодом собств. , к-рые гасятся жидкостными демпферами. Маятниковая система подвески обеспечивает эффективную изоляцию СВЭМ от внеш. вибраций. Управление прибором производится с пульта, находящегося около колонны. Устройство линз, колонны и др. узлов прибора подобно соответствующим устройствам ПЭМ и отличается от них большими габаритами и весом.


Рис. 3. Сверхвысоковольтный электронный микроскоп (СВЭМ): 1-виброизолирующая платформа; 2-цепи , на которых висит платформа; 3 - амортизирующие пружины; 4-баки, в которых находятся генератор вы сокого напряжения и ускоритель электронов с электрон ной пушкой; 5-электронно-оптическая колонна; 6 - перекрытие, разделяющее здание СВЭМ на верхний и нижний залы и защищающее персонал, работающий нижнем зале, от рентгеновского излучения; 7 - пульт управления микроскопом .

Растровые Э. м . (РЭМ) с термоэмиссионной пушкой - самый распространённый тип приборов в электронной микроскопии . В них применяются вольфрамовые и гексабо-рид-лантановые термокатоды. Разрешающая способность РЭМ зависит от электронной яркости пушки и в приборах рассматриваемого класса составляет 5-10 нм. Ускоряющее напряжение регулируется в пределах от 1 до 30- 50 кВ. Устройство РЭМ показано на рис. 4. При помощи двух или трёх электронных линз на поверхность образца фокусируется узкий электронный зонд. Магн. отклоняющие катушки развёртывают зонд по заданной площади на объекте. При взаимодействии электронов зонда с объектом возникает несколько видов излучений (рис. 5): вторичные и отражённые электроны; оже-электроны; рентгеновское тормозное излучение и характеристическое излучение (см. Характеристический спектр); световое излучение и т. д. Любое из излучений, токи электронов, прошедших сквозь объект (если он тонкий) и поглощённых в объекте, а также напряжение, наведённое на объекте, могут регистрироваться соответствующими детекторами, преобразующими эти излучения, токи и напряжения в электрич. сигналы, к-рые после усиления подаются на электронно-лучевую трубку (ЭЛТ) и модулируют её пучок. Развёртка пучка ЭЛТ производится синхронно с развёрткой электронного зонда в РЭМ, и на экране ЭЛТ наблюдается увеличенное изображение объекта. Увеличение равно отношению размера кадра на экране ЭЛТ к соответствующему размеру на сканируемой поверхности объекта. Фотографируют изображение непосредственно с экрана ЭЛТ. Осн. достоинство РЭМ - высокая информативность прибора, обусловленная возможностью наблюдать изображения, используя сигналы разл. детекторов. С помощью РЭМ можно исследовать микрорельеф, распределение хим. состава по объекту, p-n -переходы, производить рентг. спектральный анализ и др. РЭМ широко применяются и в технол. процессах (контроль в электронно-литог-рафич. технологиях, проверка и выявление дефектов в микросхемах, метрология микроизделий и др.).


Рис. 4. Схема растрового электронного микроскопа (РЭМ): 1 -изолятор электронной пушки; 2 -V -образ ный термокатод; 3 -фокусирующий электрод; 4 - анод; 5 - конденсорные линзы; 6 -диафрагма; 7 - двухъярусная отклоняющая система; 8 -объектив; 9 -апертурная диафрагма объектива; 10 -объект; 11 -детектор вторичных электронов; 12 -кристал лический спектрометр; 13 -пропорциональный счётчик; 14 - предварительный усилитель; 15 - блок усиления; 16, 17 -аппаратура для регистрации рентгеновского излучения; 18 - блок усиления; 19 - блок регулировки увеличения; 20, 21 - блоки гори зонтальной и вертикальной развёрток; 22, 23 -элек тронно-лучевые трубки .


Рис. 5. Схема регистрации информации об объекте , получаемой в РЭМ; 1-первичный пучок электронов; 2-детектор вторичных электронов; 3-детектор рент геновского излучения; 4-детектор отражённых элект ронов; 5-детектор оже-электронов; 6-детектор све тового излучения; 7 - детектор прошедших электро нов; 8 - схема для регистрации тока прошедших через объект электронов; 9-схема для регистрации тока поглощённых в объекте электронов; 10-схема для ре гистрации наведённого на объекте электрического потенциала .

Высокая разрешающая способность РЭМ реализуется при формировании изображения с использованием вторичных электронов. Она находится в обратной зависимости от диаметра зоны, из к-рой эти электроны эмитируются. Размер зоны зависит от диаметра зонда, свойств объекта, скорости электронов первичного пучка и т. д. При большой глубине проникновения первичных электронов вторичные процессы, развивающиеся во всех направлениях, увеличивают диаметр зоны и разрешающая способность падает. Детектор вторичных электронов состоит из фотоэлектронного умножителя (ФЭУ) и электронно-фотонного преобразователя, осн. элементом к-рого является сцинтил-лятор. Число вспышек сцинтиллятора пропорционально числу вторичных электронов, выбитых в данной точке объекта. После усиления в ФЭУ и в видеоусилителе сигнал модулирует пучок ЭЛТ. Величина сигнала зависит от топографии образца, наличия локальных электрич. и магн. микрополей, величины коэф. вторичной электронной эмиссии, к-рый, в свою очередь, зависит от хим. состава образца в данной точке.

Отражённые электроны улавливаются полупроводниковым детектором с p - n -переходом. Контраст изображения обусловлен зависимостью коэф. отражения от угла падения первичного пучка в данной точке объекта и от ат. номера вещества. Разрешение изображения, получаемого в "отражённых электронах", ниже, чем получаемого с помощью вторичных электронов (иногда на порядок величины). Из-за прямолинейности полёта электронов информация об отд. участках объекта, от к-рых прямого пути к детектору нет, теряется (возникают тени). Для устранения потерь информации, а также для формирования изображения рельефа образца, на к-рое не влияет его элементный состав и, наоборот, для формирования картины распределения хим. элементов в объекте, на к-рую не влияет его рельеф, в РЭМ применяется детекторная система, состоящая из неск. размещённых вокруг объекта детекторов, сигналы к-рых вычитаются один из другого или суммируются, а результирующий сигнал после усиления подаётся на модулятор ЭЛТ.

Рентг. характеристич. излучение регистрируется кри-сталлич. (волноводисперсным) или полупроводниковым (энергодисперсным) спектрометрами, к-рые взаимно дополняют друг друга. В первом случае рентг. излучение после отражения кристаллом спектрометра попадает в газовый пропорциональный счётчик , а во втором - рентг. кванты возбуждают сигналы в полупроводниковом охлаждаемом (для снижения шума) детекторе из кремния, легированного литием, или из германия. После усиления сигналы спектрометров могут быть поданы на модулятор ЭЛТ и на её экране возникнет картина распределения того или иного хим. элемента по поверхности объекта.

На РЭМ, оснащённом рентг. спектрометрами, производят локальный количеств. анализ: регистрируют число импульсов, возбуждаемых рентг. квантами от участка, на к-ром остановлен электронный зонд. Кристаллич. спектрометр с помощью набора кристаллов-анализаторов с разл. межплоскостными расстояниями (см. Брэгга-Вульфа условие )дискриминирует с высоким спектр. разрешением характеристич. спектр по длинам волн, перекрывая диапазон элементов от Be до U. Полупроводниковый спектрометр дискриминирует рентг. кванты по их энергиям и регистрирует одновременно все элементы от В (или С) до U. Его спектральное разрешение ниже, чем у кристаллич. спектрометра, но выше чувствительность. Имеются и др. преимущества: быстрая выдача информации, простая конструкция, высокие эксплуатационные характеристики.

Растровые оже-Э. м . (РОЭМ)-приборы, в к-рых при сканировании электронного зонда детектируются оже-электроны из глубины объекта не более 0,1-2 нм. При такой глубине зона выхода оже-электронов не увеличивается (в отличие от электронов вторичной эмиссии) и разрешение прибора зависит только от диаметра зонда. Прибор работает при сверхвысоком вакууме (10 -7 -10 -8 Па). Его ускоряющее напряжение ок. 10 кВ. На рис. 6 представлено устройство РОЭМ. Электронная пушка состоит из гексаборид-лантанового или вольфрамового термокатода, работающего в режиме Шоттки, и трёхэлектродной электростатич. линзы. Электронный зонд фокусируется этой линзой и магн. объективом, в фокальной плоскости к-рого находится объект. Сбор оже-электронов производится с помощью цилиндрич. зеркального анализатора энергий, внутренний электрод к-рого охватывает корпус объектива, а внешний примыкает к объекту. С помощью анализатора, дискриминирующего оже-электроны по энергиям, исследуется распределение хим. элементов в поверхностном слое объекта с субмикронным разрешением. Для исследования глубинных слоев прибор оснащается ионной пушкой, при помощи к-рой удаляются верхние слои объекта методом ионно-лучевого травления.

Рис. б. Схема растрового оже-электронного микроскопа (РОЭМ): 1 - ионный насос; 2- катод; 3 - трёхэлектродная электростатическая линза; 4-многоканальный детектор; 5-апертурная диафрагма объектива; 6-двухъярусная отклоняющая система для развёртки электронного зонда; 7-объектив; 8- наружный электрод цилиндрического зеркального анализатора; 9-объект .

РЭМ с автоэмиссионной пушкой обладают высокой разрешающей способностью (до 2-3 нм). В автоэмиссионной пушке используется катод в форме острия, у вершины к-рого возникает сильное элекгрич. поле, вырывающее электроны из катода (автоэлектронная эмиссия) . Электронная яркость пушки с автоэмиссионным катодом в 10 3 -10 4 раз выше яркости пушки с термокатодом. Соответственно увеличивается ток электронного зонда. Поэтому в РЭМ с автоэмиссионной пушкой осуществляют наряду с медленной быструю развёртку, а диаметр зонда уменьшают для повышения разрешающей способности. Однако автоэмиссионный катод работает устойчиво лишь при сверхвысоком вакууме (10 -7 -10 -9 Па), что усложняет конструкцию и эксплуатацию таких РЭМ.

Просвечивающие растровые Э. м . (ПРЭМ) обладают столь же высокой разрешающей способностью, как и ПЭМ. В этих приборах применяются автоэмиссионные пушки, работающие в условиях сверхвысокого вакуума (до 10 -8 Па), обеспечивающие достаточный ток в зонде малого диаметра (0,2-0,3 нм). Диаметр зонда уменьшают две магн. линзы (рис. 7). Ниже объекта расположены детекторы - центральный и кольцевой. На первый попадают нерассеянные электроны, и после преобразования и усиления соответствующих сигналов на экране ЭЛТ появляется светлопольное изображение. На кольцевом детекторе собираются рассеянные электроны, создающие темнополь-ное изображение. В ПРЭМ можно исследовать более толстые объекты, чем в ПЭМ, т. к. возрастание числа неупруго рассеянных электронов с толщиной не влияет на разрешение (после объекта электронная оптика для формирования изображения отсутствует). С помощью анализатора энергии электроны, прошедшие сквозь объект, разделяются на упруго и неупруго рассеянные пучки. Каждый пучок попадает на свой детектор, и на ЭЛТ наблюдаются соответствующие изображения, содержащие дополнит. информацию об элементном составе объекта. Высокое разрешение в ПРЭМ достигается при медленных развёртках, т. к. в зонде диаметром всего 0,2-0,3 нм ток получается малым. ПРЭМ оснащаются всеми используемыми в электронной микроскопии устройствами для аналитич. исследований объектов, и в частности спектрометрами энерге-тич. потерь электронов, рентг. спектрометрами, сложными системами детектирования прошедших, обратно рассеянных и вторичных электронов, выделяющих группы электронов, рассеянных на разл. углы, имеющих разл. энергию и т. п. Приборы комплектуются ЭВМ для комплексной обработки поступающей информации.

Рис. 7. Принципиальная схема просвечивающего растро вого электронного микроскопа (ПРЭМ): 1-автоэмис сионный катод; 2-промежуточный анод; 3- анод; 4 - диафрагма "осветителя"; 5-магнитная линза; 6-двухъ ярусная отклоняющая система для развёртки электрон ного зонда; 7-магнитный объектив; 8 - апертурная диафрагма объектива; 9 -объект; 10 - отклоняющая система; 11 - кольцевой детектор рассеянных электронов; 12 -детектор нерассеянных электронов (удаляется при работе магнитного спектрометра); 13 - магнитный спектрометр; 14-отклоняющая система для отбора электронов с различными потерями энергии; 15 - щель спектрометра; 16-детектор спектрометра; ВЭ-вторич ные электроны; hv -рентгеновское излучение .

Эмиссионные Э. м . создают изображение объекта электронами, к-рые эмитирует сам объект при нагревании, бомбардировке первичным пучком электронов, под действием эл--магн. излучения и при наложении сильного электрич. поля, вырывающего электроны из объекта. Эти приборы обычно имеют узкое целевое назначение (см. Электронный проектор ).

Зеркальные Э. м . служат гл. обр. для визуализации элек-тростатич. "потенциальных рельефов" и магн. микрополей на поверхности объекта. Осн. электронно-оптич. элементом прибора является электронное зеркало ,причём одним из электродов служит сам объект, к-рый находится под небольшим отрицат. потенциалом относительно катода пушки. Электронный пучок направляется в электронное зеркало и отражается полем в непосредственной близости от поверхности объекта. Зеркало формирует на экране изображение "в отражённых пучках": микрополя возле поверхности объекта перераспределяют электроны отражённых пучков, создавая контраст в изображении, визуа-лизирующий эти микрополя.

Перспективы развития Э. м . Совершенствование Э. м. с целью увеличения объёма получаемой информации, проводившееся многие годы, продолжится и в дальнейшем, а улучшение параметров приборов, и прежде всего повышение разрешающей способности, останется главной задачей. Работы по созданию электронно-оптич. систем с малыми аберрациями пока не привели к реальному повышению разрешения Э. м. Это относится к не-осесимметричным системам коррекции аберраций, криогенной оптике, к линзам с корректирующим пространств. в приосевой области и др. Поиски и исследования в указанных направлениях ведутся. Продолжаются поисковые работы по созданию электронных гологра-фич. систем, в т. ч. и с коррекцией частотно-контрастных характеристик линз. Миниатюризация электростатич. линз и систем с использованием достижений микро- и на-нотехнологий также будет способствовать решению проблемы создания электронной оптики с малыми аберрациями.

Лит.: Практическая растровая электронная микроскопия, под ред. Д. Гоулдстейна, X. Яковица, пер. с англ., M., 1978; Спенс Д., Экспериментальная электронная микроскопия высокого разрешения, пер. с англ., M., 1986; Стоянов П. А., Электронный микроскоп СВЭМ-1, "Известия АН СССР, сер. физ.", 1988, т. 52, № 7, с. 1429; Хокс П., Каспер Э., Основы электронной оптики, пер. с англ.,т. 1-2, M., 1993; Oechsner H., Scanning auger microscopy, Le Vide, les Couches Minces, 1994, t. 50, № 271, p. 141; McMul-lan D., Scanning electron microscopy 1928-1965, "Scanning", 1995, t. 17, № 3, c. 175. П. А. Стоянов .