Начинающий фотограф: необходимые основы. Как устроен фотоаппарат и какие бывают фотоаппараты

Впервые ощутив в своих руках фотоаппарат и попробовав сделать несколько кадров, у любого новичка возникает вполне логичный вопрос: «Как это работает?», «Из чего состоит современный фотоаппарат?». В этой статье мы постараемся как можно детальней описать устройство камеры и сделать это легко и интересно. Поехали!

Так из чего состоит цифровой фотоаппарат?

  • Тушка или как многие профессионалы говорят body (англ. «тело») – корпус, состоящий из пластика или сплава магния, не пропускает свет.
  • Байонет – к нему прикрепляют объективы.
  • Объектив – состоит из системы линз (1). С помощью него изображение объектов съемки проецируется на матрицу.
  • Диафрагма – это перегородка (2), которая находится внутри объектива, а также имеет вид лепестков. Они образуют отверстие, диаметр которого можно регулировать.
  • Зеркало (3) – важнейшая вещь. Оно направляет изображение, которое создает объектив, к фокусировочному экрану (6), а затем через пентапризму (7) в видоискатель (8).
  • Экран фокусировки – матовая пластина, с помощью которой фотограф видит изображение через видоискатель.
  • Пентапризма – элемент, который переворачивает изображение.
  • Видоискатель – своего рода «глазок», через который фотограф видит будущий снимок.
  • Сенсор – электронная матрица (5), которая, чувствуя свет, заменяет в устройстве зеркального фотоаппарата пленку.
  • Процессор – считывает и обрабатывает изображения, возникающие на матрице.
  • Карта памяти – бережно хранит наши фотографии.
  • Затвор – это механические шторки (4), которые находятся между сенсором и зеркалом фотокамеры. В момент съемки они временно открываются таким образом, чтобы свет, попал на матрицу.
  • Аккумулятор – питание камеры и всех ее элементов.
  • Штативное гнездо (11) – разъем для штатива.
  • «Горячий башмак» (10) – к нему подключается внешняя вспышка.
  • Дисплей (9) – для просмотра фотографий, а также для настройки необходимых параметров съемки.
  • Управление – различные кнопочки, колесики и диски для управления и настройки фотокамеры.

Мы перечислили далеко не все части, но лучше ограничится этим набором, дабы при разборе принципов действия в дальнейшем не запутаться.

Устройство цифрового фотоаппарата: принцип действия

Всем начинающим фотографам (особенно мальчикам) наверняка интересно, что происходит внутри фотоаппарата в тот момент, когда вы решаете сделать кадр и нажимаете на кнопку. А происходит следующее:

  1. При съемке в автоматическом режиме объектив самостоятельно фокусируется на предмете.
  2. Затем механический или оптический стабилизатор изображение делает свое дело, а именно – стабилизирует изображение.
  3. Опять же при съемке в авто-режиме, камера сама подбирает параметры: выдержку, диафрагму, ISO, а также баланс белого.
  4. После чего зеркало(3) поднимается.
  5. А затвор(4) открывается.
  6. Свет, который проходит через объектив, формирует изображение на матрице, которое потом считывается процессором и сохраняется в карту.
  7. Затвор закрыт.
  8. Зеркало опущено.

Из чего состоит объектив фотоаппарата

Сейчас существует столько различных видов и марок объективов, что разобраться в составе каждого в рамках небольшой информативной статьи просто не реально. Устройство объектива зеркального фотоаппарата может насчитывать разное количество оптических элементов или линз. Они могут соединяться друг с другом или же, напротив, разделяться небольшим пространством. В простых объективах обычно используют систему, которая может состоять от одной - до трех линз. Что касается дорогих качественных объективов, то количество линз в системе может быть около десятка и больше.

Устройство вспышки фотоаппарата

Самый главный элемент любой электронной вспышки – это импульсная ксеноновая лампочка. Это запаянная стеклянная трубка (дугообразная, спиральная, прямая или кольцевая), которая наполнена ксеноном. На концах трубки имеются впаянные электроды, снаружи располагается зажигательный электрод, который представляет собой полосочку мастики или отрезок проволоки, проводящей ток.

Вспышки бывают:

  • Встроенные – не особо мощные, дают плоское изображение, создают резкие контрастные тени. Не способны выделить структуры объекта съемки. Отлично подходят для использования при ярком естественном освещении, подсвечивают резкие тени. Но стоит отметить, что профессиональные фотографы не советуют использовать встроенную вспышку при съемке.
  • Закрепленные – мощнее, чем встроенные, также их можно настраивать как в ручном режиме, так и в автоматическом.
  • Не прикрепленные к фотоаппарату – обычно такие устанавливают на штатив. С помощью них можно изменять условия освещения, играть со светом.
  • Макровспышки – применяются для макросъемки. Выглядят как небольшое кольцо, которое устанавливается на объективе камеры.

Устройство затвора фотоаппарата

Как мы уже писали выше, затвор в фотоаппарате используется для того, чтобы перекрыть поток света, который проецирует объектив на матрицу или пленку. Открывая затвора на заданное время выдержки, количество света дозируется – так регулируют экспозицию.

Типы затворов:

  1. дисковой секторный затвор;
  2. затовры-жалюзи;
  3. центральный затвор;
  4. диафрагменный затвор;
  5. фокальный затвор.

Устройство матрицы фотоаппарата

Современная матрица представляет собой небольшую микросхему. Поверхность этой микросхемы составляет множество светочувствительных элементов, каждый из которых представляет собой самостоятельный светоприемник. Он преобразует свет в некий сигнал, который после обработки сохраняется на карте памяти. Снимок, который получает фотограф, состоит из комплекса записанных электронных сигналов с каждого светочувствительного элемента. Интересно, правда?

Устройство фотоаппарата зенит

Из чего состоит зеркальный фотоаппарат, мы уже выяснили, теперь пришел черед пленочной камеры «Зенит». Он состоит из:

  • объектива;
  • зеркала;
  • затвора;
  • фотопленки;
  • матового стекла;
  • конденсор (линза);
  • пентапризма или пентазеркало;
  • окуляр.

Конечно, мы перечислили далеко не все. Для того чтобы подробней узнать из чего состоит фотоаппарат (как цифровой, так и пленочный) вам необходимо записать в нашу , где опытный преподаватель расскажет вам о каждой гаечке и продемонстрирует все на наглядном примере.

Дата публикации: 27.11.2014

В этом уроке мы постараемся доступно рассказать о том, как устроен фотоаппарат и какие типы фотоаппаратов сегодня существуют. Попробуем подойти к этому вопросу с практической точки зрения, объяснив самые важные для фотографов вопросы простым языком. Эта статья поможет вам выбрать фотоаппарат под ваши задачи, а в дальнейшем получать удовольствие от съемки.

Как работает фотоаппарат?

Все знают, для чего нужен фотоаппарат. Но как он работает? Знание принципов работы фотокамеры поможет всегда получать качественные снимки. Тут то же самое, что с автомобилем: чтобы хорошо водить машину, нужно хоть немного представлять, как она устроена.

Разобраться с процессом фотосъемки поможет простая схема.

  • Свет - самое главное в фотографии. Всё начинается с него. Само слово “фотография” можно перевести как “рисование светом”, “светопись”. Свет начинает свое путешествие от источника, например, от солнца.
  • Свет падает на все окружающие нас предметы. Это очень важно запомнить: фотоаппарат снимает не сами предметы, а свет, отраженный от них. Именно свет и умение с ним работать - ключ к хорошим кадрам.
  • Отраженный от предмета свет проходит через объектив фотоаппарата.
  • Он проецируется на светочувствительный сенсор - матрицу. Раньше, когда не было цифровых фотокамер, вместо матрицы использовалась фотопленка.

  • Матрица состоит из миллионов светочувствительных элементов. Они улавливают свет и передают информацию о нем уже в электронном виде в процессор фотокамеры. Процессор обрабатывает полученные данные и сохраняет их в виде файла.

  • Файл записывается на карте памяти.

Все современные цифровые фотокамеры работают по такому принципу, отличаясь лишь в некоторых деталях.

Матрица фотокамеры

Матрица - это сердце современного фотоаппарата. Именно от ее качества будет во многом зависеть качество фотографий. Матрица имеет две основные характеристики, информация о которых доступна потребителю: это разрешение и физический размер.

Сначала давайте разберемся с разрешением. Разрешение матрицы - это число ее светочувствительных элементов, пикселей. Чем их больше, тем больше точек будут составлять итоговое фото. Сегодня среднее разрешение матриц от 16 до 36 миллионов пикселей.

Однако, может быть так, что мегапикселей на матрице много, а качество снимка всё равно невысоко: он не резок, не контрастен, утопает в цифровом шуме - помехах. Качество изображения зависит не только от разрешения в мегапикселях, но и от физического размера самой матрицы.

Оба снимка сделаны в одном разрешении. Как видно, кадр, снятый на мобильный телефон, сильно проигрывает в качестве: он не так контрастен, на снимке не сохранились мелкие детали, например, прожилки на листочке. А ведь именно за мелкие детали должно отвечать высокое разрешение матрицы.

В различные типы камер устанавливаются матрицы различного размера. Самая большая на этой схеме - полнокадровая матрица. Ее размер соответствует кадру со знакомой всем фотопленки формата “135” или просто “35 мм” - 36х24 мм. Матрицы такого размера позволяют получать изображения очень высокого качества. Но чем больше физический размер матрицы, тем она дороже. Поэтому большие матрицы встречаются лишь в достаточно дорогих устройствах. Для любительских зеркалок характерен формат APS-C. Чем дешевле устройство, тем меньше в нем установлена матрица.

Большие матрицы дают выигрыш не только в детализации, но и в качестве изображения при съемке на высоких значениях чувствительности, при плохом освещении. Дело в том, что на сенсоре большой площади можно реализовать больший размер самих светочувствительных элементов - пикселей. Для сравнения: один светочувствительный элемент матрицы современного полнокадрового аппарата имеет в среднем размер в 4,9-8,3 микрон. Размер одного пикселя компактного фотоаппарата или смартфона около 1-3 микрон.

Особенности больших и маленьких матриц

Плюсы больших матриц - полнокадровых и APS-C - очевидны: они дают лучшее качество изображения. При этом работа с ними имеет несколько нюансов. Законы оптики таковы, что при работе с большой матрицей мы получаем малую глубину резкости на фото. С одной стороны, мы можем красиво размывать фон на своих снимках. Но в то же время возникнут сложности, если мы захотим сделать на снимке резким всё - и передний план, и фон. При съемке на зеркальную камеру, добиться большой глубины резкости получится не всегда.

В то же время, маленькие матрицы позволяют снимать с практически бесконечной глубиной резкости . Чем меньше матрица, тем проще получить кадр с большой глубиной резкости. Именно поэтому, снимая на смартфон или компактный аппарат, сложно размыть фон на снимке: получается слишком большая глубина резкости, всё на снимке становится четким. Сравним два кадра, сделанных при одинаковых параметрах съемки, но на фотоаппараты с матрицами разных размеров.

Кадр, сделанный компактным аппаратом с небольшой матрицей размером 2/3". В глубину резкости попали почти все фигурки.

Если вам нравится размытый фон на фотографиях, если вы занимаетесь портретной съемкой, то скорее всего вам понадобится камера с большой матрицей - формата APS-C или даже 24х36 мм.

Помимо этого, от размера матрицы напрямую зависит размер самого фотоаппарата и объективов к нему. Причем если размер корпуса аппарата еще можно сделать более-менее компактным даже при использовании полнокадровой матрицы, то уменьшить в размерах объектив не получится: законы оптики не позволят. Поэтому, покупая полнокадровый аппарат со сменной оптикой, будьте готовы к тому, что хороший объектив будет иметь солидные размеры и вес. Если же хочется использовать полнокадровую камеру и при этом иметь компактный объектив, придется довольствоваться не самыми универсальными и не самыми светосильными объективами. А вот в камерах, использующих матрицы меньшего размера, вполне получается использовать объективы более легкие, более компактные. Сравните сами.

Типы фотокамер. Их плюсы и минусы.

С сердцем цифрового фотоаппарата, матрицей, мы разобрались. Теперь разберемся, на какие типы делятся современные фотоаппараты.

Мобильная камера. Камера в телефоне

Сегодня встроенную фотокамеру можно встретить во многих устройствах. В смартфонах фотокамера (и иногда даже не одна, а две - основная и фронтальная) стали обязательным элементом. Наверное, у каждого читателя есть опыт фотосъемки на телефон. В погоне за компактностью, такие камеры оснащаются крохотными матрицами и простыми объективами. Все мы знаем, что снимки с телефона не претендуют на высокое качество, зато такая съемка не требует специальных навыков, а телефон всегда находится под рукой. Впрочем, если вы планируете более-менее серьезно заниматься фотографией, стоит задуматься о более продвинутом творческом инструменте, обеспечивающем более высокое качество снимков и ручную установку параметров съемки.

Компактные фотокамеры

Пожалуй, этот тип камер тоже знаком всем. Компактная камера есть почти в каждом доме. Основное достоинство их достоинство - это малый размер, низкая цена, простота в использовании и иногда большой зум.

В камеры этого типа обычно ставятся маленькие и средние матрицы с диагональю 1/2,3”,1/1,7”, 1”. Это обеспечивает данным аппаратам компактность и очень доступную цену. Конечно, бывают редкие модели компактов с крупными матрицами, даже с полнокадровыми. Но это довольно специфические и дорогостоящие аппараты.

Компактные камеры имеют несменный объектив. Как правило, такие фотоаппараты комплектуются универсальным объективом, позволяющим снимать как с широким углом обзора, так и фотографировать крупным планом удаленные от нас предметы. Опять таки, благодаря использованию небольших по размеру матриц, получается сделать объектив небольшим по размеру.

Большинство компактных камер ориентированы на съемку в автоматических режимах, чтобы фотографирование ими было максимально простым. По-английски они так и называются - “Point-and-shoot”, что на русский язык можно перевести как “навёл-снял”. Действительно, для съемки на такой аппарат достаточно нажать только одну кнопку, остальное сделает автоматика. А вот на съемку с ручными настройками данные аппараты рассчитаны не всегда. Порой не все настройки можно настроить вручную, а если и можно, то их приходится искать где-то в меню аппарата, что замедляет процесс.

Особняком в классе компактов стоят так называемые “гиперзумы” (“суперзумы”, “ультразумы”). Гиперзум - это компактная камера, оснащенная объективом с очень большой кратностью зума. Он может снимать как с широким углом обзора, так и брать крупным планом очень далекие объекты. Объективы с таким большим зумом имеют относительно крупный размер, из-за чего камера теряет свою компактность и сопоставима по габаритам, а часто и по цене, с более продвинутыми классами камер.

Кому подойдут компактные камеры и гиперзумы?

Прежде всего тем, для кого фотография - не хобби и не профессия. Для тех, кто просто снимает на память и не хочет загружать себе голову какими-то сложными настройками. Такие камеры идеальны для путешествий налегке. В них всегда есть автоматические режимы, что позволит справиться с ними даже новичку. Профессиональные фотографы иногда выбирают компакт в качестве второй, вспомогательной фотокамеры.

Зеркальные фотокамеры

Следующий тип камер - зеркальные фотокамеры или зеркалки. Как класс оборудования они имеют богатую историю. Первые зеркалки появились еще в первой половине прошлого века. Тогда в них использовалась пленка. За более чем полвека их конструкция была доведена практически до совершенства, и лишь в XXI веке на смену пленке пришла цифровая матрица.

Зеркальные аппараты названы так потому, что в их конструкции есть система из зеркала и специальной отражающей призмы (пентапризмы), позволяющая видеть именно ту картинку, которую “видит” объектив. Причем, без всякой электроники.

Зеркало имеет подвижную конструкцию: когда оно опущено, свет попадает в видоискатель. Когда производится съемка, зеркало поднимается, и свет попадает на матрицу. С зеркальными камерами применяются сменные объективы . Вы можете выбрать для своего аппарата любой объектив из широкого модельного ряда, ориентируясь на тот вид съемок, которым хотите заниматься. Таким образом в любой ситуации можно получить идеальный инструмент для идеального качества снимков.

Зеркальные камеры не зря называют системными. Выбирая зеркалку того или иного производителя, мы выбираем систему из фотоаппарата, объективов и аксессуаров (например, вспышек). Этим активно пользуются все профессиональные фотографы и продвинутые любители.

В зеркальных камерах всегда используются матрицы большого размера. Формата APS-C или даже полнокадровые. А как говорилось выше, большая матрица - одно из слагаемых качественного снимка.

Скорость работы - следующее достоинство зеркальных камер. Фотограф, который перешел с компакта на зеркалку, может быть просто шокирован скоростью ее работы. Быстрый автофокус и мгновенная реакция на все манипуляции фотографа - свойство любой зеркалки.

Зеркальная камера очень оперативна в управлении. Производители уделяют большое внимание их проектированию, ведь это - профессиональный инструмент. Аппарат удобно держать в руках, а практически любую настройку можно отрегулировать одной-двумя кнопками, не залезая в меню.

Еще одно достоинство, которое стоит отметить - это долгая работа от аккумулятора. Заряжать аккумулятор такой камеры приходится относительно редко. Поскольку в зеркалке матрица (вместе с дисплеем аппарата - основной потребитель энергии) находится под нагрузкой не всегда, а только непосредственно во время съемки кадра, аккумулятор позволяет сделать на одном заряде около 500-1000 снимков в зависимости от модели камеры. Это почти недостижимая цифра для остальных типов камер. Продолжительная автономная работа фотоаппарата - очень важная вещь в путешествиях, поездках, длительных прогулках.

Из минусов зеркальных камер, пожалуй, стоит отметить их большой вес и размер. Впрочем, многим фотографам наоборот нравится ходить с большим фотоаппаратом и выглядеть как профессионал. Современные зеркалки бывают как весьма дорогими, рассчитанными на профессиональное использование, так и очень доступными. Сегодня зеркальную камеру может позволить себе практически каждый.

Кому подойдет зеркальная камера?

Всем, кто более-менее серьезно занимается фотографией и не боится относительно крупных размеров фотоаппарата. Для тех, кто хочет научиться профессионально фотографировать, сделать фотографию своей профессией, зеркальная камера - оптимальный выбор.

Компактные камеры со сменной оптикой или беззеркальные камеры

Это относительно недавно появившийся вид фотоаппаратов и самый активно развивающийся. Производители резонно решили, что если оснастить обычную компактную камеру сменными объективами и качественной матрицей, получится очень интересная вещь. Беззеркальные камеры сочетают в себе большинство плюсов зеркалок и компактов. Как уже сказано, “беззеркалки” имеют сменные объективы и компактные размеры. При этом позволяют делать кадры очень высокого качества. Ведь они оснащаются матрицами сравнительно крупных размеров.

Беззеркалки в целом довольно быстры в работе. Однако из-за миниатюрных размеров немного пострадала их эргономика. Камера уже не лежит в руке столь удобно и основательно, как зеркалка. Да и отсутствие оптического видоискателя многим фотографам не нравится. Из прочих минусов беззеркальных камер стоит отметить довольно непродолжительное время работы от батареи.

Производители в данном классе камер обращают особое внимание на стиль. В противовес строгим черным зеркалкам, ориентированным на продвинутых фотографов, среди беззеркалок очень много красивых, стильных, “имиджевых” моделей.

Кому подойдет беззеркальная камера?

Тем, кто хочет получать качественные фотографии, но при этом не хочет таскать за собой громоздкую зеркальную камеру. Такую камеру удобно брать в путешествия. Однако, если планируется путешествие без возможности зарядить камеру, лучше взять с собой набор запасных аккумуляторов.

Среднеформатные фотокамеры и цифровые задники

Бывают камеры, у которых матрица по размеру еще больше, чем у полнокадровых зеркалок. Например, ее размер может быть 44 x 33 мм, 53,9 х 40,4. Разрешение у таких больших матриц тоже немаленькое: несколько десятков мегапикселей.

Камеры данного типа называются “среднеформатными”. Это название осталось со времен пленочной фототехники. В пленочную эпоху в подобных камерах использовалась широкая пленка, значительно шире обычной. Такие камеры и тогда, и сейчас используются некоторыми профессиональными фотографами для получения фотографий очень высокого качества. Отпечатки с диагональю около одного метра - не предел для этих фотоаппаратов. Некоторые такие камеры оборудованы сменными модулями, в которых установлена непосредственно матрица и электронная начинка Такие модули называются цифровыми задниками. Среднеформатные камеры применяются в основном при съемке в условиях фотостудии из-за большого размера и не слишком высокой оперативности в работе. Еще один минус среднеформатных камер - цена, сопоставимая с ценой новой иномарки.

Константин Воронов

Занимаюсь профессиональной фотографией более 8 лет. Сфера деятельности - свадебная, портретная, пейзажная фотография. По образованию журналист. Разработал несколько курсов для сервиса онлайн-обучения фотографии Fotoshkola.net . Преподаватель, ведущий мастер-классов.

Современный фотоаппарат с автоматической фокусировкой обоснованно сравнивают с глазом человека. На рис. 1 слева, схематически показан глаз человека. При открывании века световой поток, формирующий изображение, проходит через зрачок, диаметр которого регулируется радужной оболочкой в зависимости от интенсивности света (ограничивает количество света), затем он проходит через хрусталик, преломляется в нем и фокусируется на сетчатке, которая преобразует изображение в сигналы электрического тока и передает их по зрительному нерву в мозг.

Рис. 1. Сравнение глаза человека с устройством фотоаппарата

На рис. 1 справа, схематически показано устройство фотоаппарата. При фотографировании заслонка открывается (регулирует время освещения), световой поток, формирующий изображение, проходит через отверстие, диаметр которой регулируется диафрагмой (регулирует количество света), затем он проходит через объектив преломляется в нем и фокусируется на фотоматериале, который регистрирует изображение.

Пленочный (аналоговый) фотоаппарат – оптико-механический прибор, с помощью которого производится фотосъемка. Фотоаппарат содержит взаимосвязанные механические, оптические, электрические и электронные узлы (рис. 2). Фотоаппарат общего назначения состоит из следующих основных частей и органов управления:

- корпус со светонепроницаемой камерой;

- объектив;

- диафрагма;

- фотографический затвор;

- кнопка спуска – инициирует съёмку кадра;

- видоискатель;

- фокусировочное устройство;

- фотопленка;

- кассета (или иное приспособление для размещения фотопленки)

- устройство транспортировки пленки;

- фотоэкспонометр;

- встроенная фотовспышка;

- элементы питания камеры.

В зависимости от назначения и конструкции фотографические аппараты имеют различные дополнительные приспособления для упрощения, уточнения и автоматизации процесса фотосъемки.

Рис. 2. Устройство плёночного (аналогового) фотоаппарата

Объектив (от латинского objectus – предмет) – оптическая система, заключенная в специальную оправу, обращенная к объекту съемки и образующая его оптическое изображение. От свойств объектива в значительной степени зависит характер и качество фотографического изображения. Объективы бывают постоянно-встроенными в корпус камеры или сменными. Объективы, в зависимости от отношения фокусного расстояния к диагонали кадра, принято подразделять на нормальные , широкоугольные и телеобъективы .

Объективы с переменным фокусным расстоянием (зум-объективы) позволяют получать изображения разного масштаба при неизменном съемочном расстоянии. Отношение наибольшего фокусного расстояния к наименьшему называют кратностью объектива. Так, объективы с переменным фокусным расстоянием от 35 до 105 мм называют объективами с 3х-кратным изменением фокусного расстояния (3-х-кратным зумом).



Диафрагма (от греческого diaphragma) – устройство, с помощью которого ограничивается пучок лучей, проходящих через объектив, для уменьшения освещенности фотоматериала в момент экспонирования и изменения глубины резко изображаемого пространства. Этот механизм реализован в виде ирисовой диафрагмы, состоящей из нескольких лепестков, перемещение которых обеспечивает непрерывное изменение диаметра отверстия (рис. 3).

Рис. 3. Механизм ирисовой диафрагмы состоит из ряда перекрывающихся пластин

Фотографический затвор – устройство, с помощью которого обеспечивается воздействие световых лучей на фотоматериал в течение определенного времени, называемого выдержкой . Открытие затвора происходит по команде фотографа при нажатии кнопки спуска или с помощью программного механизма – автоспуска. Выдержки, которые отрабатываются фотографическим затвором, называют автоматическими. Существует стандартный ряд выдержек, измеряемых в секундах:

1/2 1/4 1/8 1/15 1/30 1/60 1/125 1/250 1/500 1/1000 1/2000 1/4000

Смежные числа этого ряда отличаются друг от друга в 2 раза. Переходя от одной выдержки (например 1/125 ) к соседней, мы увеличиваем (1/60 ) или уменьшаем (1/250 ) время экспонирования фотографического материала в два раза.

По устройству затворы подразделяют на центральные (створчатые) и шторно-щелевые (фокально-плоскостные).

Центральный затвор имеет отсекатели света, состоящие из нескольких металлических лепестков-створок, концентрически расположенных непосредственно возле оптического блока объектива или между его линзами, приводимые в действие системой пружин и рычагов (рис. 4). Центральные затворы автоматически отрабатывают выдержки в диапазоне от 1 до 1/500 секунды.

Рис. 4. Некоторые типы центральных затворов: слева – с отсекателями света одностороннего действия; центр – с отсекателями света двустороннего действия; справа – с отсекателями света, выполняющими функции затвора и диафрагмы

Принцип действия центрального затвора обеспечивает высокую равномерность освещенности получаемого изображения. Центральный затвор позволяет применять фотовспышку практически во всем диапазоне выдержек. Недостатком центральных затворов является ограниченная возможность получения коротких выдержек, связанная с большими механическими нагрузками на отсекатели, при увеличении скорости их движения.

Шторно-щелевой затвор имеет отсекатели, в виде шторок (металлической – латунной гофрированной ленты) или набора подвижно скрепленных лепестков-ламелей (рис. 5), выполненных из легких сплавов или углепластика, расположенные в непосредственной близости от фотоматериала (в фокальной плоскости). Их преимущество – высокая точность отработки выдержек.

Рис. 5. Шторно-щелевой затвор (движение шторок поперек кадрового окна)

Шторно-щелевой затвор позволяет применять различные сменные объективы, так как не связан механически с объективом. Такой затвор обеспечивает выдержки до 1/12000 c. Использование импульсных источников света при шторно-щелевом затворе возможно только при таких выдержках (выдержка синхронизации ), при которых ширина щели обеспечивает полное открытие кадрового окна. В большинстве фотоаппаратов такими выдержками являются: 1/30, 1/60, 1/90, 1/125, 1/250 с.

Фотоэкспонометр – электронный прибор для определения экспозиционных параметров (выдержки и диафрагменного числа) при данной яркости объекта съемки и заданной светочувствительности фотоматериала. В автоматических системах поиск такого сочетания называется отработкой программы. Для повышения точности определения экспозиционных параметров, особенно в тех случаях, когда съемка производится с применением сменных объективов, различных приставок и насадок, существенно влияющих на светосилу объектива, фотоэлементы экспонометрических устройств размещают за объективом. Такая система замера светового потока получила наименование TTL (англ. Through the Line – «сквозь линзу/объектив»). Один из вариантов этой системы показан на схеме зеркального видоискателя (рис. 6). Датчик экспозамера, являющийся приемником световой энергии, освещается светом, прошедшим через оптическую систему объектива, установленного на фотоаппарате, включая светофильтры, насадки и другие устройства, которыми в данный момент может быть оснащен объектив.

Видоискатель – оптическая система, предназначенная для точного определения границ пространства, входящего в пределы поля изображения (кадра).

Оптические видоискатели содержат только оптические и механические элементы и не содержит электронных.

Параллаксные видоискатели представляют собой отдельную от съемочного объектива оптическую систему. Из-за несовпадения оптической оси видоискателя с оптической осью объектива возникает параллакс. Влияние параллакса зависит от угла поля зрения объектива и видоискателя. Чем больше фокусное расстояние объектива и, соответственно, меньше угол поля зрения, тем больше параллактическая ошибка. Преимуществом параллаксного видоискателя является его независимость от съёмочного объектива, что позволяет достичь большей яркости изображения и получить уменьшенное изображение с четкими границами кадра.

Телескопический видоискатель (рис. 6).

Беспараллаксные видоискатели.

Зеркальный видоискатель состоит из объектива, отклоняющего зеркала, фокусировочного экрана, пентапризмы и окуляра (рис. 6). Пентапризма переворачивает изображение в прямое. Отклоняющее зеркало во время кадрирования и фокусировки отражает практически 100% поступающего через объектив света на матовое стекло фокусировочного экрана (при наличии автоматики фокусировки и экспозамера часть светового потока отражается на соответствующие датчики).

Рис. 6. Схемы телескопического и зеркального видоискателей

Фокусировка заключается в установке объектива относительно поверхности фотоматериала (фокальной плоскости) на таком расстоянии, при котором изображение на этой плоскости получается резким. Получение резких изображений определяется соотношением между расстояниями от первой главной точки объектива до объекта съемки и от второй главной точки объектива до фокальной плоскости. На рис. 7 показаны пять различных случаев расположения объекта съемки и соответствующие им положения изображения:

Рис. 7. Связь между расстоянием от главной точки объектива О до объекта К и расстоянием от главной точки объектива О до изображения объекта К"

Пространство слева от объектива (перед объективом) называют пространством предметов, а пространство справа от объектива (за объективом) – пространством изображений.

1. Если объект находится в «бесконечности», то его изображение получится за объективом в главной фокальной плоскости, т.е. на удалении, равном главному фокусному расстоянию f .

2. По мере приближения объекта съемки к объективу его изображение начинает все больше перемещаться в сторону точки двойного фокусного расстояния F’ 2 .

3. Когда объект будет в точке F 2 , т.е. на удалении, равном двойному фокусному расстоянию, его изображение окажется в точке F’ 2 . Причем, если до этого момента размеры объекта были больше размеров его изображения то, теперь они станут равны.

5. Когда объект окажется в точке F 1 , пришедшие от него лучи за объективом образуют параллельный пучок и изображения не получится.

При крупномасштабных съемках (макросъемка) объект располагают на близком расстоянии (иногда меньшем, чем 2f ) и применяют различные приспособления для выдвижения объектива на большее расстояние, чем это позволяет оправа.

Таким образом, для получения резкого изображения снимаемого объекта необходимо перед съемкой установить объектив на некотором расстоянии от фокальной плоскости, то есть произвести фокусировку. В фотоаппаратах фокусировка производится посредством перемещения вдоль оптической оси группы линз объектива с помощью фокусировочного механизма. Обычно управление фокусировкой осуществляется вращением кольца на оправе объектива (может отсутствовать на фотоаппаратах, у которых объектив установлен на гиперфокальное расстояние или в аппаратах в которых предусмотрен лишь режим автоматической фокусировки – автофокус).

Производить фокусировку непосредственно по поверхности фотоматериала невозможно, поэтому применяют различные фокусировочные устройства для осуществления визуального контроля резкости.

Чтобы облегчить наводку объектива на резкость и повысить ее точность, используются различные системы автоматической фокусировки .

Автофокусировка объектива производится в несколько этапов:

Измерение параметра (расстояние до объекта съёмки, максимального контраста изображения, фазового сдвига составляющих выбранного луча, времени задержки прихода отраженного луча и т.п.) чувствительного к резкости изображения в фокальной плоскости и его вектора (для выбора направления изменения сигнала рассогласования и предсказания возможной дистанции фокусировки в следующий момент времени при движении объекта);

Генерация эталонного сигнала, эквивалентного измеряемому параметру и определение сигнала рассогласования системы автоматического регулирования автофокуса;

Подача сигнала на исполнительный механизм фокусировки.

Эти процессы происходят практически одновременно.

Наведение оптической системы на резкость выполняется электродвигателем. Время, затраченное на измерение выбранного параметра, и время отработки сигнала рассогласования механикой объектива определяют быстродействие системы автофокусировки.

Работа системы автофокуса может основываться на различных принципах:

Активные системы автофокусировки: ультразвуковой; инфракрасный.

Пассивные системы автофокусировки: фазовый (применяется в зеркальных плёночных и цифровых фотоаппаратах); контрастный (видеокамеры, незеркальные цифровые фотоаппараты).

Ультразвуковая и инфракрасные системы рассчитывают расстояние до объекта по времени возвращения от объекта съемки фронтов, излученных фотоаппаратом инфракрасных (ультразвуковых) волн. Наличие прозрачной преграды между объектом и фотоаппаратом приводит к ошибочной фокусировке данных систем на данную преграду, а не на объект съемки.

Фазовый автофокус. В корпусе фотоаппарата размещаются специальные датчики, получающие фрагменты светового потока от разных точек кадра с помощью системы зеркал. Внутри датчика расположены две разделительные линзы, которые проецируют двойное изображение объекта фотосъемки на два ряда светочувствительных датчиков, вырабатывающих электрические сигналы, характер которых зависит от количества, попадающего на них света. В случае точной фокусировки на объект два световых потока будут находиться друг от друга на определённом расстоянии, заданном конструкцией датчика и эквивалентным ему эталонным сигналом. Когда точка фокуса К (рис. 9) находится ближе объекта два сигнала сходятся друг к другу. Когда точка фокуса находится дальше объекта – сигналы расходятся дальше друг от друга. Датчик, измерив это расстояние, вырабатывает эквивалентный ему электрический сигнал и, сравнив его с эталонным сигналом с помощью специализированного микропроцессора определяет рассогласование и выдаёт команду на исполнительный механизм фокусировки. Фокусировочные моторы объектива, отрабатывают команды, уточняя фокусировку пока сигналы с датчика не совпадут с эталонным сигналом. Быстродействие такой системы очень высоко и зависит, в основном от быстродействия исполнительного механизма фокусировки объектива.

Рис. 9. Схема работы фазового автофокуса

Контрастный автофокус. Принцип работы контрастного автофокуса основан на постоянном анализе микропроцессором степени контрастности изображения, и отработке команд на перемещение объектива для получения резкого изображения объекта. Контрастный автофокус характеризуется низким быстродействием, обусловленным отсутствием у микропроцессора исходной информации о текущем состоянии фокусировки объектива (изображение считается изначально нерезким) и как следствие необходимости выдачи команды на смещение объектива от исходного положения и анализа полученного изображения на степень изменения контраста. Если контраст не увеличился, то процессор меняет знак команды на исполнительный механизм автофокуса и электродвигатель перемещает группу линз объектива в противоположном направлении, пока не будет зафиксирован максимум контраста. Когда максимум достигнут, автофокусировка прекращается.

Задержка между нажатием на кнопку спуска затвора и моментом съёмки кадра, объясняется работой пассивного контрастного автофокуса и тем, что в незеркальных фотоаппаратах процессор вынужден считывать с матрицы (ПЗС) весь кадр, чтобы проанализировать на степень контрастности лишь зоны фокусировки.

Фотовспышка . Электронные фотовспышки используются в качестве основного или дополнительного источника света, и могут быть разных типов: встроенная фотовспышка фотоаппарата, внешняя фотовспышка с автономным питанием, студийные фотовспышки.

Импульсные газоразрядные лампы – это мощные источники света, спектральная характеристика которых близка к естественному дневному свету. Длительность импульса – период времени, в течение которого интенсивность импульса снижается до 50% от максимального значения и составляет 1/400 – 1/20000 с и короче.

Ведущее число – мощность фотовспышки, выраженная в условных единицах, равна произведению расстояния от фотовспышки до объекта съемки на диафрагменное число. Ведущее число зависит от энергии вспышки, угла рассеяния светового потока и конструкции отражателя. Обычно ведущее число указывается для фотоматериала чувствительностью ISO 100.

Зная ведущее число и расстояние от вспышки до объекта съемки можно определить необходимую для правильного экспонирования диафрагму по формуле:

Например, при ведущем числе 32 мы получим следующие параметры: диафрагма 8=32/4 (м), диафрагма 5,6=32/5,7 (м) или диафрагма 4=32/8 (м).

Количество света обратно пропорционально квадрату расстояния от источника света до объекта, поэтому для увеличения эффективного расстояния фотовспышки в 2 раза, при фиксированном значении диафрагмы, необходимо увеличить чувствительность фотоматериала в 4 раза (рис. 11).

Рис. 11. Первый закон освещенности

Например, при ведущем числе 10 и диафрагме 4 мы получим:

При ISO100 – эффективное расстояние =10/4=2,5 (м)

При ISO400 – эффективное расстояние =5 (м)

Эффект «красных глаз». При съемке людей со вспышкой их зрачки на снимке могут оказаться красными. Эффект «красных глаз» вызван отражением света испускаемого фотовспышкой от сетчатки на задней поверхности глаза, который возвращается прямо в объектив. Данный эффект характерен для встроенной вспышки из-за близкого расположения ее к оптической оси объектива (рис. 12).

Способы уменьшения эффекта «красных глаз»

Используя для фотосъемки компактную камеру, можно лишь уменьшить вероятность появления эффекта «красных глаз». Проблема также носит и субъективный характер – есть люди, у которых эффект «красных глаз» может появиться даже при съемках без вспышки…

Рис. 12. Схема образования эффекта «красных глаз»

Для снижения вероятности появления эффекта «красных глаз» существует ряд методов в основе которых лежит свойство глаза человека уменьшать размер зрачка при увеличении освещенности. Производится освещение глаз с помощью предварительной вспышки перед основным импульсом или яркой лампой на которую необходимо смотреть фотографируемому.

Единственный надежный способом борьбы с этим эффектом – использование внешней автономной фотовспышки с удлинителем, расположив ее оптическую ось примерно в 60 см от оптической оси объектива.

Транспортировка пленки. Современные пленочные фотокамеры снабжены встроенным моторным приводом, для транспортировки пленки внутри камеры. После каждого снимка пленка автоматически перематывается на следующий кадр и одновременно производится взвод затвора.

Существует два режима транспортировки пленки: покадровый и непрерывный. В покадровом режиме после нажатия на кнопку спуска затвора выполняется один снимок. В непрерывном режиме производится съемка серии кадров до тех пор, пока нажата кнопка спуска затвора. Обратная перемотка отснятой пленки – осуществляется фотоаппаратом автоматически.

Как работает фотоаппарат можно изучить еще в школе. Но знать конструктивные особенности интересно каждому владельцу фотокамеры. Основной принцип работы цифрового фотоаппарата можно выразить в нескольких словах: свет преображается в электричество. Все здесь служит для привлечения света, от кнопки пуск до линз.

Что же революционного с точки зрения света в цифровом фотоаппарате. Он преобразует свет в электрические заряды, которые становятся образом, запечатленным на экране. Как же это работает? Задача каждой детали фотоаппарата поймать отличное изображение. Но главное это свет.

Устройство и работа фотоаппарата

Первое что нужно для получения фото это источник света. Частицы света фотоны покидают источник света, отталкиваются от предмета и входят в камеру через несколько линз. Затем фотоны следуют по установленному пути. Целый ряд линз позволяет сделать максимально четкое изображение.

  1. Створки контролируют количество света, которое должно проникнуть внутрь через отверстие фотоаппарата.
  2. Пройдя сквозь диафрагму, линзы и войдя в отверстие, свет отталкивается от зеркала и направляется в .
  3. До этого свет преломляется, проходя сквозь призму, поэтому то мы и видим изображение в видоискателе не вверх ногами и если нас устраивает композиция, то мы нажимаем на кнопку.
  4. При этом зеркало подымается, и свет направляется внутрь, какую-то долю секунды свет направлен не на видоискатель, а в самое сердце фотоаппарата – .

Длительность этого действия зависит от скорости срабатывания створок. Они открываются на мгновение, когда свет должен воздействовать на сенсор света. Время может быть 1/4000 секунды. То есть в мгновение ока створки могут открыться и закрыться 1400 раз. Для этого существует две створки, когда первая открывается, то вторая закрывается. Таким образом, внутрь попадает чрезвычайно малое количество света. Это важный момент в понимании принципа работы цифрового фотоаппарата.

Теория обработки света

Так в чем же революционность цифровой камеры? Элемент, фиксирующий изображение, сенсор изображения (матрица) это решетка с плотной структурой, состоящей из крошечных сенсоров света. Ширина каждого всего 6 микрон – это 6 миллионных метра. 5 тысяч таких сенсоров могут поместиться на кончике остро заточенного карандаша.

Но сначала свет должен пройти через фильтр, который разделяет его на цвета: зеленый, красный и синий. Каждый сенсор света обрабатывает только один цвет. Когда в него ударяют фотоны, они поглощаются полупроводниковым материалом, из которого он сделан. На каждый поглощенный фотон сенсор света испускает электрическую частицу, она называется электрон. Энергия фотона передается электрону – это электрический заряд. И чем ярче изображение, тем сильнее электрический заряд. Таким образом, каждый электрический заряд обладает различной интенсивностью.

Затем печатная плата переводит эту информацию на язык компьютера, язык цифр и битов или последовательность единиц и нулей. Они представляют собой миллионы крошечных цветных точек, из которых и состоит фото – это пиксели. Чем больше пикселей в изображении, тем лучше разрешение. Другими словами это несколько миллионов микроскопических световых ловушек, которые вместе со всеми элементами фотоаппарата нацелены на одну задачу – преобразовать свет в электричество, что бы сделать прекрасные фотографии.



Дальше вся эта информация в цифровом виде подается в процессор, где она обрабатывается по определенным алгоритмам. Затем уже готовая фотография передается в память фотокамеры, где она и хранится и доступна для просмотра пользователю.

Так вкратце можно изобразить принцип работы цифрового зеркального фотоаппарата .

Устройство зеркальной камеры .

Как могут видеть мир? Что делает снимки резкими в наших камерах? Как вообще работает камера и фиксирует на пленку то что мы хотим сфотографировать? Конечно это вопросы утрированные. Камеры не могут видеть, камеры лишь отображают картинку через механизм фокусировки, которую в свою очередь уже видим мы. Так что давайте разберемся, что есть механизм фокусировки , как работают , каким образом происходит фокусировка на объекте съемки, какие камеры бывают по типу фокусировки и внутреннего устройства, разберемся в устройстве фотоаппаратов , и определим в чем плюсы, и в чем минусы, того или иного варианта устройства фотоаппарата .

Механизм фокусировки, это некое устройство в фотокамере , позволяющее нам правильно определять расстояние до снимаемого нами на камеру объекта. Этот механизм позволяет нам с вами видеть и в последствии фиксировать фотографируемую сцену в резкости на фотоноситель. Я конечно понимаю, что понятие резкость может быть весьма, и весьма, относительным. Тем не менее, при разных установках параметров съемки, именно это устройство в камере дает нам возможность:

    Определить расстояние до объекта

    Оценить масштабность сцены

    Задать правильные параметры съемки, чтоб не пролететь в ГРИП-е (для тех тко не знает что такое ГРИП, ждите следующий выпусков, мы будем рассматривать и это понятие.)

Одним из самых распространенных на сегодняшний день вариантов устройств фотокамер , это механизм зеркальной камеры(или правильней сказать устройство зеркальной камеры) . Да, да, наших с вами зеркалок, которые мы так любим и лелеем.

Итак, что есть зеркальный фотоаппарат? Это в первую очередь, фото камера, в которой объектив видоискателя, и объектив для захвата изображения один и тот же. Ниже я выкладываю рисунок, посредством которого, очень легко понять, по какому принципу устроены все зеркальные . При всем при этом, стоит отметить так же и тот факт, что с момента создания первого устройство фотоаппарата , его принципиальная схема ни как не изменилась. Свет проходит через отверстие, масштабируется и попадает на светочувствительный элемент внутри устройства фотоаппарата . Все блоки пропускающие свет к фотоносителю остались теми же. Единственным исключением стала замена фотопленки на цифровую фотоматрицу.

Итак по пунктам:

    Свет проходит через объектив устройства фотокамеры.

    После диафрагмы свет достигает зеркала, где по закону отражения уходит дальше.

    От зеркала свет отражаясь попадает через информационный экран (хотя он бывает не во всех зеркалках) в пентапризму.

    В пентапризме, отразившись о ее грани свет находит выход и попадает на линзу видоискателя, где мы собственно его видим нашим глазом.

(а вот вам картинка для прицельно общего представления устройства фотоаппарата зеркального )

Ну а теперь немного отличий пленочного и цифрового устройства зеркальных фотоаппаратов :

    Первое и самое что называется на виду лежащее, это носитель. В цифровой камере, это матрица электронная, а в пленочной — соответственно пленка.

    Второе, на сегодняшний день не настолько явное, но имеющее место быть в большинстве случаев, это площадь фотоносителя. В большинстве любительских и продвинутых, но не профессиональных камер, площадь матрицы существенно меньше, чем площадь пленочного кадра.

    Цифровой фотоаппарат позволяет после сделанного снимка, сразу его поглядеть и оценить, устройство пленочной камеры - зеркальной, этого сделать не позволяет, поскольку пленка это лишь носитель и одна из нескольких ступеней получения изображения кадра.

    Еще одним явным отличием, назову то, что большинство пленочных моделей зеркальных камер, это исключительно механические устройства, а вот камера цифровая работает за счет электропитания.

    Пункт из опыта съемки, на пленочный носитель, кадр лучше переэкспонировать, а вот для цифрового фотоаппарата, лучше будет недоэкспонированный кадр.

Ну что же, по устройству зеркальных камер пожалуй и все. В следующей части статьи мы рассмотрим устройство дальномерных камер.

P.S. Друзья, если статья понравилась вам или стала вам полезной. Сделайте и мне взаимное добро. Поделитесь ссылкой на статью на своих страничках «Вконтакте», «Одноклассниках», «Facebook», «Tweeter» и других страничках. Для этого нужно всего лишь нажать кнопки внизу страницы и следовать простым шагам инструкции. Так же приглашаю вас подписаться на мою рассылку, тогда вы точно не пропустите следующую, надеюсь интересную и полезную, статью. Форма подписки находится в верхнем правом углу страницы.