Оптические материалы4. Материалы в лазерной технике


Оптические материалы , кристаллич. или аморфные материалы, предназначенные для передачи или преобразования света в разл. участках спектрального диапазона. Различаются по строению, свойствам, функцией, назначению, а также по технологии изготовления.

Структура и свойства. По строению оптические материалы подразделяют на моно- и поликристаллические, стекла, аморфные, стекло-кристаллические и жидкокристаллические. Прир. монокристаллы, например, CaF 2 , SiO 2 , кальцита СаСО 3 , . каменной и др., давно используют в качестве оптических материалов. Кроме того, используют большое кол-во синтетич. монокристаллов, обладающих прозрачностью в разл. участках оптич. диапазона (рис. 1) и имеющих высокую однородность и определенные габариты.

Поликристаллические оптические материалы характеризуются прозрачностью, по величине сходной с прозрачностью монокристаллов, и лучшими по сравнению с ними конструкц. свойствами. Наиб. применение находит оптич. (иртраны) на основе Аl 2 О 3 (напр., поликор, или лукалокс), Y 2 O 3 (иттралокс), MgAl 2 O 4 , SiO 2 (кварцевая оптич. керамика), цирконато-титанатов Pb, La (электрооптич. керамика), а также бескислородные поликристаллические оптические материалы для ИК области спектра- LiF, MgF 2 , ZnS, ZnSe и др.

Оптические стекла характеризуются высокой прозрачностью в разл. спектральных диапазонах, высокой однородностью структуры, позволяющей сохранять неизменность фронта световой волны при ее распространении в толще стекла, коррозионностойкостью, хорошими конструкц. свойствами, относительно простой технологией изготовления крупногабаритных изделий и изделий со сложной конфигурацией. Применяются с 18 в. В качестве оптических материалов используют бесцветные или цветные оксидные и бескислородные стекла (см. также Стекло неорганическое). Большинство оксидных оптич. стекол-силикатные (более 30-40% SiO 2 по массе), свинцово- или боросиликатные, а также многокомпонентные оксидные системы из 10-12 разл. . например алюмосиликафосфатные стекла, содержащие Аl 2 О 3 , SiO 2 , P 2 O 5 . Несиликатные оксидные стекла содержат Р 2 О 5 , В 2 О 3 , GeO 2 или ТеО 2 . При изменении состава стекол изменяются и их оптич. константы, главным образом показатель преломления n D и коэф. дисперсии света v D . В зависимости от величин этих характеристик на диаграмме n D - v D (т. наз. диаграмма Аббе) оптические материалы делят на типы – кроны и флинты (рис. 2). Флинты характеризуются малым коэф. дисперсии (v D кроны -большим (v D > 50). Стекла обоих типов наз. легкими или тяжелыми в зависимости от величины показателя преломления. Обе разновидности стекол имеют общие компоненты - SiO 2 , Na 2 O, К 2 О. Кроме того, для увеличения v D в состав кронов добавляют В 2 О 3 , А1 2 О 3 , ВаО, СаО, в состав флинтов-PbO, TiO 2 , ZnO, MgO, Sb 2 O 3 . Осветлители стекол-As 2 O 3 и Sb 2 O 3 . Наиб. высокими значениями v D обладают фосфатные флинты на основе Р 2 О 5 (особенно при введении металлов).

Неорг. аморфные оптические материалы используют главным образом в виде разл. пленок, иногда в виде массивных образцов (напр., аморфный Si); орг. аморфные оптические материалы - в виде пленок, оптич. волокон, массивных образцов (напр., ..

О стеклокристаллических оптические материалы см. . о жидкокристаллических-Жидкие кристаллы.

К особому классу относятся оптические материалы с непрерывно изменяющимся составом и оптич. свойствами. Основа таких материалов - градиентные оптич. волокна или самофокусирующие градиентные оптич. элементы (напр., селфок, или градан) в виде цилиндрич. образцов (диаметр 1-10 мм), обеспечивающих фокусировку света. Изготовляют их из таллиево-силикатных или силикогерманатных стекол, кристаллич. материалов (напр., на основе твердых растворов галогенидов Т1), (напр., полиметилметакрилата). Градиентные слои и пленки на монокристаллах Li и др. кристаллич. или стеклянных материалах - основа интегрально-оптич. устройств.

По спектральному диапазону различают оптические материалы, пропускающие в УФ, видимой и ИК областях спектра. Некоторые оптические материалы характеризуются широким плато спектрального пропускания, иногда разбиваемого на отдельные окна прозрачности селективными полосами поглощения примесей. Для работы в УФ (> 0,2 мкм), видимой и ближней ИК областях спектра применяют главным образом кварц, фториды Li и Na; для работы в средней и дальней областях ИК спектра-преим. бескислородные оптические материалы. Такие оптические материалы, как Si, Ge, GaAs, InSb, пропускают только ИК излучение; щелочных металлов, BaF 2 , ZnSe прозрачны в видимой, ближней и средней ИК областях спектра; КСl, GaAs, TlBr-TlI и др. пропускают интенсивное лазерное ИК излучение.

Материалы оптических устройств (линзы, светофильтры и т.п.) имеют определенный показатель преломления, высокую прозрачность в определенном спектральном диапазоне, хорошо поддаются оптико-мех. обработке (шлифованию, полировке) поверхности. Наиб. важное свойство-оптич. однородность, т.к. ослабление (потери) света, наряду с поглощением, определяется рассеянием на разл. структуры-микровключениях посторонних фаз, пузырях и свилях (областях стекол с измененным показателем преломления), микропорах (для керамики) и т.п.

Просветляющие покрытия служат для уменьшения коэф. отражения оптич. устройств, отражающие-для изготовления зеркал, поглощающие-для чернения поверхности. Разновидность просветляющих покрытий - интерференц. покрытия толщиной 10-150 мкм; они м. б. многослойными и характеризоваться постепенным изменением показателя преломления от низкого (1,3-1,55; NaAlF 4 , MgF 2 или SiO 2) до среднего (2,0-2,6; ZrO 2 , GeO 2 , ZnS, TiO 2 или A1 2 S 3) и высокого (более 3,0; Si, Ge). Отражающие покрытия изготовляют главным образом из Ag, Au, Al, поглощающие - из . . и .

Электрооптические, магнитооптические, акустооптические и пьезооптические оптические материалы характеризуются способностью менять свои оптич. свойства под действием разл. полей (электрич., магн., звуковых). Наиб. распространенные электрооптич. материалы-КН 2 РО 4 , KH 2 AsO 4 и их дейтериевые аналоги, др. и аммония, типа сфалерита и эвлитина, разл. сегнето- и антисегнетоэлектрики, в т.ч. LiNbO 3 , LiTaO 3 , BaTiO 3 , бариевостронциевые бронзы и др. К маг-нитооптич. материалам относят железоиттриевые и железо-гадолиниевые гранаты, ферриты, содержащие РЗЭ, и др. (см. Магнитные материалы). Осн. акустооптич. и пьезооптич. материалы - кварц, мн. титанаты, ниобаты, танталаты и др. (см. Акустические материалы).

Многие оптические материалы способны поляризовать световой поток, например вращать плоскость поляризации света. При облучении некоторых оптических материалов видимыми и УФ лучами наблюдается вторичное свечение-фотолюминесценция (см. Люминесценция).

Методы получения. В зависимости от состава и назначения оптических материалов для их получения применяют разл. методы. Общим является то, что все оптические материалы получают из сырья, максимально очищенного от примесей (напр., для оптических материалов, работающих в видимой и ближней ИК областях, осн. красящие примеси-Fе, Mn, Cu, Cr, Ni, Co). Содержание примесей в сырье не должно превышать 10 -2 % по массе, что обеспечивает коэф. поглощения менее 10 -2 см -1 , а в случае волоконно-оптич. материалов -10 -5 -10 -7 % по массе.

Для выращивания синтетич. используют методы монокристаллов выращивания, для оксидной керамики - спекание (см. Керамика), для получения поликристаллических оптических материалов из .горячее прессование. Бескислородные поликристаллические оптические материалы для ИК области спектра с размерами зерен ~ 50 мкм и коэф. поглощения ~ 10 -3 см -1 получают с использованием метода хим. осаждения из газовой фазы или конденсацией из паровой фазы. Оптические стекла получают методом варки стекла. Для кварцевых оптич. волокон наиб. распространено хим. осаждение из газовой фазы по реакциям SiCl 4 + O 2 SiO 2 + 2 Сl 2 или SiCl 4 + О 2 + 2Н 2 SiO 2 + 4 НСl. Образующиеся при высокой температуре частицы SiO 2 осаждают (в виде слоев) на внутр. поверхность кварцевой трубки (т. наз. CVD-метод; англ, chemical vapor deposition), внеш. поверхность цилиндрич. подложки (OVD-метод; англ. outer vapor deposition) или на торец затравочного кварцевого стержня (VAD-метод; англ, vapor axial deposition); затем при нагревании заготовка оплавляется и вытягивается в тонкое оптич. волокно. Для изменения состава и n D кварц легируют Ge, F и др. Для получения поликомпонентных и ИК оптич. волокон используют филь-ерный метод или перетяжку пары "согласованных" стекол по методу "штабик-трубка".


Скачать: oticheskiemateriali1995.djvu

Ответственный редактор А. С К О Ч E Н С К И ЙПРЕДИСЛOBИE

Большие успехи, достигнутые в развитии физики и химии твердого тела, а также многих отраслей техники, в значительной степени обусловлены созданием синтетических кристаллов с разнообразными свойствами.

Настоящая книга посвящена определенному классу кристаллических материалов, а именно оптическим кристаллам, которые применяются в инфракрасной технике. Для наиболее эффективного использования этих материалов требуется знание оптических, термомеханических, электрических и других характеристик. Однако эти характеристики, к сожалению, недостаточно систематизированы в научной литературе, что затрудняет выбор материала с оптимальными свойствами. Авторы поставили целью собрать в единое целое необходимые данные, разбросанные по многочисленным монографиям и оригинальным статьям. В результате анализа большого числа литературных данных были отобраны 74 материала, которые либо уже широко используются в инфракрасной технике, либо являются весьма перспективными. В число этих материалов были также включены наиболее интересные стекла и пластические массы. Затем были выявлены те свойства материалов, которые наиболее важны при их применении и качестве оптических материалов.Описание оптических материалов и их свойств и составляет содержание настоящей книги.

Авторы выражают глубокую признательность. Д. Кисловскому за ценные советы и замечания, проф. М. В. Классен-Неклюдовой за ценные критические замечания, И. М. Сильвестровой и. А. Шувалову за помощь в работе.

Авторы были бы признательны за все замечания, относящиеся к построению и содержанию книги, которые могли бы быть учтены при дальнейшей работе над справочной монографией подобного рода.I. ОПТИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ИНФРОKРАСНОЙ ТЕХНИКИ

За последние годы резко возросло применение инфракрасного излучения л физике, химии, биологии и технике. Инфракрасный спектральный анали;! позволяет осуществлять количественное определение состава химических смесей и проводить автоматизацию ряда химических технологических процессов. Важнейшее значение приобрели методы инфракрасной спектроскопии при изучении строения молекул, кристаллов, полимеров, биологических объектов, минералов, а также при изучении анергии химических связей, механизма химических реакций, процессов поглощения излучения в твердых телах, особенно в полупроводниках. Астрономические исследования в инфракрасной области спектра позволяют установить химический состав и строение атмосферы, физические условия, существующие на планетах, в частности, распределение температуры на их поверхности. Инфракрасная аппаратура устанавливается на метеорологических спутниках и космических ракетах. Кроме того, открываются новые області» применения инфракрасного излучения и связи с созданием квантово механических генераторов, работающих в инфракрасном участке спектра.

Важнейшие детали и узлы в инфракрасной аппаратуре построены из ряда оптических материалов. Оптические материалы требуются для изготовления призм, линз, окошек, фильтров, кювет, обтекателей и т. д. Эти материалы должны обладать разнообразными физическими и химическими свойствами и удовлетворять достаточно жестким эксплуатационным требованиям.

Необходимым условием для использовании оптических материалов является их хорошая прозрачность в нужном участке инфракрасного спектра. В настоящее время имеются материалы с достаточно высокой прозрачностью, по крайней мере в определенном спекі рельном диапазоне.Просветленно оптики еще более расширяет возможности выбора подходящего прозрачного материала. Отметим, что в последнее время увеличилась потребность в оптических материалах для дальней инфракрас-6

ной области спектра 200 - 1000 мк. В ряде случаев, кроме прозрачности материалов в инфракрасной области спектра, требуется дополнительная прозрачность для радиоволнового диапазона.

Важной оптической.характеристикой материалов является их показатель преломления и днсиерсня. Во многих случаях (призмы, оптические системы г большим увеличением и широким углом зрения) необходимы материалы с высоким показателем преломления, в то время как при изготовлении окон и обтекателей желателен небольшой показатель преломления, во избежание больших потерь на отражение. Кроме того, для возможности корректировки аберрации в оптических системах и создания иммерсионной оптики необходимо иметь материалы, обладающие различными показателями преломления. Весьма большое значение n.wor тсмиературнан зависимость нро-пускания и преломления материалов,ибо часто в">з шкаег нагрев оптических деталей до сравнительно высоких температур.

Как правило, в оптических материалах, используемых в инфракрасной технике, двупреломление должно отсутствовать. Однако для создания некоторых типов оптических конструкций, например, интер-ферепционпо-полярнзационпых фильтров или компенсаторов, требуются материалы, обладающие дьупреломлением в инфракрасной области спектра.

Весьма интересны материалы, обладающие электрооптическим эффектом (эффектом Керри), которые становятся двупреломляющимн иод действием электрического ноли. Такие материалы позволяют создавать твердые ячейки Keppa, обеспечивающие модуляцию излучения.

Использование: в частности оптические системы, обладающие улучшенным качеством изображения при теоретически предельных характеристиках. Сущность изобретения: для изготовления линз используется ортогерманат висмута, что позволяет при разработке оптических систем при одинаковых фокусных расстояниях повысить качество изображения за счет исправления астигматизма вследствие уменьшения кривизны преломляющей поверхности, а также увеличить срок эксплуатации оптических систем за счет негигроскопичности материала, его монокристалличности, а также высокой радиационной стойкости. 1 ил., 1 табл.

Изобретение относится к оптике в частности к линзам, и может использоваться в оптических системах, обладающих улучшенным качеством изображения при теоретически предельных характеристиках. Известны оптические материалы стекла с высоким показателем преломления в частности, сверхтяжелые кроны СТК16 и СТК20 с показателями преломления n e =1,790 и 1,768 и дисперсиями 45,4 и 50 соответственно По химическому составу сверхтяжелые кроны представляют собой боратные стекла, содержащие 7-39 мол. SiO 2 ; 24-52 мол. B 2 O 3 ; 34-48 мол. (CaO, ZnO, Al 2 O 3 + La 2 O 3 , TiO 2 , ZrO 2) Известна также группа тяжелых баритовых флинтов, например, ТБФ9 с n e = 1,8129 и n 42,5, а также ТБФ11 с n e =1,837 и n 42,8. По химическому составу тяжелые баритовые флинты состоят из 20-40 мол. SiO 2 ; 20 мол. B 2 O 3 ; 3-43 мол. BaO, PbO с добавками ZnO, CaO, TiO 2 , WO 3 Эти стекла довольно перспективны для улучшения качества изображения при разработке оптических систем с характеристиками, близкими к предельным. Однако, показатель преломления этих стекол ограничен величинами, указанными выше, и не может быть более 2,0, при этом они имеют высокие значения дисперсии. Достаточно сложная технология изготовления таких стекол оптического качества ограничивает их выпуск и определяет высокую стоимость. Кроме того к недостаткам этих стекол относится их взаимодействие с влагой. По показателю пятнаемости стекла, содержащие >17 мол. B 2 O 3 относятся к III группе (пятнающиеся стекла) и IV группе (нестойкие стекла) Наиболее близким к предлагаемому материалу для изготовления линз является оптический материал: к которому относится группа сверхтяжелых флинтов типа СТФ2 с n e =1,955, и n 20,2 и СТФ3 с n e =2,186 и n 16,6. По химическому составу сверхтяжелые флинты состоят из 50 мол. SiO 2 ; 48-59 мол. PbO и 0,5-1,5 мол. K 2 O (Na 2 O). Недостатком таких стекол, является желтый оттенок, что снижает прозрачность в видимой области на 10-20% а также повышенная кристаллизационная способность, что приводит к изменению оптических характеристик вследствие старения Техническим результатом изобретения является изыскание оптического преломляющего материала с высоким показателем преломления при относительно невысокой дисперсии (n 20), обеспечивающего повышение качества изображения. Согласно изобретению технический результат обеспечивается за счет того, что ортогерманат висмута Bi 4 Ge 3 O 12 , показатель преломления которого n=2,1, а дисперсия n 20. Указанное соединение описано в литературе и ранее использовалось в качестве сцинтилляционного материала для регистрации гамма-излучения, электроном и др. элементарных частиц в ядерной физике, геологии, медицине. Использование ортогерманата висмута для изготовления линз в литературе не описано. Применение ортогерманата висмута Bi 4 Ge 3 O 12 в сравнении с обычными кроновыми и флинтовыми стеклами (аналоги и прототип) при одинаковых (нормированных) фокусных расстояниях приводит к меньшей кривизне преломляющих поверхностей и вследствие этого к снижению абберций всех порядков, а это в свою очередь, приводит к возможности увеличения относительного отверстия оптической системы без ее усложнения. При этом, помимо возможности создания новых систем, возникает возможность упрощения серийно выпускаемых оптических систем, в частности, фотообъективов за счет замены в них сложных коррекционно-силовых компонентов более простыми, содержащими ортогерманат висмута. Таким образом, применение Bi 4 Ge 3 O 12 в качестве оптического материала при изготовлении линз оптических систем приводит к возможности повышения качества изображения без их усложнения за счет уменьшения кривизны преломляющей поверхности и за счет исправления астигматизма. Получение монокристаллов ортогерманата висмута. Исходную смесь оксидов висмута (III) марки ОСФ 13-3 (для монокристаллов) и оксида германия (IV) (ТУ 48-21-72), взятую в соотношении Bi 2 O 3:GeO 2 2:3, в количестве 1,0 кг перемешивают в агатовой ступке и затем проводят твердофазный синтез шихты Bi 4 Ge 3 O 12 в платиновой чашке на воздухе при 750-950 o C. Полученную шихту загружают в платиновый тигель диаметром 200 мм, высотой 300 мм в количестве 40 кг, расплавляют и проводят процесс выращивания монокристаллов методом Чохральского на ориентированную затравку. Получают бесцветные монокристаллы диаметром до 150 мм и длиной до 250 мм. На чертеже представлен окуляр. В качестве примера конкретного использования можно привести разработку окуляра для телескопических систем. Окуляр имеет следующие конструктивные параметры (см.таблицу). Расчет хода действительных лучей свидетельствует, что по сравнению с известным трехлинзовым окулятором, в котором одна линза (N 1) с высоким показателем преломления (n=2,0667), выполненная из сверхтяжелого флинта заменяется на линзу из ортогерманата висмута, данный окуляр обладает улучшенным качеством изображения за счет уменьшения кривизны поверхности линзы, и исправления астигматизма (астигматическая разности в пределах поля 30 o не превышает 2 мм, что более чем в три раза лучше, чем в известном окуляре). Применение линз, выполненных из ортогерманата висмута Bi 4 Ge 3 O 12 при разработке оптических систем при одинаковых (нормированных) характеристиках позволяет повысить качество изображения без усложнения оптической системы, а также существенно расширить спектральный диапазон применения оптических приборов. Кроме того, использование Bi 4 Ge 3 O 12 выгодно экономически, т.к. позволяет снизить стоимость изделий за счет несложной технологии изготовления предлагаемого оптического материала. Использование линз, выполненных из ортогерманата висмута позволяет также увеличить срок эксплуатации оптических систем за счет негигроскопичности применяемого материала (отсутствие пятнаемости), высокой радиационной стойкости. Поскольку в качестве оптического материала используется монокристалл (а не стекло как в прототипе), то устраняется один из основных недостатков высокопреломляющих стекол, а именно повышенная кристаллизационная способность, что также позволяет увеличить срок эксплуатации этого материала. Источники информации: 1. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 52. 2. Физико-химические основы производства оптического стекла /под ред. Л. И.Демкиной. Л. Химия, 1976, с. 62-77. 3. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 62. 4. Физико-химические основы производства оптического стекла /под ред. Л. И.Демкиной. Л. Химия, 1976, с. 185-186, с. 209-220. 5. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 74. 6. Каргин Ю.Ф. Каргин В.Ф. Скориков В.М. Шадеев Н.И. Пехова Т.И. Синтез и излучение сцинтилляционных свойств монокристаллов Bi 4 Ge 3 O 12 . Изв. АН СССР, Неорганические материалы, 1984, т. 20, N 5, с. 815-817. 7. Русинов М.М. Композиция оптических систем. Л. Машиностроение, 1989, с. 202-203.

Формула изобретения

Применение монокристаллов ортогерманата висмута Bi 4 Ge 3 O 1 2 в оптических системах в качестве оптического материала с показателем преломления n 2,1 и дисперсией = 20.н

Оптические материалы

оптическим излучением

Самыми распространенными в настоящее время являются кристаллы группы KDP .

KDP (дигидрофосфат калия,KH 2 PO 4 ),

DKDP (дидейтерофосфат калия,KD 2 PO 4 ),

ADP (дигидрофосфат аммония NH4 H2 O4 ),

DADP (дейтерированный дигидрофосфат аммония ND4 D2 O4 ), CDA (дигидроарсенат цезия CsH2 AsO4 ),

DCDA (детероарсенат цезия CsD2 AsO4 ), KDA (дигидроарсенат калия KH2 AsO4 ), RDA (дигидроарсенат рубидия RbH2 AsO4 ), RDP (дигидрофосфат рудибия RbH2 PO4 ).

В основном используются кристаллы KDP иDKDP .

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

Дигидрофосфат калия (KDP) (KH 2 PO 4 ) –

синтетический бесцветный кристалл, выращиваемый из водных растворов методом медленного снижения температуры.

Кристалл KDP был использован в качестве нелинейной среды одним из первых, так что величина его нелинейных характеристик до сих пор является эталоном, и часто нелинейные коэффициенты других кристаллов даются в единицах, относительно KDP.

Диапазон прозрачности 0,1767 1,5 мкм. Коэффициент линейного поглощения 0,03 0,05 см-1 вблизи = 1,06 мкм. Обладает высоким линейным электрооптическим эффектом при наложении электрического поля вдоль осиz , т.е. вдоль направления (001). Электрооптическая постояннаяr 63 = 10,5 10-10 см/В (при = 0,9893 мкм,Т = 295 К). В настоящее время является одним из основных материалов для изготовления умножителей частоты, генераторов гармоник, модуляторов света. Температура эксплуатации не должна превышать 393 К. Особенно эффективно применение при пониженных температурах и при частотах до 10 Гц (при СВЧ сильно возрастают диэлектрические потери). Показатели преломления

n о = 1,4936,n е = 1,4598 (для = 1,06 мкм). Полуволновое напряжение для = 0,547 мкм приT = 293 К 7,5 кВ. Плотность 2,338 г/см3 .

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

KDP имеет высокую оптическую прочность (около 2 ТВт/см2 при воздействии пикосекундных импульсов = 30 пс, = 1,06 мкм, поверхностная прочность примерно на порядок меньше и сильно зависит от состояния рабочих поверхностей). Кристаллы хорошо растворяются в этиловом спирте, бензине, но особенно хорошо растворяются в воде (33 г на 100 г воды) и высоко гигроскопичны.

К основным недостаткам относятся малая механическая прочность, высокая гигроскопичность и невозможность использования для модуляции излучения при длинах волн больше

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

Дидейтерофосфат калия (DKDP) (KD 2 PO 4 ) – является дейтерированным аналогом KDP и имеет более высокие технические и эксплуатационные характеристики. DKDP выращивается из водных растворов с использованием тяжелой воды.

Прозрачен от 0,2 до 2 мкм, коэффициент поглощения при

1,06 мкм на порядок ниже, чем у KDP. В связи с более высоким значением электрооптического коэффициента (более чем в 2 раза) получил более широкое распространение в модуляторах, чемKDP (электрооптическая постояннаяr 63 = 25,7 10-10 см/В при = 0,69 мкм,Т = 293 К). При уменьшении температуры электрооптическая постоянная резко возрастает (379 10-10 см/В при 217 К).

Ниобат лития (LiNbO 3 )

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

) – одноосный отрицательный кристалл тригональной сингонии. Нерастворим в воде и слабых кислотах. Весьма технологичен при механической обработке и склеивании. Производится методом вытягивания из расплава.

Диапазон прозрачности 0,33 5,5 мкм.

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

Кристалл широко используется в системах генерации второй гармоники лазерного излучения и в электрооптических модуляторах света (т.к. обладает малыми полуволновыми напряжениями – всего сотни вольт).

Имеет существенные недостатки: ярко выраженный фоторефрактивный эффект (обратимое оптическое разрушение типа optical damage); малая оптическая прочность (излучение неодимового лазера разрушает кристаллы ниобата лития при интенсивности 6 МВт/см2 ); необходимость хорошей термостабилизации. Эти недостатки позволяют использовать ниобат лития в модуляторах только низкоинтенсивных лазеров (типа гелий-неонового). Ниобат лития с примесями элементов группы железа широко применяется в оптических запоминающих устройствах. Находит свое использование и в поляризационных призмах в условиях повышенной влажности.

Оптическая керамика (иртран )– это стеклокристаллический материал, получаемый из поликристаллической массы методом горячего (при температурах около 2/3 температуры плавления вещества) прессования под большим давлением в вакууме. Размер зерен микрокристаллов порядка десятков микрометров.

Данные керамики механически изотропны, по термомеханическим свойствам значительно превосходят аналоги соответствующих монокристаллов. Хорошо обрабатываются и обладают высокой устойчивостью к тепловым ударам. По плотности и прозрачности эти материалы близки к соответствующим монокристаллам.

Преимущество керамик заключается в их высокой однородности, которая дает возможность изготавливать из них крупные оптические детали.

Помимо этого керамика применяется для изготовления светорассеивающих экранов, подложек интерференционных светофильтров, окон приборов, работающих в ИК области спектра, а также в условиях высоких механических и термических нагрузок.

Оптические поликристаллы (оптическая керамика)

Наиболее распространена оптическая керамика КО1 (MgF 2 ). Ее рабочий спектральный интервал 1…7 мкм.

Керамика КО2 (ZnS ) работает в интервале 1…14 мкм. Показатель преломления для 10,6 мкм равен 2,2. Температура плавления 1850 С, но гораздо ранее она начинает окисляться.

Керамика КО3 (CaF 2 ) может работать в спектральном интервале 0,4…10 мкм, но рабочая область сильно зависит от качества сырья, в видимой области прозрачность несколько ниже, чем у монокристалла. Химически устойчива. Отсутствие плоскостей спайности в поликристаллическом фтористом кальции увеличивает его устойчивость к механическим и тепловым ударам. Является перспективным материалом для прозрачных в ИК области элементов, работающих при больших перепадах давления и температуры.

Оптические поликристаллы (оптическая керамика)

Керамика КО4 (ZnSe )

диапазон 0,5…21 мкм (реально до 15 мкм),

но рабочая область зависит от качества сырья, в видимой области прозрачность несколько ниже, чем у монокристалла.

Показатель преломления n=2,402 при λ=10,6мкм (сильно зависит от температуры).

Показатель поглощения α=0,13 см-1 при λ=10,6мкм.

Температура плавления 1520 С, но сильное окисление начинается от

В воде не растворяется, слабо растворяется в кислотах. Является перспективным материалом для прозрачных в ИК отласти элементов, работающих при больших перепадах давления и температуры.

Керамика КО5 (MgO ), диапазон 0,4…8 мкм. Температура плавления 2800 С.

n=1,723 при =2 мкм.

Высокая теплопроводность позволяет использовать КО5 в изделиях, подвергающихся температурным ударам. В воде не растворяется, но при длительном хранении в атмосферных условиях взаимодействует с влагой и углекислотой с поверхностным образованием тонкого налета карбоната магния. Поэтому при длительном хранении поверхность лучше подвергать химической защите.

Существует большое количество типов лазера. Однако принцип работы один, поэтому существуют некоторые осовные части для любого лазера. Это активная среда, система накачки, оптический резанатор. Еще добавим такие элементы конструкции как: корпус, подвижные и герметичные системы, электроника, фильтры. Для всех этих элментов используют разные материалы. Эти материалы можно разделить на конструкционные и оптические. Конструкционные материалы -- материалы, из которых изготовляются различные конструкции, элементы сооружений, детали машин, воспринимающих силовую нагрузку. Оптические материалы - это природные и синтетические материалы, стёкла, поликристаллические, полимерные и другие материалы, монокристаллы, прозрачные в том или ином диапазоне электромагнитных волн. Их применяют для изготовления оптических элементов, работающих в ультрафиолетовой, видимой и инфракрасной областях спектра.

Оптические материалы

Активная среда

Вещество, в котором создана инверсия населённостей энергетических уровней квантовой системы называется активной средой. Активная среда усиливает проходящее через неё резонансное электромагнитное излучение при условии, если коэффициент квантового усиления превышает коэффициент потерь энергии в активной среде. Применение положительной обратной связи позволяет использовать рабочие тело для создания генератора когерентного электромагнитного излучения. В настоящее время в качестве рабочей среды лазера используются различные агрегатные состояния вещества: твёрдое, жидкое, газообразное и плазма.

Твердотельные лазеры

Лазеры, где активной средой являеться твердое вещество, называются твердотельными лазерами. Их в свою очередь можно поделить на волокнистые, полупроводниковые и лазеры на кристаллах и стеклах. Однако все материалы, особенно кристаллы, должны иметь правильную атомно-кристаллическую решетку и поэтому многие, из них, кроме кристаллов с простой кубической решеткой (кремний, германий), отличаются анизотропией оптических свойств. В оптически анизотропных кристаллов луч света делится на два луча, поляризованые в двух взаимно перпендикулярных плоскостях.

Начиная с обычного карманного лазера с диодной накачкой, можно заметить, что он имеет сложную систему из нескольких активных сред. Первая среда это кристалл алюмо-иттриевыего граната (YAG) или ортованадата иттрия. Следующей ступенью является нелинейная оптическая система из кристалла титанил фосфата калия (KTiOPO 4 , KTP). Такая система связана с увеличением вдвое частоты входного излучения. Вследствии чего длинна волны находиться в интервале видимого излучения (см. рис. 1) в зеленом диапозоне, при этом потери в лазере минимальны. КПД в таком случае может достигать 20%, по сравнению сравнению с 3% у других карманых лазеров. В рубиновом лазере рабочим телом является искусственный сапфир Al 2 O 3 с примесью Cr 2 O 3 . Благодаря чему излучение лазера окрашивается в монохроматический ярко-розовый цвет с малой продольной модой. Такие лазеры широко распространены в голографии, является одним из первых лазеров.

Еще один твердотельный лазер - лазер на оптическом волокне. Существует большое разнообразие конструкций волоконных лазеров, обусловленное спецификой их применения. Специальными методиками можно создать однополяризационные лазеры, лазеры сверхкоротких импульсов и другие. Во всех волоконных лазерах применяются специальные типы оптических волокон, в которые встроены один или несколько волноводов для осуществления оптической накачки. В таблице представлены основные материалы, используемые в качестве активной среды в твердотельных лазерах.

Таблица 1

Типы твердотельных лазеров

Рабочее тело

Применение

Алюмо-иттриевые лазеры с легированием неодимом(Nd:YAG)

Обработка материалов, лазерные дальномеры, лазерные целеуказатели, хирургия, научные исследования, накачка других лазеров.

Лазер на фторидеиттрия-лития с легированием неодимом(Nd:YLF)

Лазер на ванадате иттрия(YVO 4) с легированиемнеодимом (Nd:YVO)

Наиболее часто используются для накачки титан-сапфировых лазеров, используя эффект удвоения частоты в нелинейной оптике.

Лазер на неодимовомстекле (Nd:Glass)

Лазеры сверхвысокой мощности (тераватты) и энергии (мегаджоули). Обычно работают в нелинейном режиме утроения частоты до 351 нм в устройствах лазерной плавки. Лазерный термоядерный синтез (ЛТС). Накачка рентгеновских лазеров.

Титан-сапфировый лазер

Спектроскопия, лазерные дальномеры, научные исследования.

Алюмо-иттриевые лазеры с легированием тулием(Tm:YAG)

Лазерные радары

Алюмо-иттриевые лазеры с легированием иттербием(Yb:YAG)

Обработка материалов, исследование сверхкоротких импульсов, мультифотонная микроскопия, лазерные дальномеры.

Алюмо-иттриевые лазеры с легированием гольмием(Ho:YAG)

Медицина

Церий-легированныйлитий-стронций (иликальций)-алюмо-фторидныйлазер (Ce:LiSAF, Ce:LiCAF)

Исследование атмосферы, лазерные дальномеры, научные разработки.

Лазер на александрите с легированием хромом

Дерматология, лазерные дальномеры.

Лазеры на фторидекальция, легированномураном (U:CaF 2)

Первый 4-х уровневый твердотельный лазер, второй работающий тип лазера (после рубинового лазера Маймана), охлаждался жидким гелием, сегодня нигде не используется.

Полупроводниковые лазеры - это лазеры с усиливающей средой на основе полупроводников, где генерация происходит, как правило, за счет вынужденного излучения фотонов при межзонных переходах электронов в условиях высокой концентрации носителей в зоне проводимости. Большинство полупроводниковых лазеров являются лазерными диодами с накачкой электрическим током, и с контактом между n-легированными и р-легированными полупроводниковыми материалами. Есть также полупроводниковые лазеры с оптической накачкой, где носители генерируются за счет поглощения возбуждающего их света, и квантово каскадные лазеры, где используются внутризонные переходы (см. рис. 2). Основными материалами для таких лазеров являются:

  • · GaAs (арсенид галлия)
  • · AlGaAs (арсенид галлия - алюминия)
  • · GaP (фосфид галлия)
  • · InGaP (фосфид галлия - индия)
  • · GaN (нитрид галлия)
  • · InGaAs (арсенид галлия - индия)
  • · GaInNAs (арсенид-нитрид галлия индия)
  • · InP (фосфид индия)
  • · GaInP (фосфид галлия-индия)

Эти полупроводники являются прямозонными; полупроводники с непрямой запрещенной зоной, такие как кремний, не обладают сильным и эффективным световым излучением. Так как энергия фотона лазерного диода близка к энергии запрещенной зоны, полупроводниковые композиции с разными энергиями запрещенной зоны позволяют получить излучение с различными длинами волн. Помимо это полупроводниковые лазеры отличаются высоким КПД, малой инерционностью и простотой конструкции .