Компактный топливный элемент. Использование топливных элементов для защиты окружающей среды-утилизация попутного нефтяного газа

Ни кого уже не удивишь ни солнечными панелями, ни ветряками, которые во всех регионах мира вырабатывают электроэнергию. Но выработка от этих устройств не постоянна и приходится устанавливать резервные источники питания, либо подключаться к сети для получения электроэнергии в период, когда объекты ВИЭ не вырабатывают электроэнергию. Однако существуют установки, разработанные в 19 веке, которые используют «альтернативное» топливо для получения электроэнергии, т.е не сжигают газ или нефтепродукты. Такими установками являются топливные элементы.

ИСТОРИЯ СОЗДАНИЯ

Топливные элементы (ТЭ) или топливные ячейки были открыты еще в 1838-1839 году Уильямом Гроувом (Гроу, Грове), когда он изучал электролиз воды.

Справка: Электролиз воды - процесс разложения воды под действием электрического тока на молекулы водорода и кислорода

Отключив от электролитической ячейки батарею, он с удивлением обнаружил, что электроды начали поглощать выделившийся газ и вырабатывать ток. Открытие процесса электрохимического "холодного" горения водорода стало знаменательным событием в энергетике. В дальнейшем он создал аккумулятор Гроува. В этом устройстве был платиновый электрод, погруженный в азотную кислоту, и цинковый электрод в сульфате цинка. Он генерировал ток в 12 ампер и напряжение 8 вольт. Сам Гроу назвал эту конструкцию «мокрой батарейкой» . Затем он создал аккумулятор, используя два платиновых электрода. Один конец каждого электрода находился в серной кислоте, а другие концы запечатаны в контейнеры с водородом и кислородом. Между электродами был стабильный ток, внутри контейнеров увеличивалось количество воды. Гроу смог разложить и улучшить воду в этом устройстве.

«Аккумулятор Гроу»

(источник: Королевское сообщество Национального музея естественной истории)

Термин «топливный элемент» (англ. «Fuel Cell») появился лишь в 1889 году Л. Мондом и
Ч. Лангером, пытавшимися создать устройство для выработки электричества из воздуха и угольного газа.

КАК ЭТО РАБОТАЕТ?

Топливный элемент — относительно простое устройство . В нем есть два электрода: анод (отрицательный электрод) и катод (положительный электрод). На электродах происходит химическая реакция. Чтобы ее ускорить, поверхность электродов покрывается катализатором. ТЭ оснащены еще одним элементом — мембраной. Превращение химической энергии топлива непосредственно в электричество, происходит благодаря работе именно мембраны. Она отделяет две камеры элемента, в которые подают топливо и окислитель. Мембрана позволяет проходить из одной камеры в другую только протонам, которые получаются в результате расщепления топлива, на электроде, покрытом катализатором (электроны при этом пробегают по внешней цепи). Во второй камере протоны воссоединяются с электронами (и атомами кислорода), образуя воду.

Принцип работы водородного топливного элемента

На химическом уровне процесс превращения энергии топлива в электрическую энергию схож с обычным процессом горения (окисления).

При обычном горении в кислороде протекает окисление органического топлива, и химическая энергия топлива переходит в тепловую энергию. Посмотрим что происходи при окислении водорода кислородом в среде электролита и при наличии электродов.

Подавая водород к электроду, находящемуся в щелочной среде протекает химическая реакция:

2H 2 + 4OH - → 4H 2 O + 4e -

Как видно получим электроны, которые, проходя по внешней цепи, поступают на противоположный электрод, к которому поступает кислород и где проходит реакция:

4e- + O 2 + 2H 2 O → 4OH -

Видно, что результирующая реакция 2H 2 + O 2 → H 2 O - такая же, что и при обычном горении, но в топливном элементе получается электрический ток и частично тепло .

ВИДЫ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Классифицировать ТЭ принято по виду электролита использующемся для протекания реакции:

Отметим, что в топливных элементах в качестве горючего могут также применяться уголь, окись углерода, спирты, гидразин, другие органические вещества, а в качестве окислителей - воздух, перекись водорода, хлор, бром, азотная кислота и т.д.

КПД ТОПЛИВНОГО ЭЛЕМЕНТА

Особенностью топливных элементов является отсутствие жёсткого ограничения на КПД , как у тепловых машин.

Справка: КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами.

Поэтому КПД топливных элементов в теории может быть выше 100%. Многие улыбнулись и подумали «Вечный двигатель изобрели значит». Нет, тут стоит вернуться к школьному курсу химии. В основе топливного элемента лежит преобразование химической энергии в электрическую. Вот тут и возникают чудеса. Определённые химической реакции в процессе протекания могут поглощать теплоту из окружающей среды.

Справка: Эндотермические реакции — химические реакции, сопровождающиеся поглощением теплоты. Для эндотермических реакций изменение энтальпии и внутренней энергии имеют положительные значения (Δ H>0, Δ U>0), таким образом, продукты реакции содержат больше энергии, чем исходные компоненты.

Примером такой реакции может служить окисление водорода, которая и используется в большинстве топливных элементов. Поэтому теоретически КПД может больше 100%. Но сегодня топливные элементы в процессе работы нагреваются и не могут поглощать теплоту из окружающей среды.

Справка: Это ограничение накладывает второй закон термодинамики. Не возможен процесс передачи тепла от «холодного» тела к «горячему».

Плюс ко всему имеются потери, связанные с неравновесными процессами. Такими как: омические потери вследствие удельной проводимости электролита и электродов, активационная и концентрационная поляризация, диффузионные потери. Вследствие этого часть энергии, вырабатываемой в топливных элементах, превращается в тепловую. Поэтому топливные элементы не вечные двигатели и КПД их меньше 100%. Но их КПД больше, чем у остальных машин. Сегодня эффективность топливного элемента достигает 80% .

Справка: В сороковые годы английский инженер Т. Бэкон сконструировал и построил батарею топливных элементов общей мощностью 6 кВт и КПД 80 %, работающую на чистом водороде и кислороде, но отношение мощности к весу батареи оказалось слишком малым - такие элементы были непригодны для практического применения и слишком дорогими (источник: http://www.powerinfo.ru/).

ПРОБЛЕМЫ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Практически все топливные элементы в качестве топлива используют водород, так что возникает логичный вопрос: «Где его взять?»

Кажется, открыли топливный элемент в результате электролиза, вот и можно использовать водород выделившейся в результате электролиза. Но давайте разберем этот процесс подробнее.

Согласно закону Фарадея: количество вещества, которое окисляется на аноде или восстанавливается на катоде, пропорционально количеству электричества, прошедшего через электролит. Значит, чтобы получить больше водорода необходимо потратить больше электроэнергии. Существующие методы электролиза воды проходят с кпд меньше единицы. Затем полученный водород мы используем в ТЭ, где кпд также меньше единицы. Следовательно мы затратим энергии больше, чем сможем выработать.

Конечно, можно использовать водород, получаемый из природного газа. Этот способ получения водорода остается самым дешевым и популярным. В настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Но возникает проблема с хранением и транспортировкой водорода. Водород имеет маленькую плотность (один литр водорода весит 0,0846 гр ), поэтому чтобы транспортировать его на дальние расстояния его необходимо сжимать. А это дополнительные энергетические и денежные затраты. Так же не стоит забывать о безопасности.

Впрочем, тут тоже есть решение - в качестве источника водорода можно применять жидкое углеводородное топливо. Например, этиловый или метиловый спирт. Правда, тут уже требуется специальное дополнительное устройство - топливный преобразователь, при высокой температуре (для метанола это будет где-то 240°С) преобразующее спирты в смесь газообразных H 2 и CO 2 . Но в этом случае уже сложнее думать о портативности - такие устройства хорошо применять в качестве стационарных или автомобильных генераторов, а вот для компактной мобильной техники нужно что-нибудь менее громоздкое.

Катализатор

Для повышения протекания реакции в ТЭ поверхность анода обычно катализатором. До не давнего времени в качестве катализатора использовалась платина. Поэтому стоимость топливного элемента была высока. Во-вторых, платина относительно редкий металл. По мнению специалистов, при промышленном производстве топливных элементов разведанные запасы платины закончатся через 15-20 лет. Но ученые всего мира пытаются заменить платину на другие материалы. Кстати некоторые из них достигли неплохих результатов. Так китайские ученые заменили платину на окисел кальция (источник: www.cheburek.net).

ИСПОЛЬЗОВАНИЕ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Впервые топливный элемент в автотехники испытали в 1959 г. Трактор Элис-Чемберз, использовал для работы 1008 аккумуляторов. Топливом являлась смесь газов, в основном пропана и кислорода.

Источник: http://www.planetseed.com/

С середины 60-ых в разгар «космической гонки» топливными элементами заинтересовались создатели космических аппаратов. Работа тысяч ученых и инженеров позволила выйти на новый уровень, и в 1965г. топливные элементы был испытаны в США на космическом корабле "Джемини-5", а в дальнейшем - на кораблях "Аполлон" для полетов на Луну и по программе "Шатл". В СССР топливные элементы разрабатывали в НПО "Квант", тоже для использования в космосе (источник: http://www.powerinfo.ru/).

Так как в топливном элементе конечным продуктом сгорания водорода является вода, то они считаются наиболее чистыми с точки зрения влияния на окружающую среду. Поэтому свою популярность ТЭ стали приобретать на фоне всеобщей заинтересованности в экологии.

Уже в настоящее время производители автомобилей, такие как «Honda», «Ford», «Nissan» и «Mercedes-Benz» создали автомобили работающие на водородных топливных элементах.

Mercedes-Benz - Ener-G-Force, работающий на водороде

При использовании автомобилей на водороде, решается проблема с хранением водорода. Строительство заправок с водородом позволит получить возможность заправки в любом месте. Тем более заправлять автомобиль водородом быстрее, чем заряжать электромобиль на заправке. Но при реализации подобных проектов столкнулись с проблемой как у электромобилей. Люди готовы «пересесть» на автомобиль на водороде, если будет инфраструктура для них. А строительство заправок начнется, если будет достаточное количество потребителей. Поэтому опять пришли к дилемме яйца и курицы.

Широкое применение топливные элементы нашли в мобильных телефонах и ноутбуках. Уже прошло то время когда телефон заряжали раз в неделю. Сейчас телефон заряжается, чуть ли не каждый день, а ноутбук без сети работает 3-4 часа. Поэтому производители мобильной техники решили синтезировать топливный элемент с телефонами и ноутбуками для зарядки и работы. Например, компания «Toshiba» в 2003г. продемонстрировала готовый прототип метанолового топливного элемента. Он дает мощность порядка 100мВт. Одной заправки в 2 кубика концентрированного (99,5%) метанола достаточно на 20 часов работы МРЗ-плеера. Опять же, та же «Toshiba» демонстрировала элемент для питания ноутбуков размером 275x75x40мм, дающий возможность компьютеру работать в течение 5 часов от одной заправки.

Но некоторые производители пошли дальше. Компания «PowerTrekk» выпустила зарядное устройство с одноименным названием. PowerTrekk - первое зарядное водяное устройство в мире. Использовать его очень легко. В PowerTrekk необходимо добавить воды, чтобы обеспечить мгновенную подачу электричества через шнур USB. Данный топливный элемент содержит кремниевый порошок и силицид натрия (NaSi) при смешивании с водой, данное сочетание генерирует водород. Водород смешивается с воздухом в самом топливном элементе, и он преобразует водород в электричество посредством его мембранно-протонного обмена, без вентиляторов или насосов. Купить такое портативное зарядное устройство можно за 149 € (

Топливная ячейка (Fuel Cell ) — это устройство, превращающее химическую энергию в электрическую. Она похожа по принципу действия на обычную батарейку, но отличается тем, что для ее работы необходима постоянная подача извне веществ для протекания электрохимической реакции. В топливные элементы подаются водород и кислород, а на выходе получают электричество, воду и тепло. К их достоинствам относится экологическая чистота, надёжность, долговечность и простота эксплуатации. В отличие от обычных аккумуляторов электрохимические преобразователи могут работать практически неограниченное время, пока поступает топливо. Их не надо часами заряжать до полной зарядки. Более того, сами ячейки могут заряжать АКБ во время стоянки автомобиля с выключенным мотором.

Наибольшее распространение в водородомобилях получили топливные ячейки с протонной мембраной (PEMFC) и твердооксидные топливные ячейки (SOFC).

Топливная ячейка с протонной обменной мембраной работает следующим образом. Между анодом и катодом находятся специальная мембрана и катализатор с платиновым покрытием. На анод поступает водород, а на катод - кислород (например, из воздуха). На аноде водород при помощи катализатора разлагается на протоны и электроны. Протоны водорода проходят через мембрану и попадают на катод, а электроны отдаются во внешнюю цепь (мембрана их не пропускает). Полученная таким образом разность потенциалов приводит к возникновению электрического тока. На стороне катода протоны водорода окисляются кислородом. В результате возникает водяной пар, который и является основным элементом выхлопных газов автомобиля. Обладая высоким КПД, РЕМ-элементы имеют один существенный недостаток - для их работы требуется чистый водород, хранение которого является достаточно серьезной проблемой.

Если будет найден такой катализатор, который заменит в этих ячейках дорогую платину, тогда сразу же будет создан дешевый топливный элемент для получения электроэнергии, а значит, мир избавится от нефтяной зависимости.

Твердооксидные ячейки

Твердооксидные ячейки SOFC значительно менее требовательны к чистоте топлива. Кроме того, благодаря использованию РОХ-реформера (Partial Oxidation - частичное окисление) такие ячейки в качестве топлива могут потреблять обычный бензин. Процесс превращения бензина непосредственно в электричество выглядит следующим образом. В особом устройстве - реформере при температуре около 800 °С бензин испаряется и разлагается на составные элементы.

При этом выделяется водород и углекислый газ. Далее, также под воздействием температуры и при помощи непосредственно SOFС (состоящих из пористого керамического материала на основе окиси циркония), водород окисляется кислородом, находящимся в воздухе. После получения из бензина водорода процесс протекает далее по описанному выше сценарию, с одной лишь разницей: топливная ячейка SOFC, в отличие от устройств, работающих на водороде, менее чувствительна к посторонним примесям в исходном топливе. Так что качество бензина не должно повлиять на работоспособность топливного элемента.

Высокая рабочая температура SOFC (650–800 градусов) является существенным недостатком, процесс прогрева занимает около 20 минут. Зато избыточное тепло проблемы не представляет, поскольку оно полностью выводится оставшимся воздухом и выхлопными газами, производимыми реформером и самой топливной ячейкой. Это позволяет интегрировать SOFC-систему в автомобиль в виде самостоятельного устройства в термически изолированном корпусе.

Модульная структура позволяет добиваться необходимого напряжения путем последовательного соединения набора стандартных ячеек. И, возможно, самое главное с точки зрения внедрения подобных устройств - в SOFC нет весьма дорогостоящих электродов на основе платины. Именно дороговизна этих элементов является одним из препятствий в развитии и распространении технологии PEMFC.

Виды топливных ячеек

В настоящее время существуют такие виды топливных ячеек:

  • AFC – Alkaline Fuel Cell (щелочная топливная ячейка);
  • PAFC – Phosphoric Acid Fuel Cell (фосфорно-кислотная топливная ячейка);
  • PEMFC – Proton Exchange Membrane Fuel Cell (топливная ячейка с протонной обменной мембраной);
  • DMFC – Direct Methanol Fuel Cell (топливная ячейка с прямым распадом метанола);
  • MCFC – Molten Carbonate Fuel Cell (топливная ячейка расплавленного карбоната);
  • SOFC – Solid Oxide Fuel Cell (твердооксидная топливная ячейка).

Топливный элемент - это электрохимическое устройство преобразования энергии, которое за счет химической реакции преобразовывает водород и кислород в электричество. В результате этого процесса образуется вода и выделяется большое количество тепла. Топливный элемент очень похож на аккумулятор, который можно зарядить и затем использовать накопленную электрическую энергию.
Изобретателем топливного элемента считают Вильяма Р. Грува, который изобрел его еще в 1839 г. В этом топливном элементе в качестве электролита использовался раствор серной кислоты, а в качестве топлива - водород, который соединялся с кислородом в среде окислителя. Следует отметить, что до недавнего времени топливные элементы использовались только в лабораториях и на космических аппаратах.
В перспективе топливные элементы смогут составить конкуренцию многим другим системам для преобразования энергии (включая газовую турбину на электростанциях) ДВС в автомобиле и электрическим батарейкам в портативных устройствах. Двигатели внутреннего сгорания сжигают топливо и используют давление, созданное расширением выделяющихся при сгорании газов, для выполнения механической работы. Аккумуляторные батареи хранят электрическую энергию, преобразовывая ее затем в химическую энергию, которая при необходимости может быть преобразована обратно в электрическую энергию. Потенциально топливные элементы очень эффективны. Еще в 1824 г. французский ученый Карно доказал, что циклы сжатия-расширения двигателя внутреннего сгорания не могут обеспечить КПД преобразования тепловой энергии (являющейся химической энергией сгорающего топлива) в механическую выше 50%. Топливный элемент не имеет движущихся частей (по крайней мере, внутри самого элемента), и поэтому они не подчиняются закону Карно. Естественно, они будут иметь больший, чем 50%, КПД и особенно эффективны при малых нагрузках. Таким образом, автомобили с топливными элементами готовы стать (и уже доказали это) более экономичными, чем обычные автомобили в реальных условиях движения.
Топливный элемент обеспечивает выработку электрического тока постоянного напряжения, который может использоваться для привода в действие электродвигателя, приборов системы освещения и других электросистем в автомобиле. Имеются несколько типов топливных элементов, различающихся используемыми химическими процессами. Топливные элементы обычно классифицируются по типу используемого в них электролита, который они используют. Некоторые типы топливных элементов являются перспективными для применения их в качестве силовых установок электростанций, а другие могут быть полезны для маленьких портативных устройств или для привода автомобилей.
Щелочной топливный элемент - это один из самых первых разработанных элементов. Они использовались в космической программе США, начиная с 1960-х гг. Такие топливные элементы очень восприимчивы к загрязнению и поэтому они требуют очень чистого водорода и кислорода. Кроме того, они очень дороги, и поэтому этот тип топливного элемента, скорее всего, не найдет широкого применения на автомобилях.
Топливные элементы на основе фосфорной кислоты могут найти применение в стационарных установках невысокой мощности. Они работают при довольно высокой температуре и поэтому требуют длительного времени для своего прогрева, что также делает их неэффективными для использования в автомобилях.
Твердоокисные топливные элементы лучше подходят для крупных стационарных генераторов электроэнергии, которые могли бы обеспечивать электричеством заводы или населенные пункты. Этот тип топливного элемента работает при очень высоких температурах (около 1000 °C). Высокая рабочая температура создает определенные проблемы, но, с другой стороны, имеется преимущество - пар, произведенный топливным элементом, может быть направлен в турбины, чтобы выработать большее количество электричества. В целом это улучшает суммарную эффективность системы.
Одна из наиболее многообещающих систем - протонно-обменный мембранный топливный элемент - ПОМТЭ (PEMFC - Protone Exchange Membrane Fuel Cell). В настоящий момент этот тип топливного элемента является наиболее перспективным, поскольку он может приводить в движение автомобили, автобусы и другие транспортные средства.

Химические процессы в топливном элементе

В топливных элементах применяется электрохимический процесс соединения водорода с кислородом, получаемым из воздуха. Как и в аккумуляторных батареях, в топливных элементах используются электроды (твердые электрические проводники) находящиеся в электролите (электрически проводимая среда). Когда в контакт с отрицательным электродом (анодом) входят молекулы водорода, последние разделяются на протоны и электроны. Протоны проходят через протонно-обменную мембрану (ПОМ) на положительный электрод (катод) топливного элемента, производя электричество. Происходит химическое соединение молекул водорода и кислорода с образованием воды, как побочного продукта этой реакции. Единственный вид выбросов от топливного элемента - водяной пар.
Электричество, произведенное топливными элементами, может использоваться в электрической трансмиссии автомобиля (состоит из преобразователя электроэнергии и асинхронного двигателя переменного тока) для получения механической энергии для привода в движение автомобиля. Работа преобразователя электроэнергии заключается в преобразовании постоянного электрического тока, произведенного топливными элементами, в переменный ток, на котором работает тяговый электродвигатель транспортного средства.


Схема устройства топливного элемента с протонно-обменной мембраной :
1 - анод;
2 - протонно-обменная мембрана (РЕМ);
3 - катализатор (красный);
4 - катод

Протонно-обменная мембрана топливного элемента (PEMFC) использует одну из самых простых реакций любого топливного элемента.


Отдельная ячейка топливного элемента

Рассмотрим, как устроен топливный элемент. Анод, отрицательный полюс топливной ячейки, проводит электроны, которые освобождены от водородных молекул, чтобы они могли использоваться во внешнем электрическом контуре (цепи). Для этого в нем гравируются каналы, распределяющие водород равномерно по всей поверхности катализатора. Катод (положительный полюс топливной ячейки) имеет гравированные каналы, которые распределяют кислород по поверхности катализатора. Он также проводит электроны назад от внешнего контура (цепи) до катализатора, где они могут соединиться с водородными ионами и кислородом с образованием воды. Электролит - протоннообменная мембрана. Это особый материал, похожий на обычный пластик, но обладающий способностью пропускать положительно заряженные ионы и блокировать проход электронов.
Катализатор - специальный материал, который облегчает реакцию между кислородом и водородом. Катализатор обычно изготавливается из платинового порошка, нанесенного очень тонким слоем на углеродистую бумагу или ткань. Катализатор должен быть шероховатым и пористым, для того чтобы его поверхность могла максимально соприкасаться с водородом и кислородом. Покрытая платиной сторона катализатора находится перед протонно-обменной мембраной (ПОМ).
Газообразный водород (Н 2) подается в топливный элемент под давлением со стороны анода. Когда молекула H2 входит в контакт с платиной на катализаторе, она разделяется на две части, два иона (H+) и два электрона (e–). Электроны проводятся через анод, где они проходят через внешний контур (цепь), выполняя полезную работу (например, приводя в действие электродвигатель) и возвращаются со стороны катода топливного элемента.
Тем временем со стороны катода топливного элемента газообразный кислород (O 2) продавливается через катализатор, где он формирует два атома кислорода. Каждый из этих атомов имеет сильный отрицательный заряд, который обеспечивает притяжение двух ионов H+ через мембрану, где они объединяются с атомом кислорода и двумя электронами из внешнего контура (цепи) с образованием молекулы воды (H 2 O).
Эта реакция в отдельном топливном элементе производит мощность приблизительно 0,7 Вт. Чтобы поднять мощность до требуемого уровня, необходимо объединить много отдельных топливных элементов, чтобы сформировать батарею топливных элементов.
Топливные элементы на основе ПОМ работают при относительно низкой температуре (около 80 °С), а это означает, что они могут быть быстро нагреты до рабочей температуры и не требуют дорогих систем охлаждения. Постоянное совершенствование технологий и материалов, используемых в этих элементах, позволили приблизить их мощность к уровню, когда батарея таких топливных элементов, занимающая небольшую часть багажника автомобиля, может обеспечить энергию, необходимую для привода автомобиля.
На протяжении последних лет большинство из ведущих мировых производителей автомобилей инвестируют большие средства в разработку конструкций автомобилей, использующих топливные элементы. Многие уже продемонстрировали автомобили на топливных элементах с удовлетворительными мощностными и динамическими характеристиками, хотя они имели довольно высокую стоимость.
Совершенствование конструкций таких автомобилей происходит очень интенсивно.


Автомобиль на топливных элементах, использует силовую установку, расположенную под полом автомобиля

Автомобиль NECAR V изготовлен на базе автомобиля Mercedes-Benz А-класса, причем вся силовая установка вместе с топливными элементами расположена под полом автомобиля. Такое конструктивное решение дает возможность разместить в салоне автомобиля четырех пассажиров и багаж. Здесь в качестве топлива для автомобиля используется не водород, а метанол. Метанол с помощью реформера (устройства, перерабатывающего метанол в водород), преобразуется в водород, необходимый для питания топливного элемента. Использование реформера на борту автомобиля дает возможность использовать в качестве топлива практически любые углеводороды, что позволяет заправлять автомобиль на топливных элементах, используя имеющуюся сеть заправок. Теоретически топливные элементы не производят ничего, кроме электричества и воды. Преобразование топлива (бензина или метанола) в водород, необходимый для топливного элемента, несколько снижает экологическую привлекательность такого автомобиля.
Компания Honda, которая занимается топливными элементами с 1989 г., изготовила в 2003 г. небольшую партию автомобилей Honda FCX-V4 с протонно-обменными топливными элементами мембранного типа фирмы Ballard. Эти топливные элементы вырабатывают 78 кВт электрической мощности, а для привода ведущих колес используются тяговые электродвигатели мощностью 60 кВт и с крутящим моментом 272 Н м. Автомобиль на топливных элементах, по сравнению с автомобилем традиционной схемы, имеет массу примерно на 40 % меньшую, что обеспечивает ему отличную динамику, а запас сжатого водорода дает возможность пробега до 355 км.


Автомобиль Honda FСX использует для движения электрическую энергию, получаемую с помощью топливных элементов
Автомобиль Honda FCX - первый в мире автомобиль на топливных элементах, который прошел государственную сертификацию в США. Автомобиль сертифицирован по нормам ZEV - Zero Emission Vehicle (автомобиль с нулевым загрязнением). Компания Honda не собирается пока продавать эти автомобили, а передает порядка 30 автомобилей в лизинг в шт. Калифорния и г. Токио, где уже существует инфраструктура водородных заправок.


Концептуальный автомобиль Hy Wire компании General Motors имеет силовую установку на топливных элементах

Большие исследования по разработке и созданию автомобилей на топливных элементах проводит компания General Motors.


Шасси автомобиля Hy Wire

При создании концептуального автомобиля GM Hy Wire было получено 26 патентов. Основу автомобиля составляет функциональная платформа толщиной 150 мм. Внутри платформы располагаются баллоны для водорода, силовая установка на топливных элементах и системы управления автомобиля, использующие новейшие технологии электронного управления по проводам. Шасси автомобиля Hy Wire представляет собой платформу небольшой толщины, в которой заключены все основные элементы конструкции автомобиля: баллоны для водорода, топливные элементы, аккумуляторы, электродвигатели и системы управления. Такой подход к конструкции дает возможность в процессе эксплуатации менять кузовы автомобиля Компания также проводит испытания опытных автомобилей Opel на топливных элементах и проектирует завод по производству топливных элементов.


Конструкция «безопасного» топливного бака для сжиженного водорода :
1 - заправочное устройство;
2 - наружный бак;
3 - опоры;
4 - датчик уровня;
5 - внутренний бак;
6 - заправочная линия;
7 - изоляция и вакуум;
8 - нагреватель;
9 - крепежная коробка

Проблеме использования водорода в качестве топлива для автомобилей уделяет много внимания компания BMW. Совместно с фирмой Magna Steyer, известной своими работами по использованию сжиженного водорода в космических исследованиях, BMW разработала топливный бак для сжиженного водорода, который может использоваться на автомобилях.


Испытания подтвердили безопасность использования топливного бака с жидким водородом

Компания провела серию испытаний на безопасность конструкции по стандартным методикам и подтвердила ее надежность.
В 2002 г. на автосалоне во Франкфурте-на-Майне (Германия) был показан автомобиль Mini Cooper Hydrogen, который использует в качестве топлива сжиженный водород. Топливный бак этого автомобиля занимает такое же место, как и обычный бензобак. Водород в этом автомобиле используется не для топливных элементов, а в качестве топлива для ДВС.


Первый в мире серийный автомобиль с топливным элементом вместо аккумуляторной батареи

В 2003 г. фирма BMW объявила о выпуске первого серийного автомобиля с топливным элементом BMW 750 hL. Батарея топливных элементов используется вместо традиционного аккумулятора. Этот автомобиль имеет 12-цилиндровый двигатель внутреннего сгорания, работающий на водороде, а топливный элемент служит альтернативой обычному аккумулятору, обеспечивая возможность работы кондиционера и других потребителей электроэнергии при длительных стоянках автомобиля с неработающим двигателем.


Заправка водородом производится роботом, водитель не участвует в этом процессе

Эта же фирма BMW разработала также роботизированные заправочные колонки, которые обеспечивают быструю и безопасную заправку автомобилей сжиженным водородом.
Появление в последние годы большого количества разработок, направленных на создание автомобилей, использующих альтернативные виды топлива и альтернативные силовые установки, свидетельствует о том, что двигатели внутреннего сгорания, которые доминировали на автомобилях в течение прошедшего столетия, в конце концов уступят дорогу более чистым экологически, эффективным и бесшумным конструкциям. Их широкое распространение на данный момент сдерживается не техническими, а, скорее, экономическими и социальными проблемами. Для их широкого применения необходимо создать определенную инфраструктуру по развитию производства альтернативных видов топлива, созданию и распространению новых заправочных станций и по преодолению ряда психологических барьеров. Использование водорода в качестве автомобильного топлива потребует решения вопросов хранения, доставки и распределения, с принятием серьезных мер безопасности.
Теоретически водород доступен в неограниченном количестве, но его производство является весьма энергоемким. Кроме того, для перевода автомобилей на работу на водородном топливе необходимо произвести два больших изменения системы питания: сначала перевести ее работу с бензина на метанол, а затем, в течение некоторого времени и на водород. Пройдет еще некоторое время, перед тем как этот вопрос будет решен.

Топливный элемент - что это такое? Когда и как он появился? Зачем он нужен и почему о них в наше время так часто говорят? Каковы его область примения, характеристики и свойства? Неудержимый прогресс требует ответов на все эти вопросы!

Что такое топливный элемент?

Топливный элемент - это химический источник тока или электрохимический генератор, это устройство для преобразования химической энергии в электрическую. В современной жизни химические источники тока используются повсеместно и представляют собой аккумуляторы мобильных телефонов, ноутбуков, КПК, а также аккумуляторные батареи в автомобилях, источниках бесперебойного питания и т.п. Следующим этапом развития данной области будет повсеместное распространение топливных элементов и это уже никем неопровергаемый факт.

История топливных элементов

История топливных элементов - это ещё одна история о том, как некогда открытые на Земле свойства вещества нашли широкое применение далеко в космосе, а на рубеже тысячелетий вернулись с небес на Землю.

Всё началось в 1839 году , когда немецкий химик Кристиан Шёнбейн опубликовал принципы работы топливного элемента в «Философском журнале». В этом же году англичанин, выпускник Оксфорда, Уильям Роберт Гроув сконструировал гальванический элемент, в последствии названный гальваническим элементом Гроува, он же признан первым топливным элементом. Само название "топливный элемент" было подарено изобретению в год его юбилея - в 1889 году. Людвиг Монд и Карл Лангер - авторы термина.

Немного ранее, в 1874г., Жюль Верн в романе «Таинственный остров» предсказал нынешнюю энергетическую ситуацию, написав, что «Вода в один прекрасный день будет использоваться в качестве топлива, применяться будут водород и кислород, из которых она состоит».

Тем временем, новая технология электроснабжения постепенно совершенствовалась, а начиная с 50-х годов XX века уже и года не проходило без анонсов новейших изобретений в этой области. В 1958 году в США появился первый трактор, работающий на топливных элементах, в 1959г. вышел в свет 5кВт-ный источник питания для сварочной машины, и т.д. В 70-х годах водородные технологии взлетели в космос: появились самолёты и ракетные двигатели на водороде. В 60-х годах РКК "Энергия"разрабатывала топливные элементы для советской лунной программы. Программа "Буран" также не обошлась без них: были разработаны щелочные 10кВт-ные топливные элементы. А ближе к концу века топливные элементы пересекли нулевую высоту над уровнем моря - на их основе разработано электроснабжение немецкой подводной лодки. Возвращаясь на Землю, в 2009 году в США запустили в эксплуатацию первый локомотив. Естественно, на топливных элементах.

Во всей прекрасной истории топливных элементов интересно то, что колесо по-прежнему остается неимеющим аналогов в природе изобретением человечества. Дело в том, что по своему устройству и принципу действия топливные элементы аналогичны биологической клетке, которая, по сути, представляет собой миниатюрный водородно-кислородный топливный элемент. В итоге человек в очередной раз изобрел то, чем природа пользуется уже миллионы лет.

Принцип работы топливных элементов

Принцип работы топливных элементов очевиден даже из школьной программы по химии и именно он был заложен в опытах Уильяма Гроува 1839 года. Всё дело в том, что процесс электролиза воды (диссоциации воды) является обратимым. Как верно то, что, при пропускании электрического тока через воду, последняя расщепляется на водород и кислород, так верно и обратное: водород и кислород можно соединить с получением воды и электричества. В опыте Гроува два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходила медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Простейший топливный элемент состоит из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды. Водород поступает на одну сторону (анод), а кислород (воздух) - на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

2H 2 → 4H + + 4e -

где H 2 - двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H + - ионизированный водород (протон); е - - электрон.

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

4H + + 4e - + O 2 → 2H 2 O

Суммарная реакция в топливном элементе записывается так:

2H 2 + O 2 → 2H 2 O

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка):

В своей работе топливные элементы используют водородное топливо и кислород. Проще всего с кислородом - он забирается из воздуха. Водород может подаваться непосредственно из некой ёмкости или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта - метанола). В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Характеристики топливных элементов

    Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:

    • они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию),

      химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке),

      они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).

    Каждый топливный элемент создаёт напряжение в 1В . Большее напряжение достигается последовательным их соединением. Увеличение мощности (тока) реализуется через параллельное соединение каскадов из последовательно соединенных топливных элементов.

    У топливных элементов нет жёсткого ограничения на КПД , как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).

    Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42%, чаще же составляет порядка 35-38%. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80% ,

    КПД почти не зависит от коэффициента загрузки ,

    Ёмкость в несколько раз выше , чем в существующих аккумуляторах,

    Полное отсутствие экологически вредных выбросов . Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).

Виды топливных элементов

Топливные элементы классифицируются по следующим признакам:

    по используемому топливу,

    по рабочему давлению и температуре,

    по характеру применения.

В целом, выделяют следующие типы топливных элементов :

    Твердооксидный топливный элемент (Solid-oxide fuel cells - SOFC);

    Топливный элемент с протонообменной мембраной (Proton-exchange membrane fuel cell - PEMFC);

    Обратимый топливный элемент (Reversible Fuel Cell - RFC);

    Прямой метанольный топливный элемент (Direct-methanol fuel cell - DMFC);

    Расплавной карбонатный топливный элемент (Molten-carbonate fuel cells - MCFC);

    Фосфорнокислый топливный элемент (Phosphoric-acid fuel cells - PAFC);

    Щелочной топливный элемент (Alkaline fuel cells - AFC).

Одним из типов топливных элементов, работающих при нормальных температурах и давлениях с использованием водорода и кислорода, являются элементы с ионообменной мембраной. Образующаяся вода не растворяет твердый электролит, стекает и легко отводится.

Проблемы топливных элементов

    Главная проблема топливных элементов связана с необходимостью наличия "упакованного" водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H 2 S (сероводород), которые отравляют катализатор.

    Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.

    Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона - до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол - достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

За топливными элементами - будущее!

Наконец, об очевидности большого будущего топливных элементов говорит тот факт, что международная организация IEC (International Electrotechnical Commission), определяющая индустриальные стандарты для электронных устройств, уже объявила о создании рабочей группы для разработки международного стандарта на миниатюрные топливные элементы.

Топливный элемент - устройство, эффективно вырабатывающее тепло и постоянный ток в результате электрохимической реакции и использующее богатое водородом топливо. По принципу работы он схож с батареей. Конструктивно топливный элемент представлен электролитом. Чем он примечателен? В отличие от тех же батарей, топливные элементы на водороде не накапливают электрическую энергию, не нуждаются в электричестве для повторной зарядки и не разряжаются. Выработка электроэнергии ячейками продолжается до тех пор, пока у них имеется запас воздуха и топлива.

Особенности

Отличием топливных ячеек от прочих генераторов электроэнергии является то, что за время работы они не сжигают топливо. Ввиду такой особенности они не нуждаются в роторах высокого давления, не издают громкого шума и вибраций. Электричество в топливных элементах вырабатывается в результате бесшумной электрохимической реакции. Химическая энергия топлива в таких устройствах преобразуется напрямую в воду, тепло и электричество.

Топливные элементы отличаются высокой эффективностью и не производят большого количества парниковых газов. Продуктом выброса при работе ячеек являются небольшое количество воды в виде пара и углекислого газа, который не выделяется в случае, если в качестве топлива выступает чистый водород.

История появления

В 1950-1960-х годах возникшая потребность NASA в источниках энергии для длительных космических миссий спровоцировала одну из наиболее ответственных задач для существовавших на тот момент топливных элементов. Щелочные элементы используют в качестве топлива кислород и водород, которые в ходе электрохимической реакции преобразуются в побочные продукты, полезные во время космического полета - электричество, воду и тепло.

Топливные элементы впервые были открыты в начале XIX века - в 1838 году. В это же время появились первые сведения об их эффективности.

Работа над топливными элементами, использующими щелочные электролиты, началась в конце 1930-х годов. Ячейки с никелированными электродами под высоким давлением были изобретены только к 1939 году. Во время Второй Мировой войны для британских подлодок разрабатывались топливные элементы, состоящие из щелочных ячеек диаметром около 25 сантиметров.

Интерес к ним возрос в 1950-80-х годах, характеризующихся нехваткой нефтяного топлива. Страны мира начали заниматься вопросами загрязнения воздуха и окружающей среды, стремясь разработать экологически безопасные способы получения электроэнергии. Технология производства топливных ячеек на сегодняшний день переживает активное развитие.

Принцип работы

Тепло и электроэнергия вырабатываются топливным ячейками в результате электрохимической реакции, проходящей с использованием катода, анода и электролита.

Катод и анод разделены проводящим протоны электролитом. После поступления кислорода на катод и водорода на анод запускается химическая реакция, результатом которой становятся тепло, ток и вода.

Диссоциирует на катализаторе анода, что приводит к потере им электронов. Ионы водорода поступают к катоду через электролит, одновременно электроны проходят по внешней электрической сети и создают постоянный ток, который используется для питания оборудования. Молекула кислорода на катализаторе катода объединяется с электроном и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Типы

Выбор конкретного вида топливной ячейки зависит от области ее применения. Все топливные элементы подразделяются на две основные категории - высокотемпературные и низкотемпературные. Вторые в качестве топлива используют чистый водород. Подобные устройства, как правило, требуют переработки первичного топлива в чистый водород. Процесс осуществляется с использованием специального оборудования.

Высокотемпературные топливные элементы не нуждаются в подобном, поскольку они преобразуют топливо при повышенных температурах, что исключает необходимость создания водородной инфраструктуры.

Принцип работы топливных элементов на водороде основан на превращении химической энергии в электрическую без малоэффективных процессов горения и трансформации тепловой энергии в механическую.

Общие понятия

Водородные топливные элементы представляют собой электрохимические устройства, вырабатывающие электроэнергию в результате высокоэффективного "холодного" горения топлива. Различают несколько типов подобных приборов. Наиболее перспективной технологией считаются водород-воздушные топливные элементы, оснащенные протонообменной мембранной PEMFC.

Протонпроводящая полимерная мембрана предназначена для разделения двух электродов - катода и анода. Каждый из них представлен угольной матрицей с нанесенным на нее катализатором. диссоциирует на катализаторе анода, отдавая электроны. Катионы проводятся к катоду через мембрану, однако электроны передаются во внешнюю цепь, поскольку мембрана не предназначена для передачи электронов.

Молекула кислорода на катализаторе катода объединяется с электроном из электрической цепи и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Топливные элементы на водороде используются для изготовления мембранно-электродных блоков, которые выступают в качестве основных генерирующих элементов энергетической системы.

Преимущества водородных топливных ячеек

Среди них следует выделить:

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Область применения

Благодаря высокому КПД топливные элементы на водороде применяются в различных областях:

  • Портативные зарядные устройства.
  • Энергоснабжающие системы для БПЛА.
  • Источники бесперебойного питания.
  • Прочие устройства и оборудование.

Перспективы водородной энергетики

Повсеместное использование топливных элементов на перекиси водорода будет возможно только после создания эффективного способа получения водорода. Для введения технологии в активное использование требуются новые идеи, при этом большие надежды возлагаются на концепцию биотопливных элементов и нанотехнологии. Некоторые компании сравнительно недавно выпустили эффективные катализаторы на основе различных металлов, одновременно с чем появились сведения о создании топливных ячеек без мембран, что позволило значительно удешевить производство и упростить конструкцию подобных устройств. Преимущества и характеристики топливных элементов на водороде не перевешивают их основного недостатка - высокой стоимости, особенно в сравнении с углеводородными устройствами. На создание одной водородной энергоустановки требуется минимум 500 тысяч долларов.

Как собрать топливный элемент на водороде?

Топливную ячейку небольшой мощности можно создать самостоятельно в условиях обычной домашней или школьной лаборатории. В качестве материалов используется старый противогаз, куски оргстекла, водный раствор этилового спирта и щелочь.

Корпус топливного элемента на водороде своими руками создается из оргстекла толщиной не менее пяти миллиметров. Перегородки между отсеками могут быть меньшей толщины - порядка 3 миллиметров. Оргстекло склеивается специальным клеем, изготавливаемым из хлороформа либо дихлорэтана и стружки из оргстекла. Все работы производятся только при работающей вытяжке.

В наружной стенке корпуса просверливается отверстие диаметром 5-6 сантиметров, в которое вставляется резиновая пробка и сливная стеклянная трубка. Активированный уголь из противогаза засыпается во второе и четвертое отделение корпуса топливного элемента - он будет использоваться в качестве электрода.

Циркуляция топлива будет осуществляться в первой камере, в то время как пятая заполняется воздухом, из которого будет поставляться кислород. Электролит, засыпающийся между электродами, пропитывается раствором парафина и бензина во избежание его попадания в воздушную камеру. На слой угля кладутся медные пластины с припаянными к ним проводами, через которые будет отводиться ток.

Собранный топливный элемент на водороде заряжается водкой, разбавленной водой в соотношении 1:1. В полученную смесь аккуратно добавляется едкий калий: в 200 граммах воды растворяется 70 граммов калия.

Перед испытанием топливного элемента на водороде в первую камеру заливается топливо, в третью - электролит. Показания вольтметра, подключенного к электродам, должны варьироваться от 0,7 до 0,9 вольт. Для обеспечения непрерывной работы элемента отработанное топливо должно отводиться, а через резиновую трубку - заливаться новое. Сжиманием трубки регулируется скорость подачи топлива. Подобные топливные элементы на водороде, собранные в домашних условиях, обладают небольшой мощностью.