Построить график обратных круговых функций. Обратные тригонометрические функции, их графики и формулы

В геометрии часто бывают задачи, связанные со сторонами треугольников. Например, часто необходимо найти сторону треугольника, если две другие известны.

Треугольники бывают равнобедренными, равносторонними и неравносторонними. Из всего разнообразия, для первого примера выберем прямоугольный (в таком треугольнике один из углов равен 90°, прилегающие к нему стороны называются катетами, а третья — гипотенузой).

Быстрая навигация по статье

Длина сторон прямоугольного треугольника

Решение задачи следует из теоремы великого математика Пифагора. В ней говорится, что сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы: a²+b²=c²

  • Находим квадрат длины катета a;
  • Находим квадрат катета b;
  • Складываем их между собой;
  • Из полученного результата извлекаем корень второй степени.

Пример: a=4, b=3, c=?

  • a²=4²=16;
  • b² =3²=9;
  • 16+9=25;
  • √25=5. То есть, длина гипотенузы данного треугольника равна 5.

Если же у треугольника нет прямого угла, то длин двух сторон недостаточно. Для этого необходим третий параметр: это может быть угол, высота площадь треугольника, радиус вписанной в него окружности и т.д..

Если известен периметр

В этом случае задача ещё проще. Периметр (P) представляет собой сумму всех сторон треугольника: P=a+b+c. Таким образом, решив простое математическое уравнение получаем результат.

Пример: P=18, a=7, b=6, c=?

1) Решаем уравнение, перенося все известные параметры в одну сторону от знака равенства:

2) Подставляем вместо них значения и вычисляем третью сторону:

c=18-7-6=5, итого: третья сторона треугольника равна 5.

Если известен угол

Для вычисления третьей стороны треугольника по углу и двум другим сторонам, решение сводится к вычислению тригонометрического уравнения. Зная взаимосвязь сторон треугольника и синуса угла, несложно вычислить третью сторону. Для этого нужно возвести обе стороны в квадрат и сложить их результаты вместе. Затем вычесть из получившегося произведение сторон, умноженное на косинус угла: C=√(a²+b²-a*b*cosα)

Если известна площадь

В этом случае одной формулой не обойтись.

1) Сначала вычисляем sin γ, выразив его из формулы площади треугольника:

sin γ= 2S/(a*b)

2) По следующей формуле вычисляем косинус того же угла:

sin² α + cos² α=1

cos α=√(1 — sin² α)=√(1- (2S/(a*b))²)

3) И снова воспользуемся теоремой синусов:

C=√((a²+b²)-a*b*cosα)

C=√((a²+b²)-a*b*√(1- (S/(a*b))²))

Подставив в это уравнение значения переменных, получим ответ задачи.

Треугольник – это примитивный многоугольник, ограниченный на плоскости тремя точками и тремя отрезками попарно соединяющими эти точки. Углы в треугольнике бывают острыми, тупыми и прямыми. Сумма углов в треугольнике величина непрерывная и равна 180 градусам.

Вам понадобится

  • Базовые познания в геометрии и тригонометрии.

Инструкция

1. Обозначим длины сторон треугольника a=2, b=3, c=4, а его углы u, v, w, всякий из которых лежит наоборот одной сторон. По теореме косинусов квадрат длины стороны треугольника равен сумме квадратов длин 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними. То есть a^2 = b^2 + c^2 – 2bc*cos(u). Подставим в это выражение длины сторон и получим: 4 = 9 + 16 – 24cos(u).

2. Выразим из полученного равенства cos(u). Получим следующее: cos(u) = 7/8. Дальше найдём собственно угол u. Для этого посчитаем arccos(7/8). То есть угол u = arccos(7/8).

3. Аналогичным образом, выражая другие стороны через остальные, найдём оставшиеся углы.

Обратите внимание!
Значение одного угла не может превышать 180 градусов. Под знаком arccos() не может стоять число огромнее 1 и поменьше -1.

Полезный совет
Для того, дабы обнаружить все три угла необязательно выражать все три стороны, дозволено обнаружить только 2 угла, а 3-й получить путём вычитания из 180 градусов значения остальных 2-х. Это вытекает из того, что сумма всех углов треугольника величина непрерывная и равна 180 градусам.

Даны определения обратных тригонометрических функций и их графики. А также формулы, связывающие обратные тригонометрические функции, формулы сумм и разностей.

Определение обратных тригонометрических функций

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны . Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y

Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ), имеющая область определения и множество значений .

Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y ), имеющая область определения и множество значений .

Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус , Тангенс, котангенс .

y = arcsin x


y = arccos x


y = arctg x


y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x при
sin(arcsin x) = x
arccos(cos x) = x при
cos(arccos x) = x

arctg(tg x) = x при
tg(arctg x) = x
arcctg(ctg x) = x при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при

ОГЛАВЛЕНИЕ.

Глава I. О прогрессиях.
§ 1. Разностная прогрессия 3
§ 2. Вычисление любого члена разностной прогрессии по первому члену и разности 4
§ 3. Свойство членов разностной прогрессии, равноотстоящих от начала и от конца 5
§ 4. Вычисление суммы членов разностной прогрессии по первому члену последнему члену и числу членов -
§ 5. Вычисление суммы членов разностной прогрессии по первому члену разности прогрессии и числу членов 6
§ 6. Кратная прогрессия 11
§ 7. Вычисление любого члена кратной прогрессии по первому члену и знаменателю прогрессии 12
§ 8. Вычисление суммы членов кратной прогрессии по первому члену, поледнему и знаменателю прогрессии -

Глава II. Неравенства.
§ 9. Решение неравенства первой степени 18

Глава III. Основы учения о пределах.
§ 10. О математическом процессе изменения, о постоянных и переменных величинах в нем 23
§ 11. Понятие о величинах бесконечно малых и бесконечно больших. Понятие о пределе переменной величины 25
§ 12. Свойства бесконечно малых 29
§ 13. Основные положения о пределах 30
§ 14. Предельные результаты основных действий 32
§ 15. О десятичных периодических дробях 38
§ 16. Бесконечная кратная прогрессия. Вычисление предела суммы бесконечно убывающей кратной прогрессии 43

Глава IV. Иррациональные числа. Несоизмеримые величины.
§ 17. Понятие об иррациональном числе 49
§ 18. Сравнение иррациональных чисел 53
§ 19. Сложение, вычитание, умножение и деление иррациональных чисел 54
§ 20. Соизмеримые и несоизмеримые величины 57
§ 21 Способ нахождения общей наибольшей меры двух отрезков 57
§ 22. Пример несоизмеримости отрезков 59
§ 23. Отношение отрезков и вообще значений величины 60
§ 24. Понятие об измерении отрезков 61
§ 25. Пропорциональность величин -

Глава V. Правильные многоугольники. Длина окружности. Площадь круга.
§ 26. Определения 64
§ 27. Описанный и вписанный правильные многоугольники -
§ 28. Подобие правильных многоугольников и отношение их периметров 66
§ 29. Соотношения между радиусом круга и сторонами вписанных: квадрата, правильного шестиугольника, правильного треугольника и правильного десятиугольника 67
§ 30. Длина окружности 72
§ 31. Понятие о вычислении п 77
§ 32. Площади правильного многоугольника и круга 82
§ 33. Площадь сектора 84

Глава VI. Объемы призм и пирамид.
§ 34. Объем параллелепипеда 87
§ 35. Правило Кавальер и. Объем призмы 90
§ 36. Объем пирамиды 91
§ 37. Вспомогательные теоремы и замечания 98

Глава VII. Поверхности и объемы круглых тел.
§ 38. Общие сведения о цилиндре и конусе 107
§ 39. Поверхность цилиндра 109
§ 40. Поверхность конуса 110
§ 41. Объем цилиндра.. 111
§ 42. Объем конуса 112
§ 43. Тела вращения 113
§ 44. Теоремы Гюльдена 117
§ 45. Шар 118

Глава VIII. Гониометрия.
§ 46. Задачи гониометрии 126
§ 47. Угол и дуга, как переменные величины. Обобщение понятий дуги и угла -
§ 48. Радианное измерение дуг и углов 132
§ 49. Круговые функции. Синус и косинус угла и дуги 136
§ 50. Круговые функции. Тангенс и котангенс угла и дуги 14?
§ 51. Круговые функции отрицательного аргумента 144
§ 52. Круговые функции углов и дуг свыше 2 я. Периодичность круговых функций 146
§ 53. Графики круговых функций
§ 54. Зависимость между функциями дополнительных углов
§ 55. Приведение круговых функций к меньшему значению аргумента
§ 56. Понятие об обратных круговых функциях
§ 57. Синус, косинус и тангенс суммы и разности двух углов
§ 58. Синус, косинус и тангенс двойного угла и половины угла
§ 59. Основные формулы приведения тригонометрических выражений к виду удобному для логарифмирования
§ 60. Преобразования, приводящие к применению предыдущих формул
§ 61. Введение вспомогательного угла

Глава IX. Решение косоугольного треугольника.
§ 62 Основные соотношения между элементами косоугольного треугольника 172
§ 63 Вывод формул для определения тангенса половинного угла треугольника -
§ 64 Формулы для определения отношения суммы или разности двух сторон треугольника к третьей 175
§ 65 Теорема тангенсов 177
§ 66 Различные выражения площади треугольника 178
§ 67 Основные случаи решения косоугольного треугольника -
§ 68 Приложение формул косоугольного треугольника к различным вопросам 184

Глава X. Уравнения высших степеней, показательные, логарифмические и тригонометрические.
§ 69. Общие замечания о решении простейших уравнений высших степеней, сводящихся к уравнениям 1-й и 2-й степени 187
§ 70. Возвратные уравнения четвертой степени -
§ 71. Двучленные уравнения 189
§ 72. Трехчленные уравнения 192
§ 73. Решение систем уравнений 194
§ 74. Показательные уравнения 198
§ 75. Логарифмические уравнения 200
§ 76. Общие замечания о тригонометрических уравнениях 203
§ 77. Общие выражения обратных круговых функций 205
§ 78. Решение тригонометрических уравнений 209

Глава XI. Теория соединений. Бином Ньютона.
§ 79. Общие замечания о соединениях 214
§ 80. Размещения 215
§ 81. Перестановки 217
§ 82. Сочетания 218
§ 83. Некоторые свойства сочетаний 220
§ 84. Бииом Ньютона (для целого и положительного показателя) 222
§ 85.Формула общего члена бинома Ньютона 226
§ 86. Свойства коэфициентов бинома 228

Составлена в соответствии с программами Гуса 1927 г.
под РЕДАКЦИЕЙ А. М. ВОРОНЦА
Издание четвертое, стереотипное 41 - 60 тысяча
Научно-педагогической секцией Государственного ученого совета допущено для школ 11 ступени

О ПРОГРЕССИЯХ. § 1. Разностная прогрессия.
Разностной прогрессией называется ряд чисел, в котором каждое последующее число получается из предыдущего прибавлением к нему одного и того же числа, называемого разностью прогрессии.
Числа, составляющие прогрессию, называются ее членами.
Если разность положительна, прогрессия называется возрастающей, потому что по мере удаления от начала ряда члены его приобретают возрастающие численные значения. Если разность отрицательна, прогрессия будет убывающая, потому что численное значение членов по мере удаления от начала ряда убывает.
KOHEЦ ФPAГMEHTA УЧЕБНИКА