Устройство тепловой электростанции. Организационно-производственная структура тепловых электростанций

Основной структурной единицей на большинстве электростан­ций является цех . На тепловых станциях различают цеха основно­го, вспомогательного производства и непромышленных хозяйств.

· Цеха основного производства производят продукцию, для выпуска которой создано предприятие. На тепловых станциях основными являются цеха, в которых протекают производственные процессы по превращению химической энергии топлива в тепловую и элек­трическую энергию.

· Цеха вспомогательного производства промышленных предприя­тий, в том числе и электростанций, непосредственно не связаны с изготовлением основной продукции предприятия: они обслу­живают основное производство, способствуют выпуску продук­ции и обеспечивают основному производству необходимые усло­вия для нормальной работы. Эти цеха осуществляют ремонт обо­рудования, снабжение материалами, инструментом, приспособ­лениями, запасными частями, водой (промышленной), различ­ными видами энергии, транспортом и т. п.

· Непромышленными являются хозяйства, продукция и услуги которых не относятся к основной деятельности предприятия. В их функции входит обеспечение и обслуживание бытовых нужд пер­сонала предприятия (жилищные хозяйства, детские учреждения и т.п.).

Производственные структуры тепловой станции определяются соотношением мощности основных агрегатов (турбоагрегатов, па­ровых котлов, трансформаторов) и технологическими связями между ними. Решающим при определении структуры управления является соотношение мощностей и связи между турбинами и котельными агрегатами. На существующих электростанциях сред­ней и малой мощности однородные агрегаты соединяются между собой трубопроводами для пара и воды (пар из котлов собирается в общих сборных магистралях, из которых он распределяется между отдельными котлами). Такую технологическую схему называют централизованной . Широко применяют также секционную схему, при которой турбина с одним или двумя обеспечивающими ее паром котлами, образует секцию электростанции.

  • При таких схемах оборудование распределяется по цехам, объе­диняющим однородное оборудование: в котельном цехе - котель­ные агрегаты со вспомогательным оборудованием; турбинном - турбоагрегаты со вспомогательным оборудованием и т.д. По этому принципу на крупных тепловых электростанциях организуются сле­дующие цеха и лаборатории: топливно-транспортный, котельный, турбинный, электрический (с электротехнической лабораторией), цех (лаборатория) автоматики и теплового контроля, химический (с химической лабораторией), механический (при выполнении ремонта самой электростанцией этот цех становится ремонтно-механическим), ремонтно-строительный.

В настоящее время из-за особенностей технологического про­цесса производства энергии станций с агрегатами мощностью 200...800 МВт и выше применяют блочную схему связей оборудо­вания. На блочных электростанциях турбина, генератор, котел (или два котла) со вспомогательным оборудованием образуют блок; тру­бопроводов, связывающих агрегаты, для пара и воды между блока­ми, нет, резервные котлоагрегаты на электростанциях не устанав­ливаются. Изменение технологической схемы электростанции при­водит к необходимости реорганизации производственной структу­ры управления, в которой основным первичным производствен­ным подразделением является блок.

· Для станций блочного типа наиболее рациональной структурой управления является бесцехо­вая (функциональная) с организацией службы эксплуатации и служ­бы ремонта, возглавляемых начальниками служб - заместителями главного инженера станции. Функциональные отделы подчиняют­ся непосредственно директору станции, а функциональные служ­бы и лаборатории - главному инженеру станции.

· На крупных станциях блочного типа используется промежу­точная структура управления - блочно-цеховая . Котельный и тур­бинный цеха объединяют в один и организуют следующие цеха: топливно-транспортный, химический, тепловой автоматики и измерений, централизованного ремонта и др. При работе станции на газе топливно-транспортный цех не организуется.

Организационно-производственная структура гидроэлектростанций

На ГЭС имеет место как управление отдельными ГЭС, так и ее объединениями, расположенными на одной реке (кана­ле) или просто в каком-либо административном или хозяйствен­ном районе; такие объединения называются каскадными (рис. 23.2).

Организационная структура управления ГЭС:

а - 1-я и 2-я группы; 1 - директор ГЭС; 2 - зам. директора по административ­но-хозяйственной деятельности; 3 - зам. директора по капитальному строитель­ству; 4 - отдел кадров; 5 - главный инженер; 6 - бухгалтерия; 7 - плановый отдел; 8 - отдел гражданской обороны; 2.1 - транспортный участок; 2.2 - отдел материально-технического обеспечения; 2.3 - административно-хозяй­ственный отдел; 2.4 - жилищно-коммунальный отдел; 2.5 - охрана ГЭС; 5.1 - зам. гл. инженера по оперативной работе; 5.2 - начальник электроцеха; 5.3 - начальник турбинного цеха; 5.4 - начальник гидроцеха; 5.5 - производственно-технический отдел; 5.6 - служба связи; 5.7 - инженер по эксплуатации и техни­ке безопасности; 5.2.1 - электротехническая лаборатория; б - 3-я и 4-я группы; 1 - отдел материально-технического снабжения; 2 - производственно-техни­ческий отдел (ПТО); 3 - бухгалтерия; 4 - гидротехнический цех; 5 - элект­ромашинный цех

Организационная структура управления каскадом ГЭС: а - вариант 1; 1 - начальник электроцеха каскада; 2 - начальник турбинного цеха каскада; 3 - начальник гидроцеха каскада; 4 - начальник ПТО; 5 - на­чальник ГЭС-1; 6 - начальник ГЭС-2; 7 - начальник ГЭС-3; 8 - служба связи; 9 - местная служба релейной защиты и автоматики; 10 - инженер-инс­пектор по эксплуатации и технике безопасности; 5.1, 6.1, 7.1 - производствен­ный персонал соответственно ГЭС-1, 2, 3; б - вариант 2; 1 - директор каска­да; 2 - административные подразделения каскада; 3 - главный инженер; 3.1, 3.2, 3.3 - начальник соответственно ГЭС-1, 2, 3; 3.1.1, 3.2.1, 3.3.1 - произ­водственные подразделения, включая оперативный персонал соответственно ГЭС-1, 2, 3

В зависимости от мощности ГЭС и каскадов ГЭС, МВт, по струк­туре управления принято рассматривать шесть групп и столько же каскадов ГЭС:

  • В первых четырех группах применяется в основном цеховая организационная структура управления . На ГЭС и ее каскадах 1-й и 2-й групп предусматриваются, как правило, электрический, тур­бинный и гидротехнический цеха; 3-й и 4-й групп - электротур­бинный и гидротехнический;
  • На ГЭС малой мощности (5-я группа ) при­меняют бесцеховые структуры управления с организацией соот­ветствующих участков;
  • На ГЭС и каскадах мощностью до 25 МВт (6-я группа ) - только оперативно-ремонтный персонал .

При организации каскада ГЭС одна из станций каскада, как правило, наибольшая по мощности, выбирается базовой, на кото­рой размещаются управление каскадом, его отделы и службы, цеха, основные центральные склады и мастерские. При цеховой структу­ре управления каждый цех обслуживает оборудование и сооруже­ния всех ГЭС, входящих в каскад, а персонал находится или на базовой ГЭС, или распределен по станциям каскада. В случаях когда ГЭС каскада расположены на значительном расстоянии друг от друга и соответственно от базовой, необходимо назначать ответ­ственных за работу ГЭС, входящей в каскад.

При объединении в каскад больших по мощности ГЭС целесо­образна централизация только управленческих функций (руководство каскадом, бухгалтерия, снабжение и т.п.). На каждой ГЭС организуются цеха, проводящие полное эксплуатационное и ре­монтное обслуживание. При проведении крупных ремонтных ра­бот, например при капитальном ремонте агрегатов, часть рабочих соответствующего цеха с одной или нескольких ГЭС передается на ту станцию, где это необходимо.

Таким образом, рациональная структура управления в каждом случае принимается исходя из конкретных условий образования каскада. При большом числе ГЭС, входящих в каскад, использу­ется предварительное укрупнение станций, наиболее близко рас­положенных друг к другу, возглавляемых начальником группы ГЭС. Каждая группа самостоятельно ведет эксплуатационное обслужи­вание, включая текущий ремонт оборудования и сооружений.

Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.


Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО 2 , которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.


Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО 2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO 2 – оксид серы. Далее происходит удаление СО 2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Пятерка самых мощных теплоэлектростанций мира

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.


На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис. 1.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции - это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название - ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции - это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС - тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива - мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь - низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину - паровую турбину. ПТУ - основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) - это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок - энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление - это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД - 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам выполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов - очередями, параметры которых повышаются с вводом каждой новой очереди.

Определение

Градирня

Характеристики

Классификация

Теплоелектроцентраль

Устройство мини-ТЭЦ

Назначение мини-ТЭЦ

Использование тепла мини-ТЭЦ

Топливо для мини-ТЭЦ

Мини-ТЭЦ и экология

Газотурбинный двигатель

Парогазовая установка

Принцип действия

Преимущества

Распространение

Конденсационная электростанция

История

Принцип работы

Основные системы

Влияние на окружающую среду

Современное состояние

Верхнетагильская ГРЭС

Каширская ГРЭС

Псковская ГРЭС

Ставропольская ГРЭС

Смоленская ГРЭС

Теплова́яэлектроста́нция это (или теплова́я электри́ческая ста́нция) — электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.



Основными узлами тепловой электрической станции являются:

Двигатели — силовые агрегаты тепловой электро станции

Электрогенераторы

Теплообменники ТЭС - теплоэлектростанции

Градирни.

Градирня

Гради́рня (нем. gradieren — сгущать соляной раствор; первоначально градирни служили для добычи соли выпариванием) — устройство для охлаждения большого количества воды направленным потоком атмосферного воздуха. Иногда градирни называют также охладительными башнями.

В настоящее время градирни в основном применяются в системах оборотного водоснабжения для охлаждения теплообменных аппаратов (как правило, на тепловых электростанциях, ТЭЦ). В гражданском строительстве градирни используются при кондиционировании воздуха, например, для охлаждения конденсаторов холодильных установок, охлаждения аварийных электрогенераторов. В промышленности градирни используются для охлаждения холодильных машин, машин-формовщиков пластических масс, при химической очистке веществ.

Охлаждения происходит за счёт испарения части воды при стекании её тонкой плёнкой или каплями по специальному оросителю, вдоль которого в противоположном движению воды направлении подаётся поток воздуха. При испарении 1 % воды, температура оставшейся понижается на 5,48 °C.

Как правило, градирни используют там, где нет возможности использовать для охлаждения большие водоёмы (озёра, моря). Кроме того, данный способ охлаждения экологически более чистый.

Простой и дешёвой альтернативой градирням являются брызгальные бассейны, где вода охлаждается простым разбрызгиванием.



Характеристики

Основной параметр градирни — величина плотности орошения — удельная величина затраты воды на 1 мІ площади орошения.

Основные конструктивные параметры градирен определяются технико-экономическим расчётом в зависимости от объёма и температуры охлаждаемой воды и параметров атмосферы (температуры, влажности и т. д.) в месте установки.

Использование градирен в зимнее время, особенно в суровых климатических условиях, может быть опасно из-за вероятности обмерзания градирни. Происходит это чаще всего в том месте, где происходит соприкосновение морозного воздуха с небольшим количеством теплой воды. Для предотвращения обмерзания градирни и, соответственно, выхода её из строя следует обеспечивать равномерное распределение охлаждаемой воды по поверхности оросителя и следить за одинаковой плотностью орошения на отдельных участках градирни. Нагнетательные вентиляторы тоже часто подвергаются обледенению из-за неправильного использования градирни.

Классификация

В зависимости от типа оросителя, градирни бывают:

плёночные;

капельные;

брызгальные;

По способу подачи воздуха:

вентиляторные (тяга создаётся вентилятором);

башенные (тяга создаётся при помощи высокой вытяжной башни);

открытые (атмосферные), использующие силу ветра и естественную конвекцию при движении воздуха через ороситель.

Вентиляторные градирни наиболее эффективны с технической точки зрения, так как обеспечивают более глубокое и качественное охлаждение воды, выдерживают большие удельные тепловые нагрузки (однако требуют издержек электрической энергии для привода вентиляторов).

Типы

Котлотурбинные электростанции

Конденсационные электростанции (ГРЭС)

Теплоэлектроцентрали (теплофикационные электростанции, ТЭЦ)

Газотурбинные электростанции

Электростанции на базе парогазовых установок

Электростанции на основе поршневых двигателей

С воспламенением от сжатия (дизель)

C воспламенением от искры

Комбинированного цикла

Теплоелектроцентраль

Теплоэлектроцентра́ль (ТЭЦ) — разновидность тепловой электростанции, которая производит не только электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов). Как правило, ТЭЦ должна работать по теплофикационному графику, то есть выработка электрической энергии зависит от выработки тепловой энергии.

При размещении ТЭЦ учитывается близость потребителей тепла в виде горячей воды и пара.




Мини-ТЭЦ

Мини-ТЭЦ — малая теплоэлектроцентраль.



Устройство мини-ТЭЦ

Мини-ТЭЦ — это теплосиловые установки, служащие для совместного производства электрической и тепловой энергии в агрегатах единичной мощностью до 25 МВт, независимо от вида оборудования. В настоящее время нашли широкое применение в зарубежной и отечественной теплоэнергетике следующие установки: противодавленческие паровые турбины, конденсационные паровые турбины с отбором пара, газотурбинные установки с водяной или паровой утилизацией тепловой энергии, газопоршневые, газодизельные и дизельные агрегаты с утилизацией тепловой энергии различных систем этих агрегатов. Термин когенерационные установки используется в качестве синонима терминов мини-ТЭЦ и ТЭЦ, однако он является более широким по значению, так как предполагает соместное производство (co — совместное, generation — производство) различных продуктов, которыми могут быть, как электрическая и тепловая энергия, так и другие продукты, например, тепловая энергия и углекислый газ, электрическая энергия и холод и т. д. Фактически термин тригенерация, предполагающий производство электричества, тепловой энергии и холода также является частным случаем когенерации. Отличительной особенностью мини-ТЭЦ является более экономичное использование топлива для произведенных видов энергии в сравнении с общепринятыми раздельными способами их производства. Это связано с тем, что электроэнергия в масштабах страны производится в основном в конденсационных циклах ТЭС и АЭС, имеющих электрический КПД на уровне 30-35 % при отсутствии теплового приобретателя . Фактически такое положение дел определяется сложившимся соотношением электрических и тепловых нагрузок населенных пунктов, их различным характером изменения в течение года, а также невозможностью передавать тепловую энергию на большие расстояния в отличие от электрической энергии.

Модуль мини-ТЭЦ включает газопоршневой, газотурбинный или дизельный двигатель, генератор электричества , теплообменник для утилизации тепла от воды при охлаждении двигателя, масла и выхлопных газов. К мини-ТЭЦ обычно добавляют водогрейный котел для компенсации тепловой нагрузки в пиковые моменты.

Назначение мини-ТЭЦ

Основное предназначение мини-ТЭЦ является выработка электрической и тепловой энергии из различных видов топлива.

Концепция строительства мини-ТЭЦ в непосредственной близости к приобретателю имеет ряд преимуществ (в сравнении с большими ТЭЦ):

позволяет избежать расходов на строитпреимуществогостоящих и опасных высоковольтных линий электропередач (ЛЭП);

исключаются потери при передаче энергии;

отпадает необходимость финансовых издержек на выполнение технических условий на подключение к сетям

централизованного электроснабжения;

бесперебойное снабжение электричеством приобретателя;

электроснабжение качественной электричеством, соблюдение заданных значений напряжения и частоты;

возможно, получение прибыли.

В современном мире строительство мини-ТЭЦ набирает обороты, преимущества очевидны.

Использование тепла мини-ТЭЦ

Значимую часть энергии сгорания топлива при выработке электричества составляет тепловая энергия.

Существует варианты использования тепла:

непосредственное использование тепловой энергии конечными потребителями (когенерация);

горячее водоснабжение (ГВС), отопление, технологические нужды (пар);

частичное преобразование тепловой энергии в энергию холода (тригенерация);

холод вырабатывается абсорбционной холодильной машиной, потребляющей не электрическую, а тепловую энергию, что дает возможность достаточно эффективно использовать тепло летом для кондиционирования помещений или для технологических нужд;

Топливо для мини-ТЭЦ

Виды используемого топлива

газ: магистральный, Природный газ сжиженный и другие горючие газы;

жидкое топливо: , дизтопливо, биодизель и другие горючие жидкости;

твердое топливо: уголь, древесина, торф и прочие разновидности биотоплива.

Наиболее эффективным и недорогим топливом в Российской Федерации является магистральный Природный газ , а так же попутный газ.


Мини-ТЭЦ и экология

Использование в практических целях отработавшего тепла двигателей электростанций, является отличительной особенностью мини-ТЭЦ и носит название когенерация (теплофикация).

Комбинированное производство энергии двух видов на мини - тэц способствуют гораздо более экологичному использованию топлива по сравнению с раздельной выработкой электричества и тепловой энергии на котельных установках.

Замена котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, мини-ТЭЦ способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению общего экологического состояния.

Источник энергии для газопоршневых и газотурбинных мини-ТЭЦ, как правило, . Природный или попутный газ органическое топливо, не загрязняющее атмосферу твёрдыми выбросами

Газотурбинный двигатель

Газотурбинный двигатель (ГТД, ТРД) — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. В отличие от поршневого двигателя, в ГТД процессы происходят в потоке движущегося газа.

Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, туда же подаётся топливо, которое, сгорая, образует большое количество продуктов сгорания под высоким давлением. Затем в газовой турбине энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струёй газа лопаток, часть которой расходуется на сжатие воздуха в компрессоре. Остальная часть работы передаётся на приводимый агрегат. Работа, потребляемая этим агрегатом, является полезной работой ГТД. Газотурбинные двигатели имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.


Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т.д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.

Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрПреимущество грузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.

Парогазовая установка

Парогазовая установка — электрогенерирующая станция, служащая для производства тепло- и электричества. Отличается от паросиловых и газотурбинных установок повышенным КПД.

Принцип действия

Парогазовая установка состоит из двух отдельных установок: паросиловой и газотурбинной. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как Природный газ, так и продукты нефтяной промышленности (мазут , солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газотурбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор.

Преимущества

Парогазовые установки имеют электрический КПД порядка 51—58 %, в то время как у работающих отдельно паросиловых или газотурбинных установок он колеблется в районе 35—38 %. Благодаря этому не только снижается затрата топлива, но и уменьшается выброс парниковых газов.

Поскольку парогазовая установка более эффективно извлекает тепло из продуктов сгорания, можно сжигать топливо при более высоких температурах, в результате уровень выбросов оксида азота в атмосферу ниже чем у установок других типов.

Относительно низкая стоимость производства.


Распространение

Несмотря на то, что преимущества парогазового цикла были впервые доказаны еще в 1950-х годах советским академиком Христиановичем, этот тип энергогенерирующих установок не получил в Российской Федерации широкого применения. В СССР были построены несколько экспериментальных ПГУ. Примером могут служить энергоблоки мощностью 170 МВт на Невинномысской ГРЭС и мощностью 250 МВт на Молдавской ГРЭС. В последние годы в Российской Федерации введены в эксплуатацию ряд мощных парогазовых энергоблоков. Среди них:

2 энергоблока мощностью 450 МВт каждый на Северо-западной ТЭЦ в Санкт-Петербурге;

1 энергоблок мощностью 450 МВт на Калининградской ТЭЦ-2;

1 ПГУ мощностью 220 МВт на Тюменской ТЭЦ-1;

2 ПГУ мощностью 450 МВт на ТЭЦ-27 и 1 ПГУ на ТЭЦ-21 в Москве;

1 ПГУ мощностью 325 МВт на Ивановской ГРЭС;

2 энергоблока мощностью 39 МВт каждый на Сочинской ТЭС

По состоянию на сентябрь 2008 г. в Российской Федерации в различных стадиях проектирования или строительства находятся несколько ПГУ.

В Европе и США подобные установки функционируют на большинстве тепловых электростанций.

Конденсационная электростанция

Конденсационная электростанция (КЭС) — тепловая электростанция, производящая только электрическую энергию. Исторически получила наименование «ГРЭС» — государственная районная электростанция. С течением времени термин «ГРЭС» потерял свой первоначальный смысл («районная») и в современном понимании означает, как правило, конденсационную электростанцию (КЭС) большой мощности (тысячи МВт), работающую в объединённой энергосистеме наряду с другими крупными электростанциями. Однако следует учитывать, что не все станции, имеющие в своём названии аббревиатуру «ГРЭС», являются конденсационными, некоторые из них работают как теплоэлектроцентрали.

История

Первая ГРЭС «Электропередача», сегодняшняя «ГРЭС-3», сооружена под Москвой в г. Электрогорске в 1912—1914 гг. по инициативе инженера Р. Э. Классона. Основное топливо — торф, мощность — 15 МВт. В 1920-х планом ГОЭЛРО предусматривалось строительство нескольких тепловых электростанций, среди которых наиболее известна Каширская ГРЭС.


Принцип работы

Вода, нагреваемая в паровом котле до состояния перегретого пара (520—565 градусов Цельсия), вращает паровую турбину, приводящую в движение турбогенератор.

Избыточное тепло выбрасывается в атмосферу (близлежащие водоёмы) через конденсационные установки в отличие от теплофикационных электростанций, отдающих избыточное тепло на нужды близлежащих объектов (например, отопление домов).

Конденсационная электростанция как правило работает по циклу Ренкина.

Основные системы

КЭС является сложным энергетическим комплексом, состоящим из зданий, сооружений, энергетического и иного оборудования, трубопроводов, арматуры, контрольно-измерительных приборов и автоматики. Основными системами КЭС являются:

котельная установка;

паротурбинная установка;

топливное хозяйство;

система золо- и шлакоудаления, очистки дымовых газов;

электрическая часть;

техническое водоснабжение (для отвода избыточного тепла);

система химической очистки и подготовки воды.

При проектировании и строительстве КЭС ее системы размещаются в зданиях и сооружениях комплекса, в первую очередь в главном корпусе. При эксплуатации КЭС персонал, управляющий системами, как правило, объединяется в цеха (котлотурбинный, электрический, топливоподачи, химводоподготовки, тепловой автоматики и т. п.).

Котельная установка располагается в котельном отделении главного корпуса. В южных районах Российской Федерации котельная установка может быть открытой, то есть не иметь стен и крыши. Установка состоит из паровых котлов (парогенераторов) и паропроводов. Пар от котлов передается турбинам по паропроводам «острого» пара. Паропроводы различных котлов, как правило, не соединяются поперечными связями. Такая схема называется «блочной».

Паротурбинная установка располагается в машинном зале и в деаэраторном (бункерно-деаэраторном) отделении главного корпуса. В нее входят:

паровые турбины с электрическим генератором на одном валу;

конденсатор, в котором пар, прошедший турбину, конденсируется с образованием воды (конденсата);

конденсатные и питательные насосы, обеспечивающие возврат конденсата (питательной воды) к паровым котлам;

рекуперативные подогреватели низкого и высокого давления (ПНД и ПВД) — теплообменники, в которых питательная вода подогревается отборами пара от турбины;

деаэратор (служащий также ПНД), в котором вода очищается от газообразных примесей;

трубопроводы и вспомогательные системы.

Топливное хозяйство имеет различный состав в зависимости от основного топлива, на которое рассчитана КЭС. Для угольных КЭС в топливное хозяйство входят:

размораживающее устройство (т. н. «тепляк», или «сарай») для оттаивания угля в открытых полувагонах;

разгрузочное устройство (как правило, вагоноопрокидыватель);

угольный склад, обслуживаемый краном-грейфером или специальной перегрузочной машиной;

дробильная установка для предварительного измельчения угля;

конвейеры для перемещения угля;

системы аспирации, блокировки и другие вспомогательные системы;

система пылеприготовления, включая шаровые, валковые, или молотковые углеразмольные мельницы.

Система пылеприготовления, а также бункера угля располагаются в бункерно-деаэраторном отделении главного корпуса, остальные устройства топливоподачи — вне главного корпуса. Изредка устраивается центральный пылезавод. Угольный склад рассчитывается на 7-30 дней непрерывной работы КЭС. Часть устройств топливоподачи резервируется.

Топливное хозяйство КЭС на Природном газе наиболее просто: в него входит газораспределительный пункт и газопроводы. Однако на таких электростанциях в качестве резервного или сезонного источника используется мазут , поэтому устраивается и мазутное хозяйство. Мазутное хозяйство сооружается и на угольных электростанциях, где применяется для растопки котлов. В мазутное хозяйство входят:

приемно-сливное устройство;

мазутохранилище со стальными или железобетонными резервуарами;

мазутная насосная станция с подогревателями и фильтрами мазута;

трубопроводы с запорно-регулирующей арматурой;

противопожарная и другие вспомогательные системы.

Система золошлакоудаления устраивается только на угольных электростанциях. И зола, и шлак — негорючие остатки угля, но шлак образуется непосредственно в топке котла и удаляется через лётку (отверстие в шлаковой шахте), а зола уносится с дымовыми газами и улавливается уже на выходе из котла. Частицы золы имеют значительно меньшие размеры (порядка 0,1 мм), чем куски шлака (до 60 мм). Системы золошлакоудаления могут быть гидравлические, пневматические или механические. Наиболее распространённая система оборотного гидравлического золошлакоудаления состоит из смывных аппаратов, каналов, багерных насосов, пульпопроводов, золошлакоотвалов, насосных и водоводов осветлённой воды.

Выброс дымовых газов в атмосферу является наиболее опасным воздействием тепловой электростанции на окружающую природу. Для улавливания золы из дымовых газов после дутьевых вентиляторов устанавливают фильтры различных типов (циклоны, скрубберы, электрофильтры, рукавные тканевые фильтры), задерживающие 90—99 % твердых частиц. Однако для очистки дыма от вредных газов они непригодны. За рубежом, а в последнее время и на отечественных электростанциях (в том числе газо-мазутных), устанавливают системы десульфуризации газов известью или известняком (т. н. deSOx) и каталитического восстановления оксидов азота аммиаком (deNOx). Очищенный дымовой газ выбрасывается дымососом в дымовую трубу, высота которой определяется из условий рассеивания оставшихся вредных примесей в атмосфере.

Электрическая часть КЭС предназначена для производства электрической энергии и её распределения потребителям. В генераторах КЭС создается трехфазный электрический ток напряжением обычно 6—24 кВ. Так как с повышением напряжения потери энергии в сетях существенно уменьшаются, то сразу после генераторов устанавливаются трансформаторы, повышающие напряжение до 35, 110, 220, 500 и более кВ. Трансформаторы устанавливаются на открытом воздухе. Часть электрической энергии расходуется на собственные нужды электростанции. Подключение и отключение отходящих к подстанциям и потребителям линий электропередачи производится на открытых или закрытых распределительных устройствах (ОРУ, ЗРУ), оснащенных выключателями, способными соединять и разрывать электрическую цепь высокого напряжения без образования электрической дуги.

Система технического водоснабжения обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин. Системы разделяются на прямоточные, оборотные и смешанные. В прямоточных системах вода забирается насосами из естественного источника (обычно из реки) и после прохождения конденсатора сбрасывается обратно. При этом вода нагревается примерно на 8—12 °C, что в ряде случаев изменяет биологическое состояние водоёмов. В оборотных системах вода циркулирует под воздействием циркуляционных насосов и охлаждается воздухом. Охлаждение может производиться на поверхности водохранилищ-охладителей или в искусственных сооружениях: брызгальных бассейнах или градирнях.

В маловодных районах вместо системы технического водоснабжения применяются воздушно-конденсационные системы (сухие градирни), представляющие собой воздушный радиатор с естественной или искусственной тягой. Это решение обычно вынужденное, так как они дороже и менее эффективны с точки зрения охлаждения.

Система химводоподготовки обеспечивает химическую очистку и глубокое обессоливание воды, поступающей в паровые котлы и паровые турбины, во избежание отложений на внутренних поверхностях оборудования. Обычно фильтры, ёмкости и реагентное хозяйство водоподготовки размещается во вспомогательном корпусе КЭС. Кроме того, на тепловых электростанциях создаются многоступенчатые системы очистки сточных вод, загрязненных нефтепродуктами, маслами, водами обмывки и промывки оборудования, ливневыми и талыми стоками.

Влияние на окружающую среду

Воздействие на атмосферу. При горении топлива потребляется большое количество кислорода, а также происходит выброс значительного количества продуктов сгорания таких как: летучая зола, газообразные окислы серы азота, часть которых имеет большую химическую активность.

Воздействие на гидросферу. Прежде всего сброс воды из конденсаторов турбин, а также промышленные стоки.

Воздействие на литосферу. Для захоронения больших масс золы требуется много места. Данные загрязнения снижаются использованием золы и шлаков в качестве строительных материалов.

Современное состояние

В настоящее время в Российской Федерации работают типовые ГРЭС мощностью 1000—1200, 2400, 3600 МВт и несколько уникальных, используются агрегаты по 150, 200, 300, 500, 800 и 1200 МВт. Среди них следующие ГРЭС (входящие в состав ОГК):

Верхнетагильская ГРЭС — 1500 МВт;

Ириклинская ГРЭС — 2430 МВт;

Каширская ГРЭС — 1910 МВт;

Нижневартовская ГРЭС — 1600 МВт;

Пермская ГРЭС — 2400 МВт;

Уренгойская ГРЭС — 24 МВт.

Псковская ГРЭС — 645 МВт;

Серовская ГРЭС — 600 МВт;

Ставропольская ГРЭС — 2400 МВт;

Сургутская ГРЭС-1 — 3280 МВт;

Троицкая ГРЭС — 2060 МВт.

Гусиноозёрская ГРЭС — 1100 МВт;

Костромская ГРЭС — 3600 МВт;

Печорская ГРЭС — 1060 МВт;

Харанорская ГРЭС — 430 МВт;

Черепетская ГРЭС — 1285 МВт;

Южноуральская ГРЭС — 882 МВт.

Берёзовская ГРЭС — 1500 МВт;

Смоленская ГРЭС — 630 МВт;

Сургутская ГРЭС-2 — 4800 МВт;

Шатурская ГРЭС — 1100 МВт;

Яйвинская ГРЭС — 600 МВт.

Конаковская ГРЭС — 2400 МВт;

Невинномысская ГРЭС — 1270 МВт;

Рефтинская ГРЭС — 3800 МВт;

Среднеуральская ГРЭС — 1180 МВт.

Киришская ГРЭС — 2100 МВт;

Красноярская ГРЭС-2 — 1250 МВт;

Новочеркасская ГРЭС — 2400 МВт;

Рязанская ГРЭС (блоки № 1-6 — 2650 МВт и блок № 7 (вошедшая в состав Рязанской ГРЭС бывшая ГРЭС-24 — 310 МВт) — 2960 МВт;

Череповецкая ГРЭС — 630 МВт.

Верхнетагильская ГРЭС

Верхнетаги́льская ГРЭС — тепловая электростанция в Верхнем Тагиле (Свердловская область), работающая в составе «ОГК-1». В эксплуатации с 29 мая 1956 года.

Станция включает 11 энергоблоков электрической мощностью 1497 МВт и тепловой — 500 Гкал/ч. Топливо станции: Природный газ (77 %), уголь (23 %). Численность персонала — 1119 человек.

Строительство станции проектной мощностью 1600 МВт началось в 1951 году. Целью строительства было обеспечение тепловой и электрической энергией Новоуральского электрохимического комбината. В 1964 году электростанция достигла проектной мощности.

С целью улучшения теплоснабжения городов Верхний Тагил и Новоуральск была произведена станции:

Четыре конденсационных турбоагрегата К-100-90(ВК-100-5)ЛМЗ были заменены на теплофикационные турбины Т-88/100-90/2,5.

На ТГ-2,3,4 установлены сетевые подогреватели типа ПСГ-2300-8-11 для нагрева сетевой воды в схеме теплоснабжения Новоуральска.

На ТГ-1,4 установлены сетевые подогреватели для теплоснабжения Верхнего Тагила и промплощадки.

Все работы выполнялись по проекту ХФ ЦКБ.

В ночь с 3 на 4 января 2008 года на Сургутской ГРЭС-2 произошла авария: частичное обрушение кровли над шестым энергоблоком мощностью 800 МВт привело к остановке двух энергоблоков. Ситуацию осложняло то, что ещё один энергоблок (№ 5) был на ремонте: В итоге были остановлены энергоблоки № 4, 5, 6. Эту аварию удалось локализовать к 8 января. Весь этот времени ГРЭС работала в особенно напряжённом режиме.

В срок соответственно до 2010 года и 2013 года планируется строительство двух новых энергоблоков (топливо — Природный газ).

На ГРЭС существует проблема выбросов в окружающую среду. «ОГК-1» подписала контракт с «Инженерным центром энергетики Урала» на 3,068 млн рублей, который предусматривает разработку проекта реконструкции котла Верхнетагильской ГРЭС, который приведёт к снижению выбросов для соблюдения нормативов ПДВ.

Каширская ГРЭС

Каши́рская ГРЭС имени Г. М. Кржижановского в городе Кашира Московской области, на берегу Оки.

Историческая станция, построена под личным контролем В. И. Ленина по плану ГОЭЛРО. На момент ввода в строй станция мощностью 12 МВт была второй по мощности электростанцией в Европе .

Станция была построена по плану ГОЭЛРО, строительство велось под личным контролем В. И. Ленина. Строилась в 1919—1922 годах, для строительства на месте села Терново возведён рабочий посёлок Новокаширск. Пущена 4 июня 1922 года, стала одной из первых советских районных ТЭС.

Псковская ГРЭС

Псковская ГРЭС — государственная районная электростанция, расположена в 4,5 километрах от поселка городского типа Дедовичи — районного центра Псковской области, на левом берегу реки Шелонь. С 2006 года является филиалом ОАО «ОГК-2».

Высоковольтные ЛЭП связывают Псковскую ГРЭС с Белоруссией, Латвией и Литвой. Материнская организация считает это преимуществом: существует канал экспортирования энергоресурсов, который активно используется.

Установленная мощность ГРЭС 430 МВт, она включает в себя два высоко маневренных энергоблока по 215 МВт. Эти энергоблоки построены и введены в эксплуатацию в 1993 и 1996 годах. Первоначальпреимуществом рвой очереди включал в себя строительство трёх энергоблоков.

Основной вид топлива — Природный газ, он поступает на станцию через ответвление магистрального экспортного газопровода. Энергоблоки были изначально созданы для работы на фрезерном торфе; они были реконструированы по проекту ВТИ для сжигания Природного газа.

Издержка электричества на собственные нужды составляет 6,1 %.

Ставропольская ГРЭС

Ставропольская ГРЭС — тепловая электростанция Российской Федерации. Находится в городе Солнечнодольск Ставропольского края.

Загрузка электростанции позволяет осуществлять экспортные поставки электричества за рубеж: в Грузию и в Азербайджан. При этом гарантируется поддержание перетоков в системообразующей электрической сети Объединенной энергосистемы Юга на допустимых уровнях.

Входит в состав Оптовой генерирующей организации № 2 (ОАО «ОГК-2»).

Издержка электричества на собственные нужды станции составляет 3,47 %.

Основным топливом станции является Природный газ, но в качестве резервного и аварийного топлива станцией может использоваться мазут. Топливный баланс по состоянию на 2008 год: газ — 97 %, мазут — 3 %.

Смоленская ГРЭС

Смоленская ГРЭС — тепловая электростанция Российской Федерации. Входит в состав Оптовой генерирующей фирмы № 4 (ОАО «ОГК-4») с 2006.

12 января 1978 был введён в эксплуатацию первый блок ГРЭС, проектирование которой началось в 1965, а строительство — в 1970. Станция расположена в посёлке Озёрный Духовщинского района Смоленской области. Первоначально предполагалось использовать в качестве топлива торф, но по причине отставания строительства торфодобывающих предприятий использовались другие виды топлива (подмосковный уголь , интинский уголь, сланец, хакасский уголь). Всего сменилось 14 видов топлива. С 1985 окончательно установлено, что энергию будут получать из Природного газа и угля.

Сегодняшняя установленная мощность ГРЭС составляет 630 МВт.















Источники

Рыжкин В. Я. Тепловые электрические станции. Под ред. В. Я. Гиршфельда. Учебник для вузов. 3-е изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 328 с.

http://ru.wikipedia.org/


Энциклопедия инвестора . 2013 .

Синонимы : Словарь синонимов

теплоэлектростанция - — EN heat and power station Power station which produces both electricity and hot water for the local population. A CHP (Combined Heat and Power Station) plant may operate on almost … Справочник технического переводчика

теплоэлектростанция - šiluminė elektrinė statusas T sritis fizika atitikmenys: angl. heat power plant; steam power plant vok. Wärmekraftwerk, n rus. тепловая электростанция, f; теплоэлектростанция, f pranc. centrale électrothermique, f; centrale thermique, f; usine… … Fizikos terminų žodynas

теплоэлектростанция - теплоэлектростанция, теплоэлектростанции, теплоэлектростанции, теплоэлектростанций, теплоэлектростанции, теплоэлектростанциям, теплоэлектростанцию, теплоэлектростанции, теплоэлектростанцией, теплоэлектростанциею, теплоэлектростанциями,… … Формы слов - и; ж. Предприятие, вырабатывающее электрическую энергию и тепло … Энциклопедический словарь

Организационно-производственная структура АЭС в основном подобна ТЭС . На АЭС вместо котельного цеха организуется реакторный цех. К нему относятся реактор, парогенераторы, вспомогательное оборудование. В состав вспомогательного подразделения входит химико-дезактивационный цех, который включает в себя спецводоочистку, хранилище жидких и сухих радиоактивных отходов, лабора­торию.

Специфичным для АЭС является отдел радиационной безопасности, задачей которого является предотвращение опасного для здоровья воздействия излучений на обслуживающий персонал и окружающую среду. В состав отдела входят радиохимическая и радиометрическая лаборатория, специальный санпропускник и спец-прачечная.

Цеховая организационно-производственная структура атомной электростанции

Организационно-производственная структура предприятия электрических сетей

В каждой энергосистеме для осуществления ремонтно-эксплуатационного и диспетчерского обслуживания электросетевого хо­зяйства создаются предприятия электрических сетей (ПЭС). Электросе­тевые предприятия могут быть двух типов: специализированные и комплексные. Специализированными являются: предприятия, об­служивающие высоковольтные линии и подстанции напряжени­ем свыше 35 кВ; распределительные сети 0,4...20 кВ в сельской местности; распределительные сети 0,4... 20 кВ в городах и посел­ках городского типа. Комплексные предприятия обслуживают сети всех напряжений и в городах, и в сельской местности. К их числу относится большинство предприятий.

Предприятия электросетей управляются по следующим схемам управления:

    территориальной;

    функциональной;

    смешанной.

При терри­ториальной схеме управления электрические сети всех напряже­ний, расположенные на определенной территории (как правило, на территории административного района), обслуживаются райо­нами электросетей (РЭС), подчиненными руководству предприя­тия.

Функциональная схема управления характеризуется тем, что электрообъекты закреплены за соответствующими службами пред­приятия, обеспечивающими их эксплуатацию, и применяется при высокой концентрации электросетевого хозяйства на сравнитель­но небольшой территории. Специализация, как правило, бывает по под станционному, линейному оборудованию, релейной защите и т.п.

Наибольшее распространение получила смешанная схема управления предприятием, при которой наиболее сложные эле­менты сети закреплены за соответствующими службами, а основ­ной объем электросетей эксплуатируется районами или участка­ми электрических сетей. В состав таких предприятий входят функциональные отделы, производственные службы, районы и участки сетей.

Предприятие электрических сетей может быть или структур­ным подразделением в составе АО-Энерго, или самостоятельным производственным подразделением по передаче и распределению электроэнергии - АО ПЭС. Основной задачей ПЭС является обес­печение договорных условий электроснабжения потребителей за счет надежной и эффективной эксплуатации оборудования. Организационная структура ПЭС зависит от многих условий: место­расположения (город или сельская местность), уровня развития предприятия, класса напряжения оборудования, перспективы развития сетей, объема обслуживания, который рассчитывается на основании отраслевых нормативов в условных единицах, и дру­гих факторов.