Инверсия (в биологии). Инверсия (биология)

Обычно не имеют фенотипического эффекта, если они сбалансированы, поскольку весь хромосомный материал присутствует, даже если он иначе упакован. Важно различать разницу между истинно сбалансированными перестройками и теми, которые цитогенетически представляются сбалансированными, но на молекулярном уровне не сбалансированы.

Более того, из-за высокой частоты в геноме CNP , увеличивающей и без того существующие различия в много миллионов пар оснований между геномами неродственных индивидуумов, понятие сбалансированности или несбалансированности отчасти произвольно и подлежит дальнейшему исследованию и уточнению.

Даже когда структурные перестройки истинно сбалансированы , они могут представлять угрозу последующим поколениям, поскольку носители могут иметь высокую частоту несбалансированных гамет и, следовательно, имеют повышенный риск аномального потомства с несбалансированными кариотипами; в зависимости от специфической перестройки, риск может колебаться от 1 до 20%.

Существует также возможность, что один из хромосомных разрывов повредит ген, вызвав мутацию. Это хорошо описаная причина Х-сцепленных болезней у женщин-носителей сбалансированных транслокаций Х-хромосомы и аутосом, такие транслокации могут быть путеводной нитью к уточнению позиции гена, ответственного за развитие болезни.

Инверсия хромосом

Инверсия появляется, когда в хромосоме происходят два разрыва, а сегмент между ними переворачивается. Инверсии бывают двух типов: парацентрические (не включающие центромеру), при которых оба разрыва происходят в одном плече; и перицентрические (включающие центромеру), при которых разрывы находятся в разных плечах. Поскольку парацентрические инверсии не изменяют соотношение плеч хромосомы, их можно выявить (если это вообще удастся) только при дифференциальной окраске или FISH-методом с локусспецифическими зондами.

Перицентрические инверсии цитогенетически выявить легче, поскольку они могут изменять соотношение плеч хромосом, а также расположение полос.

Инверсия обычно не вызывает аномалий фенотипа у носителей, поскольку относится к сбалансированным перестройкам. Ее медицинское значение - влияние на потомство; носитель любой инверсии попадает в группу риска по наличию аномальных гамет, приводящих к несбалансированному потомству, так как при инверсии при конъюгации хромосом в мейозе I формируется петля. Рекомбинация отчасти подавляется в пределах инверсионных петель, но если она происходит, то может вести к формированию несбалансированных гамет.

Формируются как гаметы со сбалансированным хромосомным набором (нормальным или с инверсией), так и гаметы с несбалансированными хромосомами в зависимости от позиции точек рекомбинации. Если инверсия парацентрическая, несбалансированные рекомбинантные хромосомы обычно ацентрические или дицентрические и не могут привести к жизнеспособному потомству, хотя есть и редкие исключения. Таким образом, на самом деле риск того, что носитель парацентрической инверсии будет иметь живорожденного ребенка с аномальным кариотипом, очень низкий.

Перицентрическая инверсия , со своей стороны, может привести к появлению несбалансированных гамет как с дупликацией, так и с делецией хромосомных сегментов. Удвоенный и потерянный сегменты - расположенные дистальнее инверсии. В целом риск для носителя перицентрической инверсии родить ребенка с несбалансированным кариотипом оценивают в 5-10%. Каждая перицентрическая инверсия, тем не менее, связана с конкретным риском.


Большие перицентрические инверсии с большей вероятностью, чем малые, приводят к жизнеспособному рекомбинантному потомству, так как в случае больших инверсий несбалансированные сегменты в рекомбинантном потомстве имеют меньший размер. Это положение иллюстрируют три хорошо изученных инверсии.

Перицентрическая инверсия хромосомы 3, происходящая от семейной пары из Ньюфаундленда, вступивших в брак в начале XIX в. - одна из немногих, для которой получено достаточно данных, чтобы оценить расхождение инвертированной хромосомы в потомстве носителей. Кариотип с inv(3) (p25q21) с тех пор был описан в ряде центров Северной Америки, в семьях, предки которых прослеживались до приморских провинций Канады.

Носители хромосомы inv(3) нормальны, но некоторые их дети имеют характерный аномальный фенотип, ассоциирующийся с рекомбинантной хромосомой 3, в которой отмечена дупликация дистального сегмента 3q21 и делеция дистального сегмента 3р25. Девять человек - носителей этой инверсии - имели 53 зарегистрированных беременности. Высокий риск аномального исхода беременности в группе (22/53, или больше 40%) указывает значение семейных хромосомных исследований для идентификации носителей, генетического консультирования и дородовой диагностики.

Другая перицентрическая инверсия , связанная с выраженным дупликационным или делеционным синдромом в рекомбинантных потомках, находится в хромосоме 8, inv(8) (p23.1q22.1) и первоначально обнаружена среди испанцев юго-запада США. Эмпирические исследования показали, что носители inv(8) имеют 6% риска родить ребенка с синдромом рекомбинантной хромосомы 8, летальным нарушением с серьезными сердечными аномалиями и умственным недоразвитием. В рекомбинантной хромосоме дублирован дистальный участок 8q22.1 и утерян дистальный участок 8р23.1.

Наиболее частая инверсия у человека - небольшая перицентрическая инверсия хромосомы 9, которую отмечают почти у 1% обследованных лабораториями цитогенетики. Кариотип inv(9)(pllql2) не имеет известных опасных эффектов у носителей и не дает значимого риска выкидыша или несбалансированного потомства; поэтому обычно считается вариантом нормы.

Дополнительно к цитогенетически видимым инверсиям геномными методами обнаруживают все большее количество малых инверсий . Полагают, что многие из них клинически благоприятны, без отрицательного влияния на потомство.

Если у гетерозиготы по перицентрической инверсии при мейозе происходит кроссинговер в пределах инвертированного участка, то формируются аномальные рекомбинанатные хромосомы с дупликацией и делецией. У гетерозиготы по парацентрической инверсии кроссинговер в пределах инвертированного участка приводит к формированию дицентрической хромосомы и ацентрического фрагмента. В обоих случаях образовавшиеся гаметы с рекомбинантными хромосомами оказываются генетически несбалансированными, и вероятность появления жизнеспособного потомства из таких гамет является низкой .

Таким образом, гетерозиготность по инверсии приводит к подавлению рекомбинации в пределах инверсии за счёт двух основных механизмов: из-за запрета рекомбинации в случае гетеросинапсиса и за счёт низкой вероятности появления рекомбинантных продуктов в потомстве вследствие генетической несбалансированности гамет.

Выявление инверсий

В настоящее время существует три основных подхода для выявления инверсий: с помощью классического генетического анализа, цитологически и на основе данных секвенирования полного генома . Наиболее распространённым является цитологический подход.

Именно при помощи генетического анализа инверсии были впервые обнаружены: в 1921 году Альфред Стёртевант показал инвертированный порядок идентичных генов у Drosophila simulans по сравнению с Drosophila melanogaster . Наличие инверсии можно предположить, если в скрещиваниях обнаруживается нерекомбинирующаяся часть генома, для этого метода необходимо предварительное генетическое картирование признаков.

Цитологически инверсии впервые наблюдали на политенных хромосомах слюнных желез у дрозофил, и двукрылые по-прежнему являются наиболее удобным объектом для наблюдения инверсий. В других таксономических группах крупные инверсии можно выявить при помощи дифференциальной окраски метафазных хромосом. Известные полиморфные варианты инверсий можно анализировать при помощи флуоресцентной гибридизации in situ с использованием локус-специфических ДНК-проб.

У людей и у других видов с секвенированным геномом субмикроскопические инверсии можно обнаружить при помощи парноконцевого секвенирования . Межвидовые различия по инверсиям можно выявлять при помощи прямого сравнения гомологичных последовательностей .

Возникновение инверсий

Для возникновения инверсии необходимым условием является повреждение ДНК в виде двунитевого разрыва с последующей ошибкой репарации . Двунитевые разрывы ДНК могут возникать вследствие воздействия экзогенными факторами, такими как ионизирующее излучение или химиотерапия , а также вследствие воздействия на ДНК эндогенно образующимися свободными радикалами . Кроме того, двунитевые разрывы возникают запрограммированно при мейозе и при созревании Т- и B-лимфоцитов во время специфической соматической V(D)J рекомбинации . Репарация двунитевого разрыва ДНК может проходить двумя способами: негомологичным соединением разрывов и гомологичной рекомбинацией . При репарации путём негомологичного соединения могут ошибочно соединиться два внутрихромосомных разрыва с разворотом участка между ними на 180°. При гомологичной рекомбинации может произойти неверный выбор последовательности ДНК, на основе которой идёт репарация повреждённой ДНК. Вместо гомологичной последовательности происходит ошибочный выбор паралогичной последовательности на этой же хромосоме. В последнем случае для формирования инверсии необходимо возникновение двунитевого разрыва ДНК в одной из двух повторяющихся последовательностей, находящихся на одной хромосоме в инвертированном положении по отношению друг к другу .

Роль инверсий в видообразовании

Инверсии и половые хромосомы

Обозначение инверсий

Для обозначения инверсий у Drosophila используют обозначение In(nA)m , где n обозначает номер хромосомы, А - плечо хромосомы и m - имя мутации или номер бэнда. Например, In(2LR)Cy - это инверсия Curly у дрозофилы, которая затрагивает оба плеча хромосомы 2 .

Полиморфизм по инверсиям у человека

Долгое время инверсии можно было выявлять только при помощи анализа G-бэндированных метафазных хромосом. Этот метод позволяет обнаруживать только крупные инверсии, при этом даже крупные инверсии могут при G-бэндинге могут остаться незамеченными из-за локального сходства рисунка G-полос. Классический цитогенетический анализ на основе дифференциальной окраски хромосом позволил обнаружить несколько полиморфных инверсий, распространённых в человеческой популяции и не имеющих клинического значения. Инверсии являются наиболее частым хромосомным полиморфизмом, выявляемыми в цитогенетических лабораториях, и самыми частыми из них являются перицентрические инверсии, детектируемые в гетерохроматиновых районах хромосом 1, 2, 3, 5, 9, 10 и 16. Например, известно, что более 1 % человеческой популяции являются носителями перицентрической инверсии в 9 хромосоме inv(9)(p12;q13), которую считают вариантом нормы . Наиболее частой инверсией, который включает эухроматин , является инверсия inv(2)(p11;q23), которая также считается нейтральной . Есть и другие более редкие варианты полиморфных инверсий, которые детектируются в отдельных группах и которые ведут свою историю от одного предкового мутационного события. Например, такая инверсия inv(10)(q11.22;q21.1) обнаруживается с частотой 0,11 % в Швеции .

Современные методы анализа генома, включающие парноконцевое секвенирование , сравнительный анализ геномов близкородственных видов, анализ неравновесного сцепления однонуклеотидных полиморфизмов (SNP), позволили выявить около 500 субмикроскопических полиморфных инверсий. Среди них, например, инверсия на хромосоме 8 (8p23.1) размером около 4.5 млн п.о, которая обнаруживается у 25 % здоровых людей .

Примечания

  1. Бородин П. М., Торгашева А. А. Хромосомные инверсии в клетке и эволюции // Природа. - 2011. - № 1 . - С. 19-26 .
  2. Генетика человека по Фогелю и Мотулски / М. Р. Спейчер, С. Е. Антонаракис, А. Г. Мотулски. - 4-е издание. - СПб: Н-Л. - С. 165-168. - 1056 с. - ISBN 978-5-94869-167-1 .
  3. Kirkpatrick M. How and why chromosome inversions evolve (англ.) // PLoS biologу. - 2010. - Vol. 8, no. 9 . - P. e1000501. - PMID 20927412 .
  4. Sturtevant A.H. A case of rearrangement of genes in Drosophila (англ.) // Proc Natl Acad Sci USA. - Vol. 7, no. 8 . - P. 235-237. - PMID 16576597 .
  5. Korbel J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome (англ.) // Science. - Vol. 318, no. 5849 . - P. 420-426. - PMID 17901297 .
  6. Feuk L. et al. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies (англ.) // PLoS genetics. - 2005. - Vol. 1, no. 4 . - P. e56. - PMID 16254605 .
  7. Pfeiffer P., Goedecke W., Obe G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations (англ.) // Mutagenesis. - 2000. - Vol. 15, no. 4 . - P. 289-302. - PMID 10887207 .
  8. Dittwald P. et al. Inverted Low‐Copy Repeats and Genome Instability-A Genome‐Wide Analysis (англ.) // Human mutation. - Vol. 34, no. 1 . - P. 210-220. - PMID 22965494 .
  9. Голубовский М.Д. Век генетики: эволюция идей и понятий. Научно-исторические очерки . - СПб. : Борей Арт, 2000. - 262 с. - ISBN 5-7187-0304-3 .

Инверсией называют изменение порядка расположения генов в хромосоме, вызванное перевертыванием на 180° большого или маленького участка внутри хромосомы.

Если нормальную последовательность участков с содержащимися в них генами представить в алфавитном порядке АВСД, то при инверсии этот порядок может измениться и стать АСВД.

Для образования инверсии внутри хромосомы необходим разрыв в двух точках, и только при этом условии участок может прикрепиться противоположными концами, перевернувшись на 180°.

Перевертывание концевого участка хромосомы обычно не встречается, вероятно, потому, что конец хромосомы - теломера не обладает свойством воссоединяться с разорванным концом хромосомы. Напротив, разорванным (открытым) концам хромосом свойственна высокая способность к воссоединению. Инверсии часто связаны с рецессивным летальным эффектом, поэтому они не сохраняются в гомозиготном состоянии, и их обычно обнаруживают в гетерозиготе. Однако встречаются и такие инверсии, которые не связаны с летальным эффектом.

Существуют два типа инверсий - парацентрические инверсии и перицентрические инверсии. В случае парацентрической инверсии в хромосоме AB Ο CDEF (где Ο - означает центромеру) расположение генов может быть, например, AB Ο CEDF. В случае перицентрической инверсии последовательность генов ABCD Ο EF изменится на АВЕ Ο DCF.

При гомозиготной инверсии кроссинговер осуществляется нормально. При гетерозиготной инверсии кроссинговер подавляется полностью или частично. Так, например, в гетерозиготной парацентрической инверсии Ο abcdef/Ο AEDCBF хотя и происходит конъюгация хромосом, однако кроссоверных гамет при одинарном кроссинговере не обнаруживается, и это создает впечатление подавления кроссинговера.

В силу нарушения нормального образования продуктов мейоза при скрещивании гетерозиготной по инверсии самки дрозофилы с самцом, несущим только рецессивные гены в гомозиготном состоянии в потомстве не будет возникать кроссоверных особей по данным генам.

Можно видеть, что если происходит одинарный перекрест между хроматидами, то в результате образуются две необычные хромосомы: одна из них без центромеры, а другая - с двумя центромерами. Последняя в анафазе I при полярном расхождении центромер образует хромосомный «мостик», т. е. полярно растянутые хромосомы. Мостик может разорваться в любом месте, в результате чего гаметы получат хромосомы с более или менее значительными нехватками по одним участкам и с дупликациями по другим и поэтому окажутся нежизнеспособными. Нормальные жизнеспособные гаметы могут образоваться только за счет хроматид, не вступивших в перекрест. Так как кроссоверные гаметы оказываются нежизнеспособными, то создается впечатление об отсутствии или подавлении кроссинговера у гетерозигот по инверсиям.

При длинной инверсии, затрагивающей большой район хромосомы (например, в линии СIВ), иногда может обнаруживаться кроссинговер внутри инвертированного участка. В подобном случае кроссоверы возникают за счет двойного перекреста.

Следует заметить, что в гетерозиготных инверсиях по обе стороны от разрывов кроссинговер подавляется в силу отсутствия в этих районах конъюгации хроматид.

В литературе инверсию как подавителя кроссинговера принято обозначать буквой С (начальная буква английского слова crossingover). Это обозначение сохранилось с тех пор, когда подавление кроссинговера приписывалось особому гену в хромосоме.

В отличие от парацентрических инверсий в перицентрических инверсиях ни одиночный, ни двойной кроссинговер не дает ацентрических и дицентрических хроматид, а следовательно, мостов и фрагментов в мейозе. В результате кроссинговера внутри перицентрических инверсий образуются хроматиды с дупликациями и нехватками. Пыльца и яйцеклетки высших растений, имеющие указанные хроматиды, оказываются нежизнеспособными. Церицентрические инверсии могут изменять место центромеры в группе сцепления.

Инверсию можно обнаружить также цитологически в гигантских хромосомах или на пахитенной стадии мейоза.

Для того чтобы осуществилась конъюгация хромосомы, имеющей инвертированный участок, с нормальной хромосомой у особи, гетерозиготной по инверсии, эти гомологичные хромосомы должны образовать петлю. При этом гены точь-в-точь пригоняются друг к другу. Следовательно, между гомологичными локусами хромосом существует взаимное притяжение огромной силы. Это очень важное явление для понимания физических и химических причин конъюгации гомологичных хромосом в профазе мейоза и ь политенных хромосомах.

Наряду с простыми - одинарными инверсиями в хромосомах встречаются комплексы инверсий, которые могут состоять из нескольких одинарных неперекрывающихся инверсий, называемых иногда инверсиями «гуськом», или сложными инверсиями. В последние включаются полностью или частично перекрывающиеся двойные инверсии.

Итак, в генетическом отношении инверсии характеризуются следующими свойствами:

  • в гомозиготных инверсиях, если они не связаны с летальным эффектом, кроссинговер протекает нормально. Причина этого очевидна, поскольку такие гомологичные хромосомы в профазе мейоза могут свободно конъюгировать и обмениваться идентичными участками;
  • в гетерозиготных инверсиях, возникающих в двуплечих хромосомах, кроссинговер подавляется только в том плече хромосомы, в котором имеется инверсия; в другом плече подавления перекреста не обнаруживается.

Однако следует иметь в виду, что не всякое подавление кроссинговера может быть отнесено за счет действия инверсии. Существуют такие генные мутации, которые могут препятствовать нормальному синапсису хромосом в профазе мейоза (асинаптические гены), как это установлено у кукурузы, ржи, хлопчатника, дурмана, ячменя, а также у дрозофилы.

Инверсии встречаются в природных популяциях животных и растений, а также могут быть получены в эксперименте, особенно под влиянием ионизирующих излучений и ряда химических веществ. Генетики полагают, что инверсии имеют существенное значение для дивергенции видов. Так, рядом исследований установлено, что отдельные расы внутри вида, например у Drosophila psetrdoobscura, могут различаться по инверсиям. Близкие виды дрозофилы в сходных хромосомах могут иметь обратный порядок расположения генов. Н. Н. Соколов провел цитогенетическое сравнение гигантских хромосом у двух видов дрозофилы (D. virilis и D. littoralis) и у их гибридов, в результате чего выяснилось, что эти два вида различаются между собой шестью инверсиями и несколькими участками, не способными к нормальной соматической конъюгации.

Экспериментально полученные инверсии часто используются в методических целях для создания линий с подавленным кроссинговером.

Текущая версия страницы пока не проверялась

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от, проверенной 29 июня 2018; проверки требуют.

Если у гетерозиготы по перицентрической инверсии при мейозе происходит кроссинговер в пределах инвертированного участка, то формируются аномальные рекомбинанатные хромосомы с дупликацией и делецией. У гетерозиготы по парацентрической инверсии кроссинговер в пределах инвертированного участка приводит к формированию дицентрической хромосомы и ацентрического фрагмента. В обоих случаях образовавшиеся гаметы с рекомбинантными хромосомами оказываются генетически несбалансированными, и вероятность появления жизнеспособного потомства из таких гамет является низкой .

Таким образом, гетерозиготность по инверсии приводит к подавлению рекомбинации в пределах инверсии за счёт двух основных механизмов: из-за запрета рекомбинации в случае гетеросинапсиса и за счёт низкой вероятности появления рекомбинантных продуктов в потомстве вследствие генетической несбалансированности гамет.

В настоящее время существует три основных подхода для выявления инверсий: с помощью классического генетического анализа, цитологически и на основе данных секвенирования полного генома . Наиболее распространённым является цитологический подход.

Именно при помощи генетического анализа инверсии были впервые обнаружены: в 1921 году Альфред Стёртевант показал инвертированный порядок идентичных генов у Drosophila simulans по сравнению с Drosophila melanogaster . Наличие инверсии можно предположить, если в скрещиваниях обнаруживается нерекомбинирующая часть генома, для этого метода необходимо предварительное генетическое картирование признаков.

Цитологически инверсии впервые наблюдали на политенных хромосомах слюнных желез у дрозофил, и двукрылые по-прежнему являются наиболее удобным объектом для наблюдения инверсий. В других таксономических группах крупные инверсии можно выявить при помощи дифференциальной окраски метафазных хромосом. Известные полиморфные варианты инверсий можно анализировать при помощи флуоресцентной гибридизации in situ с использованием локус-специфических ДНК-проб.

У людей и у других видов с секвенированным геномом субмикроскопические инверсии можно обнаружить при помощи парноконцевого секвенирования . Межвидовые различия по инверсиям можно выявлять при помощи прямого сравнения гомологичных последовательностей .

Для возникновения инверсии необходимым условием является повреждение ДНК в виде двунитевого разрыва с последующей ошибкой репарации . Двунитевые разрывы ДНК могут возникать вследствие воздействия экзогенными факторами, такими как ионизирующее излучение или химиотерапия , а также вследствие воздействия на ДНК эндогенно образующимися свободными радикалами . Кроме того, двунитевые разрывы возникают запрограммированно при мейозе и при созревании Т- и B-лимфоцитов во время специфической соматической V(D)J рекомбинации . Репарация двунитевого разрыва ДНК может проходить двумя способами: негомологичным соединением разрывов и гомологичной рекомбинацией . При репарации путём негомологичного соединения могут ошибочно соединиться два внутрихромосомных разрыва с разворотом участка между ними на 180°. При гомологичной рекомбинации может произойти неверный выбор последовательности ДНК, на основе которой идёт репарация повреждённой ДНК. Вместо гомологичной последовательности происходит ошибочный выбор паралогичной последовательности на этой же хромосоме. В последнем случае для формирования инверсии необходимо возникновение двунитевого разрыва ДНК в одной из двух повторяющихся последовательностей, находящихся на одной хромосоме в инвертированном положении по отношению друг к другу .

Для обозначения инверсий у Drosophila используют обозначение In(nA)m , где n обозначает номер хромосомы, А - плечо хромосомы и m - имя мутации или номер бэнда. Например, In(2LR)Cy - это инверсия Curly у дрозофилы, которая затрагивает оба плеча хромосомы 2 .

Долгое время инверсии можно было выявлять только при помощи анализа G-бэндированных метафазных хромосом. Этот метод позволяет обнаруживать только крупные инверсии, при этом даже крупные инверсии при G-бэндинге могут остаться незамеченными из-за локального сходства рисунка G-полос. Классический цитогенетический анализ на основе дифференциальной окраски хромосом позволил обнаружить несколько полиморфных инверсий, распространённых в человеческой популяции и не имеющих клинического значения. Инверсии являются наиболее частым хромосомным полиморфизмом, выявляемыми в цитогенетических лабораториях, и самыми частыми из них являются перицентрические инверсии, детектируемые в гетерохроматиновых районах хромосом 1, 2, 3, 5, 9, 10 и 16. Например, известно, что более 1 % человеческой популяции являются носителями перицентрической инверсии в 9 хромосоме inv(9)(p12;q13), которую считают вариантом нормы . Наиболее частой инверсией, который включает эухроматин , является инверсия inv(2)(p11;q23), которая также считается нейтральной . Есть и другие более редкие варианты полиморфных инверсий, которые детектируются в отдельных группах и которые ведут свою историю от одного предкового мутационного события. Например, такая инверсия inv(10)(q11.22;q21.1) обнаруживается с частотой 0,11 % в Швеции .

Современные методы анализа генома, включающие парноконцевое секвенирование , сравнительный анализ геномов близкородственных видов, анализ неравновесного сцепления однонуклеотидных полиморфизмов (SNP), позволили выявить около 500 субмикроскопических полиморфных инверсий. Среди них, например, инверсия на хромосоме 8 (8p23.1) размером около 4.5 млн п.о, которая обнаруживается у 25 % здоровых людей