Название шаттлов. Почему так получилось? Принципы работы ускорителей

»Атлантис" входит в атмосферу Земли, возвращаясь с МКС

8 июля 2011 года был осуществлен последний запуск шаттла «Атлантис» на МКС. Это же был и последний полет в рамках программы «Спейс Шаттл». На борту аппарата находился экипаж из четырех астроавтов. В состав экипажа вошли командир корабля астронавт Крис Фергюсон, пилот Даг Херли и специалисты полета - астронавты Сандра Магнус и Рекс Уолхайм. 19 июля шаттл отстыковывался от модуля МКС и 21 июля вернулся на Землю.

В это время на борту МКС находился Майкл Фоссум, который был доставлен на станцию «Союзом ТМА-02М» в июне 2011 года. Он же получил получил роль командира МКС-29. 21 июля Майкл Фоссум решил запечатлеть финальный полет «Атлантиса» на камеру. По его словам, во время проведения работ по съемке его руки тряслись - он понимал, что ни один из шаттлов больше никуда не полетит, это возвращение «Атлантиса» на Землю - последнее.


Фоссум уже бывал на МКС дважды, оба раза он летал на шаттле «Дискавери»: в 2006 и 2008 году. Во время отлета «Атлантиса» он вспомнил , как видел огненный след шаттла при его посадке в Космическом Центре НАСА имени Кеннеди. «Я вспомнил, как это было ярко и живо, и решил, что используя некоторые приемы техники фотосъемки, я бы мог снять отличный вид посадки „Атлантиса“ со станции», - говорит Фоссум.


Фотографии делались именно отсюда, из купола МКС

Для того, чтобы получить отличные кадры, астронавту нужно было потренироваться. В течение девяти дней, пока «Атлантис» был пристыкован к МКС, он в свободное время пробовал снимать при низкой освещенности. Фотограф установил держатель для камеры на иллюминатор МКС, и снимал северное сияние. В течение девяти дней астронавт менял многие настройки камеры для того, чтобы добиться наилучшего эффекта при съемке.

До момента отстыковки «Атлантиса» на станции царила приподнятая атмосфера. Но после того, как шаттл отстыковался и ряд астронавтов улетел, настроение оставшихся людей резко изменилось. «В последний день, когда три смены работали восемь часов, я решил сказать пока всем, поскольку я знал, что они улетят, и подобное больше не повторится. Мы решили провести специальную церемонию...», - рассказал Фоссум.

Мероприятие было проведено, космонавты сказали друг другу много хорошего, и шаттл отправился домой. Фоссум успел сделать около 100 снимков во время снижения «Атлантиса». Фотографируя, он заметил, что его руки дрожали, ведь все это было в последний раз, и на снимках должен был остаться исторический момент.

«Атлантис» доставил на МКС большое количество еды, и команда устроила некое подобие прощальной вечеринки с кучей деликатесов (если еду для астронавтов можно так называть).


Последний запуск шаттла «Атлантис»

Спейс шаттл или просто Шаттл (англ. Space Shuttle - «космический челнок») - американский многоразовый транспортный космический корабль . При разработке проекта считалось, что шаттлы будут часто летать на орбиту и обратно, доставляя полезные грузы, людей и технику.

Проект по созданию шаттлов разрабатывался компанией North American Rockwell по поручению НАСА с 1971 года. При создании системы использовались технологии, разработанные для лунных модулей программы «Аполлон» 1960-х годов: эксперименты с твердотопливными ускорителями, системами их отделения и получения топлива из внешнего бака. В рамках проекта было создано пять шаттлов и один прототип. К сожалению, два шаттла были уничтожены в катастрофах. Полеты в космос осуществлялись с 12 апреля 1981 года по 21 июля 2011 года.

В 1985 году НАСА планировало, что к 1990 году будет совершаться по 24 старта в год, а каждый космический челнок совершит до 100 полётов в космос. К сожалению, летали шаттлы гораздо реже - за 30 лет эксплуатации было произведено 135 пусков. Больше всего полётов (39) совершил шаттл «Дискавери».

Первым действующим многоразовым орбитальным аппаратом стал шаттл «Колумбия». Его начали строить в марте 1975 года, а в марте 1979 года он был передан Космическому центру НАСА имени Кеннеди. К сожалению, шаттл «Колумбия» погиб в катастрофе 1 февраля 2003 года, когда аппарат входил в атмосферу Земли для посадки.


Последняя посадка «Атлантиса» ознаменовала собой конец целой эпохи

Косми́ческая тра́нспортная систе́ма (англ. Space Transportation System), более известная как Спе́йс ша́ттл (от англ. Space shuttle - косми́ческий челно́к) - американский многоразовый транспортный космический корабль. Шаттл запускается в космос с помощью ракет-носителей, осуществляет манёвры на орбите как космический корабль и возвращается на Землю как самолёт. Подразумевалось, что шаттлы будут сновать, как челноки, между околоземной орбитой и Землёй, доставляя полезные грузы в обоих направлениях. При разработке предусматривалось, что каждый из шаттлов должен был до 100 раз стартовать в космос. На практике же они используются значительно меньше. К маю 2010 года больше всего полётов - 38 - совершил шаттл «Дискавери». Всего с 1975 по 1991 год было построено пять шаттлов: «Колумбия» (сгорел при посадке в 2003), «Челленджер» (взорвался при старте в 1986), «Дискавери», «Атлантис» и «Индевор». 14 мая 2010 года спейс шаттл «Атлантис» совершил свой последний старт с мыса Канаверал. По возвращении на Землю он будет списан.

История применения

Программа по созданию шаттлов разрабатывалась компанией North American Rockwell по поручению НАСА с 1971 года.
Шаттл «Колумбия» был первым действующим многоразовым орбитальным аппаратом. Его изготовили в 1979 году и передали Космическому центру НАСА имени Кеннеди. Шаттл «Колумбия» был назван по имени парусника, на котором капитан Роберт Грей в мае 1792 года исследовал внутренние воды Британской Колумбии (ныне штаты США Вашингтон и Орегон). В НАСА «Колумбия» имеет обозначение OV-102 (Orbiter Vehicle - 102). Шаттл «Колумбия» погиб 1 февраля 2003 года (полёт STS-107) при входе в атмосферу Земли перед посадкой. Это было 28-е космическое путешествие «Колумбии».
Второй космический челнок - «Челленджер» был передан НАСА в июле 1982 года. Он был назван по имени морского судна, исследовавшего океан в 1870-е годы. В НАСА «Челленджер» имеет обозначение - OV-099. «Челленджер» погиб при своём десятом запуске 28 января 1986 года.
Третий шаттл - «Дискавери» был передан НАСА в ноябре 1982 года.
Шаттл «Дискавери» был назван по имени одного из двух судов, на которых, в 1770-х годах, британский капитан Джеймс Кук (англ. James Cook) открыл Гавайские острова и исследовал побережье Аляски и северо-западной Канады. Такое же имя («Дискавери») носило одно из судов Генри Хадсона, который в 1610-1611 годах исследовал Гудзонов залив. Ещё два «Дискавери» были построены Британским Королевским Географическим Обществом для исследования Северного полюса и Антарктики в 1875 и 1901 годах. В НАСА «Дискавери» имеет обозначение OV-103.
Четвёртый шаттл - «Атлантис» (Atlantis) вступил в строй в апреле 1985 года.
Пятый шаттл - «Индевор» (Endeavour) был построен взамен погибшего «Челленджера» и принят в эксплуатацию в мае 1991 года. Шаттл «Индевор» был назван также по имени одного из судов Джеймса Кука. Это судно использовалось в астрономических наблюдениях, которые позволили точно установить расстояние от Земли до Солнца. Этот корабль также участвовал в экспедициях по исследованию Новой Зеландии. В НАСА «Индевор» имеет обозначение OV-105.
До «Колумбии» был построен ещё один шаттл - «Энтерпрайз» (Enterprise), который в конце 1970-х годов использовался только как тестовый аппарат для отработки методов посадки и не летал в космос. В самом начале предполагалось назвать этот орбитальный корабль - «Конституция» (Constitution) в честь двухсотлетия американской Конституции. Позже, по многочисленным предложениям зрителей популярного телевизионного сериала «Звёздный путь» (Star Trek), было выбрано имя «Энтерпрайз». В НАСА «Энтерпрайз» имеет обозначение OV-101.

Шаттл «Дискавери» взлетает. Миссия STS-120

Общие сведения
Страна Соединённые Штаты Америки США
Назначение Многоразовый транспортный космический корабль
Изготовитель United Space Alliance:
Thiokol/Alliant Techsystems (SRBs)
Lockheed Martin (Martin Marietta) - (ET)
Rockwell/Boeing (orbiter)
Основные характеристики
Количество ступеней 2
Длина 56,1 м
Диаметр 8,69 м
Стартовая масса 2030 т
Масса полезной нагрузки
- на НОО 24 400 кг
- на Геостационарная орбита 3810 кг
История запусков
Состояние действующий
Места запуска Космический центр Кеннеди, 39-й комплекс
База Ванденберг (планировалось в 1980-е)
Число запусков 128
- успешных 127
- неудачных 1 (launch failure, Challenger)
- частично неудачных 1 (re-entry failure, Columbia)
Первый запуск 12 апреля 1981 года
Последний запуск осень 2010 года

Конструкция

Шаттл состоит из трёх основных компонентов: орбитальный аппарат (Орбитер, Orbiter), который выводится на околоземную орбиту и который является, собственно, космическим кораблём; большой внешний топливный бак, для главных двигателей; и два твердотопливных ракетных ускорителя, которые работают в течение двух минут после старта. После выхода в космос орбитер самостоятельно возвращается на Землю и совершает посадку как самолёт на взлётно-посадочную полосу. Твердотопливные ускорители приводняются на парашютах и затем используются вновь. Внешний топливный бак сгорает в атмосфере.


История создания

Существует серьёзное заблуждение, что программа «Спейс шаттл» создавалась для военных нужд, в качестве некоего «космического бомбардировщика». Это глубоко неверное «мнение» основывается на «возможности» челноков нести ядерное вооружение (такую возможность в той же степени имеет любой достаточно большой пассажирский авиалайнер (к примеру, первый советский трансконтинентальный авиалайнер Ту-114 был создан на базе стратегического ядерного носителя Ту-95) и на теоретических предположениях об «орбитальных нырках», которые якобы способны проводить (и даже осуществляли) орбитальные корабли многоразового использования.
На самом деле, все упоминания о «бомбардировочном» назначении шаттлов содержатся исключительно в советских источниках, как оценка военного потенциала космических челноков. Справедливо будет предположить, что эти «оценки» использовались, чтобы убедить высшее руководство в необходимости «адекватного ответа» и создать свою аналогичную систему.
История проекта спейс шаттл начинается в 1967 году, когда ещё до первого пилотируемого полёта по программе «Аполло» (11 октября 1968 года - старт «Аполло-7») оставалось больше года, как обзор перспектив пилотируемой космонавтики после завершения лунной программы NASA.
30 октября 1968 года два головных центра NASA (Центр пилотируемых космических кораблей - MSC - в Хьюстоне и Космический центр имени Маршалла - MSFC - в Хантсвилле) обратились к американским космическим фирмам с предложением исследовать возможность создания многоразовой космической системы, что должно было снизить затраты космического агентства при условии интенсивного использования.
В сентябре 1970 года Целевая космическая группа под руководством вице-президента США С. Агню, специально созданная для определения следующих шагов в освоения космического пространства, оформила два детально проработанных проекта вероятных программ.
Большой проект включал:

* космические челноки;
* орбитальные буксиры;
* большую орбитальную станцию на Земной орбите (до 50 человек экипажа);
* малую орбитальную станцию на орбите Луны;
* создание обитаемой базы на Луне;
* пилотируемые экспедиции к Марсу;
* высадку людей на поверхность Марса.
В качестве малого проекта предлагалось создать только большую орбитальную станцию на Земной орбите. Но в обоих проектах, было определено, что орбитальные полёты: снабжение станции, доставку на орбиту грузов для дальних экспедиций или блоки кораблей для дальних полётов, смена экипажей и прочие задания на орбите Земли должны осуществляться многоразовой системой, которая и получила тогда название Space Shuttle.
Также существовали планы создания «атомного шаттла» - челнока с ядерной двигательной установкой NERVA (англ.), который разрабатывался и испытывался в 1960-х годах. Атомный шаттл должен был осуществлять полёты между земной орбитой, орбитой Луны и Марса. Снабжение атомного челнока рабочим телом для ядерного двигателя возлагалось на знакомые нам обыкновенные шаттлы:

Nuclear Shuttle: This reusable rocket would rely on the NERVA nuclear engine. It would operate between low earth orbit, lunar orbit, and geosynchronous orbit, with its exceptionally high performance enabling it to carry heavy payloads and to do considerable amounts of work with limited stores of liquid-hydrogen propellant. In turn, the nuclear shuttle would receive this propellant from the Space Shuttle.

SP-4221 The Space Shuttle Decision

Однако, президент США Ричард Никсон отверг все варианты, потому что даже самый дешевый требовал 5 млрд долларов в год. NASA оказалось перед тяжёлым выбором: нужно было или начать новую крупную разработку, или объявить о прекращении пилотируемой программы.
Было решено настаивать на создании шаттла, но подать его не как транспортный корабль для сборки и обслуживания космической станции (держа, однако, это про запас), а как систему, способную приносить прибыль и окупить инвестиции за счёт выведения на орбиту спутников на коммерческой основе. Экономическая экспертиза подтвердила: теоретически, при условии не менее 30 полётов в год и полном отказе от использования одноразовых носителей, система спейс шаттл может быть рентабельной.
Проект создания системы «Спейс шаттл» был принят Конгрессом США.
Одновременно, в связи с отказом от одноразовых ракет носителей, определялось, что на шаттлы возлагается обязанность осуществлять вывод на земную орбиту и всех перспективных аппаратов Минобороны, ЦРУ и АНБ США.
Военные предъявили свои требования к системе:

* Космическая система должна быть способна выводить на орбиту полезный груз до 30 тонн, возвращать на Землю полезную нагрузку до 14,5 тонн, иметь размер грузового отсека не менее 18 метров длиной и 4,5 метров в диаметре. Это были размер и вес проектировавшегося тогда спутника оптической разведки КН-II, из которого впоследствии произошёл орбитальный телескоп Хаббл.
* Обеспечить возможность бокового маневра для орбитального корабля до 2000 километров для удобства посадки на ограниченное количество военных аэродромов.
* Для запуска на околополярные орбиты (с наклонением 56-104º) ВВС решили построить собственный технический, стартовый и посадочный комплексы на авиабазе Ванденберг в Калифорнии.

Этим требования военного ведомства к проекту спейс шаттл были ограничены.
Использовать челноки в качестве «космических бомбардировщиков» не планировалось никогда. Во всяком случае, не существует никаких документов NASA, Пентагона, или Конгресса США, свидетельствующих о таких намерениях. Не упоминаются «бомбардировочные» мотивы ни в мемуарах, ни в частной переписке участников создания системы спейс шаттл.
Проект космического бомбардировщика X-20 Dyna Soar официально стартовал 24 октября 1957 года. Однако, с развитием МБР шахтного базирования и атомного подводного флота, вооружённого баллистическими ракетами, создание орбитальных бомбардировщиков в США было признано нецелесообразным. Уже после 1961 года из проекта X-20 Dyna Soar исчезают упоминания о «бомбардировочных» задачах, но остаются разведывательные и «инспекционные». 23 февраля 1962 г. Министр обороны Макнамара одобрил последнюю реструктуризацию программы. С этого момента Dyna-Soar официально называлась научно-исследовательской программой, имеющей целью исследовать и показать возможность выполнения пилотируемым орбитальным планером маневрирования при входе в атмосферу и посадки на взлетно-посадочную полосу в заданном месте Земли с необходимой точностью. К середине 1963 г. Министерство Обороны серьезно сомневалось относительно необходимости программы Dyna-Soar. 10 декабре 1963 г., Министр обороны Макнамара отменил Dyna-Soar.
При принятии этого решения было учтено, что космические аппараты такого класса не могут «висеть» на орбите достаточно продолжительное время, чтобы считать их «орбитальными платформами», а запуск каждого корабля на орбиту занимает даже не часы, а сутки и требует применения ракет носителей тяжёлого класса, что не позволяет их использовать ни для первого, ни для ответного ядерного удара.
Многие технические и технологические наработки программы Dyna-Soar были впоследствии использованы при создании орбитальных кораблей типа спейс шаттл.
Советское руководство, внимательно наблюдавшее за развитием программы спейс шаттл, но предполагая худшее, искало «скрытую военную угрозу», что сформировало два основных предположения:

* Возможно использование космических челноков в качестве носителей ядерного оружия (это предположение в корне неверно по вышеупомянутым причинам).
* Возможно использование космических челноков для похищения с орбиты Земли советских спутников и ДОС (долговременных обитаемых станций) Алмаз ОКБ-52 В. Челомея. Для защиты, советские ДОС предполагалось оснащать даже автоматическими пушками конструкции Нудельмана - Рихтера (ОПС был оснащён такой пушкой). Предположение о «похищениях» основывалось исключительно на габаритах грузового отсека и возвращаемой полезной нагрузке, открыто объявленным американскими разработчиками шаттлов, близким к габаритам и массе «Алмазов». О габаритах и весе разрабатывавшегося в то же время разведспутника HK-II советское руководство информировано не было.
В результате, советская космическая отрасль получила задание создать многоразовую космическую систему с характеристиками аналогичными системе спейс шаттл, но с чётко определённым военным назначением, как орбитальное средство доставки термоядерного оружия.


Задачи

Корабли спейс шаттл используются для вывода грузов на орбиты высотой 200-500 км, проведения научных исследований, обслуживания орбитальных космических аппаратов (монтажные и ремонтные работы).
Шаттлом «Дискавери» в апреле 1990 года был доставлен на орбиту телескоп Хаббл (полёт STS-31). На шаттлах «Колумбия», «Дискавери», «Индевор» и «Атлантис» были осуществлены четыре экспедиции по обслуживанию телескопа Хаббл. Последняя экспедиция шаттла к Хабблу состоялась в мае 2009 года. Так как с 2010 года НАСА запланировала прекратить полёты шаттлов, это была последняя экспедиция человека к телескопу, ибо эти миссии невозможно выполнить какими-либо другими имеющимися космическими аппаратами.
Шаттл «Индевор» с открытым грузовым отсеком.

В 1990-е годы шаттлы принимали участие в совместной российско-американской программе «Мир - Спейс шаттл». Было осуществлено девять стыковок со станцией «Мир».
В течение всех двадцати лет, когда шаттлы были в эксплуатации, они постоянно развивались и модифицировались. Было сделано более тысячи значительных и незначительных модификаций к изначальному проекту шаттла.
Шаттлы играют очень важную роль в осуществлении проекта по созданию Международной космической станции (МКС). Так, например, модули МКС, из которых собрана кроме российского модуля «Звезда», не имеют своих двигательных установок (ДУ), а значит, не могут самостоятельно маневрировать на орбите для поиска, сближения и стыковки со станцией. Поэтому их нельзя просто «забрасывать» на орбиту обыкновенными носителями типа «Протон». Единственная возможность собирать станции из таких модулей - использование кораблей типа спейс шаттл с их большими грузовыми отсеками или, гипотетически, использовать орбитальные «буксиры», которые смогли бы отыскивать модуль, выведенный на орбиту «Протоном», стыковаться с ним и подводить его к станции для стыковки.
Фактически, без кораблей типа шаттл, строительство модульных орбитальных станций типа МКС (из модулей без ДУ и систем навигации) было бы невозможным.
После катастрофы «Колумбии» в эксплуатации остаются три шаттла - «Дискавери», «Атлантис» и «Индевор». Эти остающиеся шаттлы должны обеспечить достройку МКС до 2010 года. НАСА объявило об окончании эксплуатации шаттлов в 2010 году.
Шаттл «Атлантис», в своём последнем рейсе на орбиту (STS-132) доставил на МКС российский исследовательский модуль «Рассвет».
Технические данные


Твердотопливный ускоритель


Внешний топливный бак

Бак содержит топливо и окислитель для трёх жидкостных двигателей SSME (или RS-24) на орбитере и не снабжён собственными двигателями.
Внутри топливный бак разделён на две секции. Верхнюю треть бака занимает ёмкость предназначенная для охлаждённого до температуры −183 °C (−298 °F) жидкого кислорода. Объём этой ёмкости составляет 650 тыс. литров (143 тыс. галлонов). Нижние две трети бака предназначены для охлаждённого до температуры −253 °C (−423 °F) жидкого водорода. Объём этой ёмкости составляет 1,752 млн литров (385 тыс. галлонов).


Орбитер

Кроме трёх основных двигателей орбитера на старте иногда используются два двигателя системы орбитального маневрирования (OMS), каждый тягой 27 кН. Топливо и окислитель системы OMS хранятся на челноке, используются на орбите и для возвращения на Землю.



Размеры Спейс шаттла

Размеры Спейс шаттла по сравнению с «Союзом»
Стоимость
В 2006 году общие расходы составили 160 млрд долл., к этому времени было выполнено 115 запусков (см.: en:Space Shuttle program#Costs). Средние расходы на каждый полёт составили 1,3 млрд долл., но основная часть расходов (проектирование, модернизация и др.) не зависит от числа запусков.
Стоимость каждого полёта шаттла составляет около 60 млн долл. На обеспечение 22 полётов шаттлов с середины 2005 года по 2010 год в бюджете NASA заложено около 1 миллиарда 300 миллионов долл. прямых затрат.
За эти деньги орбитер шаттла может доставлять за один рейс к МКС 20-25 тонн груза, включая модули МКС, и плюс к этому 7-8 астронавтов.
Сниженная в последние годы практически до себестоимости, цена запуска Протон-М с выводимой нагрузкой в 22 т составляет 25 млн долл. Таким весом может обладать любой отдельно летающий космический аппарат, выводимый на орбиту носителем типа «Протон».
Модули, присоединяемые к МКС, не могут выводиться на орбиту ракетами-носителями, так как их надо доставить к станции и пристыковать, для чего необходимо орбитальное маневрирование, на которое модули орбитальной станции сами по себе неспособны. Маневрирование осуществляется орбитальными кораблями (в перспективе - орбитальными буксирами), а не ракетами-носителями.
Грузовые корабли «Прогресс», снабжающие МКС, выводятся на орбиту носителями типа «Союз» и способны доставить к станции не более 1,5 тонн груза. Стоимость запуска одного грузового корабля «Прогресс» на носителе «Союз» определяется примерно 70 миллионов долл., а для замены одного рейса шаттла потребуется не менее 15 рейсов «Союз - Прогресс», что в общей сложности превышает миллиард долларов.
Однако, после завершения строительства орбитальной станции, при отсутствии необходимости доставлять к МКС новые модули, использовать шаттлы с их огромными грузовыми отсеками становится нецелесообразным.
В своем последнем рейсе шаттл «Атлантис» доставил на МКС, кроме астронавтов, «всего» 8 тонн грузов, включая новый российский исследовательский модуль, новые ноутбук компьютеры, продовольствие, воду и другие расходуемые материалы.
Фотогалерея

Спейс Шаттл на стартовам столе. Мыс Канаверал, Флорида

Посадка шаттла «Атлантис».

Гусеничный транспортёр НАСА перевозит космический челнок «Дискавери (шаттл)» к стартовой площадке.

советский шаттл "Буран"

Шаттл в полете

Посадка шаттла Индевор

Шаттл на стартовой площадке

Видео
Последняя посадка шаттла "Атлантис"

Ночной старт Дискавери

В любом онлайн-обсуждении компании SpaceX обязательно появляется человек, который заявляет, что -де на примере Шаттла все уже с этой вашей многоразовостью понятно. И вот, после недавней волны обсуждений успешной посадки первой ступени Фалькона на баржу, я решил написать пост с кратким описанием надежд и чаяний американской пилотируемой космонавтики 60-х, как эти мечты потом разбились о суровую реальность, и почему из-за всего этого Шаттл не имел никаких шансов стать экономически эффективным. Картинка для привлечения внимания: последний полет Шаттла "Индевор":


Планов громадье

В первой половине шестидесятых, после обещания Кеннеди высадиться на Луну до конца десятилетия, на НАСА полился денежный дождь бюджетных средств. Это, конечно же, вызвало там определенное головокружение от успехов. Не считая текущей работы над Аполлоном и над "практическим применением программы Аполлон" (Apollo Applications Program), работа шла над следующими перспективными проектами:

- Космические станции. По планам их должно было быть три: одна на низкой опорной орбите у Земли (НОО), одна на геостационаре, одна на лунной орбите. Экипаж каждой составлял бы двенадцать человек (в дальнейшем предполагалось строительство еще бОльших станций, с экипажем в пятьдесят-сто человек), диаметр основного модуля был девять метров. Каждому члену экипажа выделялась отдельная комната с кроватью, столом, стулом, телевизором, и кучей шкафов для личных вещей. Предусматривалось две ванных комнаты (плюс у командира в каюте был личный туалет), кухня с духовкой, посудомойкой и обеденными столами со стульями, отдельная зона отдыха с настольными играми, медпункт с операционным столом. Предполагалось что выведет центральный модуль оной станции сверхтяжелый носитель Сатурн-5, а для снабжения её необходимо будет десять полетов гипотетического тяжелого носителя ежегодно. Не будет преувеличением сказать, что по сравнению с этими станциями нынешняя МКС смотрится конурой.

Лунная база . Вот пример проекта НАСА конца шестидесятых. Насколько я понимаю, предполагалась унифицация с модулями космической станции.

Ядерный челнок . Корабль предназначенный для перемещения грузов с НОО на геостационар или на лунную орбиту, с ядерными ракетным двигателем (ЯРД). В качестве рабочего тела использовался бы водород. Также челнок мог служить разгонным блоком марсианского корабля. Проект, кстати, был весьма интересный и был бы полезен и в сегодняшних условиях, да и с ядерным двигателем в результате продвинулись довольно далеко. Жаль что ничего не вышло. можно про него почитать подробнее.

Космический буксир . Предназначался для перемещения груза с космического челнока на ядерный челнок, или с ядерного челнока на требуемую орбиту или на лунную поверхность. Предлагалась большая степень унификации при выполнении различных задач.

Космический челнок . Многоразовый корабль предназначенный для поднятия грузов с поверхности Земли на НОО. На иллюстрации космический буксир перевозит груз с него на ядерный челнок. Собственно это и есть то, что мутировало со временем в Спейс Шаттл.

Марсианский космический корабль . Показан тут с двумя ядерными челноками, выполняющими функцию разгонных блоков. Предназначался для полета к Марсу в начале восьмидесятых годов, с двухмесячным пребыванием экспедиции на поверхности.

Если кому интересно, и подробнее написано про все это, с иллюстрациями (англ.)

Космический челнок

Как видим выше, космический челнок был всего лишь одной из частей задуманной циклопической космической инфраструктуры. В комплексе с базирующимися в космосе ядерным челноком и буксиром он должен был обеспечить доставку грузов с земной поверхности в любую точку пространства вплоть до лунной орбиты.

До этого все ракеты космического назначения (РКН) были одноразовыми. Космические аппараты также были одноразового применения, за редчайшим исключением в области пилотируемых кораблей -- дважды слетали "Меркурии" с заводскими номерами 2, 8, 14 и также второй "Джемини". В силу гигантских планируемых объемов вывода полезной нагрузки (ПН) на орбиту, руководством НАСА была сформулирована задача: создать систему многоразового применения, когда и ракета-носитель, и космический корабль возвращаются после полета и используются многократно. Такая система стоила бы гораздо больше в разработке нежели обычные РКН, но в счет меньших расходов при эксплуатации быстро окупилась бы при уровне планируемого грузопотока.

Умами большинства овладела идея создания многоразового ракетоплана -- в середине шестидесятых было немало причин думать, что создание такой системы это не слишком сложная задача. Пусть проект космического ракетоплана Dyna-Soar и был отменен МакНамарой в 1963 году, но случилось это не из-за того, что программа была технически невозможной, а просто потому что для КК не было задач -- "Меркурии" и создаваемые тогда "Джемини" справлялись с доставкой астронавтов на околоземную орбиту, а выводить значительную ПН или долго находиться на орбите X-20 не мог. А вот экспериментальный ракетоплан X-15 отлично показал себя во время эксплуатации. В ходе 199 полетов на нем был отработан выход за линию Кармана (т.е. за условную границу космоса), гиперзвуковой вход назад в атмосферу и управление в условиях вакуума и невесомости.

Естественно, для предполагаемого космического челнока понадобился бы куда более мощный многоразовый двигатель и более совершенная теплозащита, но проблемы эти не видились непреодолимыми. Жидкостный ракетный двигатель (ЖРД) RL-10 показал к тому времени отличную многоразовость на стенде: в одном из испытаний оный ЖРД был успешно запущен более пятидесяти раз подряд, и проработал в общей сложности два с половиной часа. Предполагаемый ЖРД Шаттла, Space Shuttle Main Engine (SSME) так же как и RL-10 предполагалось создать на топливной паре кислород-водород, но повысить при том его эффективность, увеличив давление в камере сгорания и введя схему закрытого цикла с дожиганием топливного генераторного газа.

С теплозащитой также не ожидалось особых проблем. Во-первых велась уже работа над новым типом теплозащиты на основе волокон двуокиси кремния (именно из нее состояли плитки созданных потом Шаттла и Бурана). В качестве запасного варианта оставались абляционные панели, которые можно было за сравнительно небольшие деньги менять после каждого полета. А во-вторых для уменьшения тепловой нагрузки предполагалось сделать вход аппарата в атмосферу по принципу "тупого тела" (blunt body) -- т.е. с помощью формы летательного аппарата создавать перед тем фронт ударной волны, которая охватывала бы большую область нагретого газа. Таким образом кинетическая энергия корабля интенсивно нагревает окружающий воздух, уменьшая нагрев летательного аппарата.

Во второй половине шестидесятых несколько аэрокосмических корпораций представили свое видение будущего ракетоплана.

Стар Клиппер Локхида был космопланом с несущим корпусом -- благо к тому времени летательные аппараты (ЛА) с несущим корпусом были неплохо уже отработаны: ASSET, HL-10, PRIME, M2-F1/M2-F2, X-24A/X-24B (к слову, создающийся сейчас Дримчейсер это тоже космоплан с несущим корпусом). Правда Стар Клиппер не был полностью многоразовым, топливные баки диаметром в четыре метра по краям ЛА сбрасывались во время взлета.

Проект МакДоннелл Дуглас также имел сбрасываемые баки, и неcущий корпус. Изюминкой проекта были выдвигаемые из корпуса крылья, которые должны были улучшить взлетно-посадочные характеристики космоплана:

Дженерал Дайнэмикс выдвинул концепцию "триамского близнеца". Аппарат в середине был космопланом, два аппарата по бокам служили первой ступенью. Планировалось, что унификация первой ступени и корабля поможет сэкономить средства в ходе разработки.

Сам ракетоплан должен был быть многоразовым, а вот насчет бустера уверенности не было довольно долго. В рамках этого рассматривалось немало концептов, часть из них которых балансировала на грани благородного безумия. Как вам например вот этот концепт многоразовой первой ступени, с массой на старте в 24 тысячи тонн (слева МБР Атлас, для масштаба). Посла пуска ступень должна была плюхаться в океан и буксироваться в порт.

Впрочем наиболее серьезно рассматривались три возможных варианта: дешевая одноразовая ракетная ступень (т.е. Сатурн-1), многоразовая первая ступень с ЖРД, многоразовая первая ступень с гиперзвуковым прямоточным двигателем. Иллюстрация 1966 года:

Примерно в то же время были начаты исследования в техническом директорате Manned Spacecraft Center под руководством Макса Фаже. У него, на мой личный взгляд, был самый элегантный проект созданный в рамках разработки Спейс Шаттла. И носитель и корабль космического челнока задумывались крылатыми и пилотируемыми. Стоит отметить что Фаже отказался от несущего корпуса, рассудив что тот значительно усложнит процесс разработки -- изменения в компоновке челнока могли сильно влиять на его аэродинамику. Самолет-носитель стартовал вертикально, работал как первая ступень системы и после отделения корабля садился на аэродром. При сходе с орбиты космоплан должен был тормозить так же как и X-15, входом в атмосферу со значительным углом атаки, создавая тем самым обширный фронт ударной волны. После входа в атмосферу челнок Фаже мог планировать около 300-400км (так называемый горизонтальный маневр, "cross-range") и приземляться на вполне комфортной посадочной скорости в 150 узлов.

Над НАСА сгущаются тучи

Тут небходимо сделать краткое отступление об Америке второй половины шестидесятых, дабы читателю стало более понятным дальнейшее развитие событий. Шла чрезвычайно непопулярная и дорогостоящая война во Вьетнаме, в 1968 году там погибло почти семнадцать тысяч американцев -- больше чем потери СССР в Афганистане за все время конфликта. Движение за гражданские права чернокожих в США в том же 1968 году кульминировалось убийством Мартина Лютера Кинга и последовавшей за ним волной бунтов в крупных американских городах. Стали чрезвычайно популярными масштабные государственные социальные программы (Медикэр был принят в 1965), президент Джонсон обявил "войну против бедности" и расходы на инфраструктуру -- все это потребовало значительных государственных расходов. В конце шестидесятых началась рецессия.

В то же время значительно притупился страх перед СССР, мировая ракетно-ядерная война уже не казалось столь неизбежной как в пятидесятые годы и в дни Карибского кризиса. Программа Аполлон выполнила свое назначение, выиграв в американском общественном сознании космическую гонку с СССР. Причем выигрыш этот у большинства американцев неизбежно ассоциировался с морем денег, которым буквально залили НАСА для выполнения этой задачи. По результатам опроса Харриса 1969 г. 56% американцев считали, что стоимость программы "Аполлон" была слишком велика, а 64% -- что 4 млрд. долл. в год на разработки НАСА это слишком много.

И в НАСА, похоже, многие этого всего попросту не понимали. Уж точно этого не понимал не слишком опытный в политических делах новый директор НАСА Томас Пейн (а может просто не хотел понимать). В 1969 году им был выдвинут план действий НАСА на следующие 15 лет. Предусматривалась лунная орбитальная станция (1978 год) и лунная база (1980 год), пилотируемая экспедиции к Марсу (1983 год) и орбитальная станция на сто человек (1985 год). По среднему (т.е. базовому) варианту предполагалось, что финансирование НАСА должно будет быть увеличено с текущих 3.7 миллиардов в 1970 году до 7.65 миллиардов к началу восьмидесятых:

Все это вызвало острейшую аллергическую реакцию в Конгрессе и, соответственно, и в Белом Доме тоже. Как писал один из конгрессменов, в те годы ничего не резалось так легко и непринуждённо, как космонавтика, если сказал на заседании "эту космическую программу надо прекратить" -- популярность тебе обеспечена. В течении относительно малого периода времени один за одним были формально упразднены практически все масштабные проекты НАСА. Само собой были отменены пилотируемая экспедиция к Марсу и база на Луне, отменили даже полеты Аполло 18 и 19. Зарезали РКН Сатурн V. Отменили все гигантские космические станции, оставив только обрубок Apollo Applications в виде Скайлэба -- впрочем и там отменили второй Скайлэб. Заморозили, а потом и отменили ядерный челнок и космический буксир. Под горячую руку попал даже ни в чём неповинный Вояджер (предшественник Викинга). Космический челнок почти было попал под нож, и чудом уцелел в Палате представителей с перевесом в один-единственный голос. Вот так выглядел бюджет НАСА в реальности (постоянные доллары 2007 года):

Если посмотреть на выделяемые им средства как на % от федерального бюджета, то все еще грустней:

Практически все планы НАСА по развитию пилотируемой космонавтики оказались в мусорной корзине, а еле-еле выживший Шаттл из не самого большого элемента некогда грандиозной программы превратился во флагмана американской пилотируемой космонавтики. НАСА все еще боялась отмены программы, и для её обоснования начала убеждать всех, что Шаттл будет дешевле существующих тогда тяжелых носителей, причем без бешеного грузопотока который должен был генерироваться почившей в бозе космической инстраструктурой. Потерять челнок НАСА позволить себе не могла -- организация фактически была создана пилотируемой космонавтикой, и хотела продолжать посылать в космос людей.

Альянс с ВВС

Враждебность Конгресса сильно впечатлила функционеров НАСА, и заставила тех искать союзников. Пришлось идти на поклон в Пентагон, а точнее -- к ВВС США. Благо НАСА и ВВС довольно неплохо сотрудничали с начала шестидесятых, в частности над XB-70 и над упомянутым выше X-15. НАСА даже пошла на отмену свой Сатурн I-B (внизу справа), чтобы не создавать ненужную конкуренцию тяжелой РКН ВВС Титан-III (внизу слева):

Генералов ВВС весьма заинтересовала идея дешевого носителя, да и иметь возможность посылать людей в космос им тоже хотелось -- примерно тогда же была окончательно зарублена военная космическая станция Manned Orbiting Laboratory, примерный аналог советского "Алмаза". Еще им понравилась декларируемая возможность возврата грузов на Шаттле, рассматривались даже варианты похищения советских космических аппаратов.

Однако в целом ВВС были куда меньше НАСА заинтересованы в этом союзе, ибо свой отработанный носитель у них был и так. Из-за этого они были в состоянии легко прогнуть дизайн Шаттла под свои требования, чем и незамедлительно воспользовались. Размер грузового отсека для полезной нагрузки был по настояниям военных увеличен с 12 x 3.5 метров до 18.2 x 4.5 метров (длина x диаметр), дабы туда помещались перспективные спутники-шпионы видовой оптико-электронной разведки (конкретно -- KH-9 Hexagon и, возможно, KH-11 Kennan). Полезную нагрузку челнока надо было увеличить до 30 тонн при полете на низкую околоземную орбиту, и до 18 тонн на полярную орбиту.

Также ВВС потребовали горизонтальный маневр шаттла минимум в 1800 километров. Тут дело было вот в чем: в ходе Шестидневной войны американская разведка получила спутниковые фотографии уже после того как боевые действия конились, ибо использовавшиеся тогда спутники разведки Гамбит и Корона не успели вернуть отснятую пленку на Землю. Предполагалось, что Шаттл сможет стартовать из Ванденберга на западном побережье США на полярную орбиту, отснять что надо, и сразу же сесть после одного витка -- обеспечивая тем самым высокую оперативность получения разведданных. Необходимая дистанция бокового маневра при том определялась сдвигом Земли за время витка, и составляла как раз упомянутые выше 1800 километров. Чтобы выполнить это требование пришлось во-первых поставить на Шаттл более подходящее для планирования треугольное крыло, а во-вторых весьма сильно усилить теплозащиту. На графике ниже показан расчетный темп нагрева космического челнока с прямым крылом (концепт Фаже), и с треугольным крылом (т.е. то что оказалось на Шаттле в результате):

Ирония тут в том, что вскоре на спутники-шпионы стали ставить ПЗС-матрицы, способные передавать снимки прямо с орбиты, без необходимости возвращать пленку. Надобность в посадке после одного витка орбиты отпала, хотя потом эту возможность еще оправдывали возможностью быстрой аварийной посадки. А вот треугольное крыло и связанные с ним проблемы теплозащиты у Шаттла остались.

Впрочем дело было сделано, и поддержка ВВС в Конгрессе позволила отчасти обезопасить будущее Шаттла. В НАСА окончательно утвердили в качестве проекта двухступенчатый полностью многоразовый Шаттл, имеющий 12(!) SSME на первой ступени и разослали контракты на прорабатку его компоновки.

Проект Норт Американ Рокуэлл:

Проект МакДоннелл Дуглас:

Проект Грумман. Любопытная деталь: несмотря на требование НАСА о полной многоразовости, у челнока тем ни менее предполагались одноразовые баки для водорода по бокам:

Экономические обоснования

Выше я упомянул, что после того как Конгресс выпотрошил космическую программу НАСА, тем пришлось начать обосновывать создание челнока с экономической точки зрения. И вот, в начале семидесятых чиновники из Управления менеджмента и бюджета (The Office of Management and Budget, OMB) попросили их доказать декларируемую экономическую эффективность Шаттла. Причем надо было продемонстрировать не тот факт, что запуск челнока будет дешевле запуска одноразового носителя (это воспринималось как должное); нет, надо было сравнить выделение потребных для создания Шаттла средств с продолжением использования существующих одноразовых носителей и инвестицией высвободившихся денег под 10% годовых -- т.е. по сути в OMB дали Шаттлу "мусорный" рейтинг. Это сделало любые экономические обоснования создания челнока в качестве коммерческой ракеты-носителя нереальными, особенно после того как его "раздуло" из-за требований ВВС. И все же НАСА попыталась это сделать, ибо повторюсь, на кону стояло существование американской пилотируемой программы.

Было заказано исследование экономической целесообразности у фирмы Mathematica. Нередко упоминаемая цифра стоимости запуска Шаттла в районе $1-2.5 млн это лишь обещания Мюллера на конференции в 1969 году, когда еще не была ясна окончательная его конфигурация, и до вызванных требованиями ВВС изменений. Для проектов приведенных выше стоимость полета была следующей: 4.6 миллиона долларов образца 1970г. для челноков Норт Американ Рокуэлл и МакДоннелл Дуглас, и 4.2 миллиона долларов для челнока Груммана. Составители отчета худо-бедно смогли натянуть сову на глобус, показав, что якобы уже к середине восьмидесятых Шаттл выглядел более привлекательно с финансовой точки зрения нежели уже существующие носители, даже с учетом 10% требований OMB:

Однако дьявол кроется в деталях. Как я упомянул выше, не было никакой возможности продемонстрировать, что Шаттл, с его предполагаемой стоимостью разработки и производства в двенадцать миллиардов долларов, будет дешевле одноразовых носителей при учете 10% дисконта OMB. Так что пришлось в ходе анализа сделать допущение, что более низкая стоимость вывода позволит производителям спутников тратить значительно меньше времени и средств на научно-исследовательские и опытно-конструкторские работы (НИОКР), а также на производство спутников. Декларировалось, что они предпочтут воспользоваться возможностью дешевого вывода спутников на орбиту и ремонта оных. Далее, было предположено весьма большое количество запусков в год: базовый сценарий, показаннный на графике выше, постулировал 56 пусков Шаттла каждый год с 1978 по 1990 (736 всего). Причем в качестве предельного сценария рассматривался даже вариант с 900 полетами в указанный период, т.е. старт каждые пять дней в течении тринадцати лет!

Стоимость трех различных программ в базовом сценарии -- две одноразовые ракеты и Шаттл, 56 пусков в год (млн. долларов):

Существующая РКН Перспективная РКН Спейс Шаттл
Расходы на РКН
НИОКР 960 1 185 9 920
Стартовые сооружения, производство шаттла 584 727 2 884
Суммарная стоимость пусков 13 115 12 981 5 510
Всего 14 659 14 893 18 314
Расходы на ПН
НИОКР 12 382 11 179 10 070
Производство и постоянные расходы 31 254 28 896 15 786
Всего 43 636 40 075 25 856
Расходы на РКН и ПН 58 295 54 968 44 170

Само собой, представителей OMB этот анализ не устроил. Они совершенно справедливо указали, что даже если стоимость полета Шаттла и впрямь будет такой как указано (4.6 миллиона/полет), все равно нет никаких оснований считать будто производители спутников пойдут на снижение надежности в угоду стоимости производства. Наоборот, существующие тенденции свидетельствовали о предстоящем значительном росте средней жизни спутника на орбите (что в итоге и произошло). Далее, чиновники не менее справедливо указали, что количество космических пусков в базовом сценарии экстраполировалось из уровня 1965-1969 годов, когда немалую их долю обеспечивало НАСА, с её тогдашним гигантским бюджетом, и ВВС, с их тогдашними короткоживущими спутниками оптической разведки. До того как была порезаны все смелые планы НАСА еще можно было предполагать, что количествово пусков вырастет, но без расходов НАСА оно наверняка начало бы падать (что тоже оказалось правдой). Также, совершенно не был учтен сопутствующий всем государственным программам рост расходов: так, увеличение расходов программы Аполлон в период с 1963 по 1969 год составило 75%. Финальный вердикт OMB был следующим: предполагаемый полностью многоразовый двухступенчатый Штаттл не является экономически оправданным в сравнении с Titan-III, при учете 10% ставки.

Извиняюсь, что так много пишу о финансовых деталях которые, возможно, не всем интересны. Но это все крайне важно в контексте обсуждения многоразовости Шаттла -- тем более что упомянутые выше и, скажем честно, высосанные из пальца цифры можно до сих пор увидеть в обсуждениях про многоразовость космических систем. На самом деле, без учета "эффекта ПН" даже по принятым Mathematica цифрам и без всяких 10% дисконтов Шаттл становился выгоднее Титана только начиная с ~1100 полетов (реальные шаттлы слетали 135 раз). Но не забываем -- речь идет о "раздутом" требованиями ВВС Шаттле с треугольным крылом и сложной теплозащитой.

Шаттл становится полу-многоразовым

Никсону не хотелось быть президентом, который полностью прикроет американскую пилотируемую программу. Но и просить Конгресс выделить прорву денег на создание Шаттла он также не хотел, тем более после заключения чиновников из OMB конгрессмены все равно на это не согласились бы. На разработку и производству Шаттлов было решено выделить около пяти c половиной миллиардов долларов (т.е. более чем в два раза меньше чем тем надо было для полностью многоразового Шаттла), с требованием тратить не больше миллиарда в любой отдельно взятый год.

Дабы суметь в рамках выделенных средств создать Шаттл, было сделать систему частично многоразовой. Сначала был творчески переосмыслен концепт Грумман: размер челнока сумели уменьшить поместив обе топливные пары во внешний бак, заодно уменьшился и потребный размер первой ступени. На схеме ниже показан размер полностью многоразового космоплана (reusable), космоплана со внешним баком для водорода (LH2) и космоплана со внешним баком и для кислорода и для водорода (LO2/LH2).

Но стоимость разработки все еще сильно превышала количество выделенных из бюджета средств. В результате НАСА пришлось еще и отказаться от многоразовой первой ступени. К вышеупомянутому баку было решено присоединить некий простой бустер, либо в параллель, либо внизу бака:

После недолгих обсуждений было утверждено размещение бустеров в параллель с внешним баком. В качестве бустеров рассматривалось два основных варианта: твердотопливные (ТТУ) и ЖРД ускорители, последние либо с турбокомпрессором, либо с вытеснительной подачей компонентов. Было решено остановится на ТТУ, опять же в силу более низкой стоимости разработки. Иногда можно услышать что якобы имелось некое обязательное требование использовать ТТУ которые -де все и испортило -- но, как видим, замена ТТУ на бустеры с ЖРД уже ничего бы не смогла исправить. Более того, у плюхающихся в океан бустеров на ЖРД, пусть и с вытеснительной подачей компонентов, проблем на деле было бы еще больше чем с твердотопливными ускорителями.

В результате получился тот Спейс Шаттл, который мы и знаем сегодня:

Ну и краткая история эволюции оного (кликабельно):

Эпилог

Шаттл не был столь неудачной системой какой его принято нынче выставлять. В восьмидесятых годах Шаттл вывел на околоземную орбиту 40% от всей доставленной в то десятилетие массы ПН, несмотря на то что его пуски составляли лишь 4% из общего количеств пусков РКН. Он также доставил в космос львиную долю из побывавших там на сегодняшний день людей (другое дело, что сама необходимость наличия людей на орбите по-прежнему неясна):

В ценах 2010 год стоимость программы составляла 209 миллиардов, если разделить это на количество пусков выйдет где-то 1.5 миллиарда за пуск. Правда основная часть расходов (проектирование, модернизация и др.) не зависит от числа запусков -- поэтому по оценкам НАСА к конце нулевых стоимость каждого полёта составляла около 450 миллионов долларов. Впрочем это ценник уже под завершение программы, да еще и после катастроф Челленджера и Колумбии, которые привели к дополнительным мерам безопасности и росту стоимости пуска. По идее в середине 80-ых, до катастрофы Челленджера, стоимость пуска была гораздо меньше, но конкретных цифр у меня нет. Разве что укажу на тот факт, что у Titan IV Centaur стоимость пуска в первой половине девяностых годов составляла 325 миллионов тех долларов, что даже слегка превышает указанную выше стоимость пуска Шаттла в ценах 2010 года. А ведь именно тяжелые РН из семейства Титан были конкурентом Шаттла в ходе его создания.

Разумеется, Шаттл не был экономически эффективным с коммерческой точки зрения. К слову, экономическая нецелесообразность оного весьма взволновала в свое время руководство СССР. Они не понимали политических причин которые привели к созданию Шаттла, и придумывали ему различные предназначения, чтобы хоть как-то увязать в голове его существование со своими взглядами на действительность -- тот самый знаменитый "нырок на Москву", или базирование оружия в космосе. Как вспоминал в 1994-м году директор головного в ракетно-космической промышленности Центрального НИИ машиностроения Ю.А.Мозжорин: "Челнок выводил на околоземную орбиту 29,5 т, и мог спускать с орбиты груз до 14,5 т. Это очень серьезно, и мы начали изучать, для каких целей он создается? Ведь все было очень необычно: вес, выводимый на орбиту при помощи одноразовых носителей в Америке, даже не достигал 150 т/год, а тут задумывалось в 12 раз больше; ничего с орбиты не спускалось, а тут предполагалось возвращать 820 т/год... Это была не просто программа создания какой-то космической системы под девизом снижения затрат на транспортные расходы (наши, нашего института проработки показали, что никакого снижения фактически не будет наблюдаться), она имела явное целевое военное назначение. И действительно, в это время начали говорить о создании мощных лазеров, лучевого оружия, оружия на новых физических принципах, которое - теоретически - позволяет уничтожать ракеты противника на расстоянии в несколько тысяч километров. Как раз вот создание такой системы и предполагалось для отработки этого нового оружия в космических условиях ". Свою роль в этой ошибке сыграло то, что Шаттл делался с учётом требований ВВС, но в СССР не поняли причин, по которым ВВС был втянут проект. Они думали, что проект изначально инициирован военными, и делается с военными целями. На самом деле, НАСА позарез нужен был Шаттл чтобы остаться на плаву, и если бы поддержка ВВС в Конгрессе зависела от того, что ВВС потребовал бы покрасить Шаттл в зелёный цвет и украсить его гирляндами -- они бы это сделали. В восьмидесятых Шаттл уже попытались притянуть к программе СОИ, но когда его проектировали в семидесятых ни о чем таком и речи еще не шло.

Надеюсь теперь читателю понятно, что судить о многоразовости космических систем на примере Шаттла это крайне неудачная затея. Грузовые потоки под которые делался челнок никогда не материализовались из-за урезания расходов НАСА. Дизайн Шаттла пришлось серьезным образом менять дважды -- сначала из-за требований ВВС, политическая поддержка которых нужна была НАСА, а затем из-за критики OMB и недостаточного размера ассигнований на программу. Все экономические обоснования, отсылки к котором иногда попадаются в обсуждениях многоразовости, появились в период когда НАСА нужно было любой ценой спасти и так уже сильно мутировавший из-за требований ВВС челнок, и являются попросту притянутыми за уши. Причем все участники программы это все понимали -- и Конгресс, и Белый Дом, и ВВС, и НАСА. Например Michoud Assembly Facility мог от силы производить двадцать с чем-то внешних топливных баков в год, то есть ни о каких пятидесяти шести или даже тридцати с чем-то полетах в год, как в отчете Mathematica, и речи не могло идти.

Почти всю информацию я взял из замечательной книги , которую я рекомендую к прочтению всем интересующимся вопросом. Также некоторые отрывки текста были позаимствованы из постов ув. Tico в этом топике.

Пока космические запуски были редкими, вопрос о стоимости ракет-носителей особого внимания к себе не привлекал. Но по мере освоения космоса он стал приобретать все большее значение. Стоимость ракеты-носителя в общей стоимости запуска космического аппарата бывает разная. Если носитель серийный, а космический аппарат, который он запускает, уникальный, стоимость носителя — около 10 процентов от общей стоимости запуска. Если космический аппарат серийный, а носитель уникальный - до 40 процентов и более. Высокая стоимость космической транспортировки объясняется тем, что ракета-носитель применяется один-единственный раз. Спутники и космические станции работают на орбите или в межпланетном пространстве, принося определенный научный или хозяйственный результат, а ступени ракеты, имеющие сложную конструкцию и дорогое оборудование, сгорают в плотных слоях атмосферы. Естественно, возник вопрос о снижении стоимости космических запусков за счет повторного запуска ракет-носителей.

Существует много проектов таких систем. Один из них - космический самолет. Это крылатая машина, которая, подобно воздушному лайнеру, взлетала бы с космодрома и, доставив полезный груз на орбиту (спутник или космический корабль), возвращалась бы на Землю. Но создать такой самолет пока невозможно, главным образом из-за необходимого соотношения масс полезного груза и полной массы машины. Экономически невыгодными или трудноосуществимыми оказывались и многие другие схемы летательных аппаратов многоразового использования.

Тем не менее в США все-таки взяли курс на создание космического корабля многоразового использования. Многие специалисты были против столь дорогостоящего проекта. Но его поддержал Пентагон.

Разработка системы «Спейс Шаттл» («космический челнок») началась в США в 1972 году. В ее основу была положена концепция космического летательного аппарата многоразового использования, предназначенного для вывода на околоземные орбиты искусственных спутников и других объектов. Космический летательный аппарат «Шаттл» представляет собой связку из пилотируемой орбитальной ступени, двух твердотопливных ракетных ускорителей и большого топливного бака, расположенного между этими ускорителями.

Стартует «Шаттл» вертикально с помощью двух твердотопливных ускорителей (диаметр каждого 3,7 метра), а также жидкостных ракетных двигателей орбитальной ступени, которые питаются топливом (жидкий водород и жидкий кислород) от большого топливного бака. Твердотопливные ускорители работают только на начальном участке траектории. Время их работы чуть больше двух минут. На высоте 70-90 километров ускорители отделяются, спускаются на парашютах на воду, в океан, и буксируются к берегу, с тем чтобы после восстановительного ремонта и зарядки топливом использовать их вновь. При выходе на орбиту топливный бак (диаметром 8,5 метра и длиной 47 метров) сбрасывается и сгорает в плотных слоях атмосферы.

Самый сложный элемент комплекса орбитальная ступень. Она напоминает ракетный самолет с треугольным крылом. Помимо двигателей, в ней размещены кабина экипажа и грузовой отсек. Орбитальная ступень осуществляет сход с орбиты как обычный космический аппарат и производит посадку без тяги, только за счет подъемной силы стреловидного крыла малого удлинения. Крыло позволяет орбитальной ступени совершать некоторый маневр как по дальности, так и по курсу и в конечной счете производить посадку на специальную бетонную полосу. Посадочная скорость ступени при этом намного выше, чем у любого истребителя. - около 350 километров в час. Корпус орбитальной ступени должен выдерживать температуру 1600 градусов Цельсия. Теплозащитное покрытие состоит из 30922 силикатных плиток, приклеенных к фюзеляжу и плотно подогнанных друг к другу.

Космический летательный аппарат «Шаттл» своего рода компромисс и в техническом, и в экономическом отношении. Максимальный полезный груз, доставляемый «Шаттлом» на орбиту, - от 14,5 до 29,5 тонны, а его стартовая масса - 2000 тонн, то есть полезная нагрузка составляет всего 0,8-1,5 процента от полной массы заправленного корабля. В то же время этот показатель для обычной ракеты при том же полезном грузе составляет 2-4 процента. Если же взять в качестве показателя отношение полезного груза к весу конструкции, без учета топлива, то преимущество в пользу обычной ракеты еще более возрастет. Такова плата за возможность хотя бы частично использовать повторно конструкции космического аппарата.

Один из создателей космических кораблей и станций, летчик-космонавт СССР, профессор К.П. Феоктистов, так оценивает экономическую эффективность «Шаттлов»: «Что и говорить, создать экономичную транспортную систему непросто. Некоторых специалистов в идее «Шаттла» смущает еще и следующее. Согласно экономическим расчетам он оправдывает себя примерно при 40 полетах в год на один образец. Получается, что в год только один "самолет", чтобы оправдать свою постройку, должен выводить на орбиту порядка тысячи тонн разных грузов. С другой стороны, имеет место тенденция к снижению веса космических аппаратов, увеличению продолжительности их активной жизни на орбите и вообще к снижению количества запускаемых аппаратов за счет решения каждым из них комплекса задач».

С точки зрения эффективности создание транспортного корабля многоразового использования такой большой грузоподъемности дело преждевременное. Снабжать орбитальные станции гораздо выгоднее с помощью автоматических транспортных кораблей типа «Прогресс» Сегодня стоимость одного килограмма груза, выводимого в космос «Шаттлом» составляет 25000 долларов, а «Протоном» - 5000 долларов.

Без прямой поддержки Пентагона проект вряд ли удалось бы довести до стадии полетных экспериментов. В самом начале проекта при штабе ВВС США был учрежден комитет по использованию корабля «Шаттл». Было принято решение о строительстве стартовой площадки для челночного корабля на базе ВВС Ванденберг в Калифорнии, с которой осуществляются запуски космических аппаратов военного назначения. Военные заказчики планировали использовать «Шаттл» для выполнения широкой программы размещения в космосе разведывательных спутников, систем радиолокационного обнаружения и наведения на цель боевых ракет, для пилотируемых разведывательных полетов, создания космических командных постов, орбитальных платформ с лазерным оружием, для «инспекции» на орбите чужих космических объектов и доставки их на Землю. Корабль «Шаттл» также рассматривался как одно из ключевых звеньев общей программы создания космического лазерного оружия.

Так, уже в первом полете экипаж корабля «Колумбия» выполнял задание военного характера, связанное с проверкой надежности прицельного устройства для лазерного оружия. Размещенный на орбите лазер должен точно наводиться на ракеты, удаленные от него на сотни и тысячи километров.

С начала 1980-х годов ВВС США готовили ряд несекретных экспериментов на полярной орбите с целью разработки перспективной аппаратуры для слежения за объектами, движущимися в воздушном и безвоздушном пространстве.

Катастрофа «Челленджера» 28 января 1986 года внесла коррективы в дальнейшее развитие космических программ США. «Челленджер» ушел в свой последний полет, парализовав всю американскую космическую программу. Пока «Шаттлы» стояли на приколе, сотрудничество НАСА с министерством обороны оказалось под вопросом. ВВС фактически распустили свою группу астронавтов. Переменился и состав военно-научной миссии, получившей наименование СТС-39 и перенесенной на мыс Канаверал.

Сроки следующего полета неоднократно отодвигались. Программа возобновилась только в 1990 году. С той поры «Шаттлы» регулярно совершали космические полеты. Они участвовали в ремонте телескопа «Хаббл», полетах на станцию «Мир», строительстве МКС.

Ко времени возобновления полетов «Шаттлов» в СССР уже был готов корабль многоразового использования, во многом превзошедший американский. 15 ноября 1988 года новая ракета-носитель «Энергия» вывела на околоземную орбиту многоразовый корабль «Буран». Он, совершив два витка вокруг Земли, ведомый чудо-автоматами, красиво приземлился на бетонную посадочную полосу Байконура, будто рейсовый лайнер «Аэрофлота».

Ракета-носитель «Энергия» базовая ракета целой системы ракет-носителей, образуемых сочетанием разного количества унифицированных модульных ступеней и способных выводить в космос аппараты массой от 10 до сотен тонн! Ее основу, стержень, составляет вторая ступень. Ее высота - 60 метров, диаметр - около 8 метров. На ней установлено четыре жидкостных ракетных двигателя, работающих на водороде (горючее) и кислороде (окислитель). Тяга каждого такого двигателя у поверхности Земли - 1480 кН. Вокруг второй ступени у ее основания пристыкованы попарно четыре блока, образующие первую ступень ракеты-носителя. На каждом блоке установлен самый мощный в мире четырехкамерный двигатель РД-170 тягой в 7400 кН у Земли.

«Пакет» блоков первой и второй ступеней и образует мощную, тяжелую ракету-носитель, имеющую стартовую массу до 2400 тонн, несущую полезную нагрузку 100 тонн.

«Буран» имеет большое внешнее сходство с американским «Шаттлом». Корабль построен по схеме самолета типа «бесхвостка» с треугольным крылом переменной стреловидности, имеет аэродинамические органы управления, работающие при посадке после возвращения в плотные слои атмосферы руль направления и элевоны. Он был способен совершать управляемый спуск в атмосфере с боковым маневром до 2000 километров.

Длина «Бурана» - 36,4 метра, размах крыла - около 24 метра, высота корабля на шасси - более 16 метров. Стартовая масса корабля - более 100 тонн, из которых 14 тонн приходится на топливо. В носовой отсек вставлена герметичная цельносварная кабина для экипажа и большей части аппаратуры для обеспечения полета в составе ракетно-космического комплекса, автономного полета на орбите, спуска и посадки. Объем кабины - более 70 кубических метров.

При возвращении в плотные слои атмосферы наиболее тепло напряженные участки поверхности корабля раскаляются до 1600 градусов, тепло же, доходящее непосредственно до металлической конструкции корабля, не должно превышать 150 градусов. Поэтому «Буран» отличала мощная тепловая защита, обеспечивающая нормальные температурные условия для конструкции корабля при прохождении плотных слоев атмосферы во время посадки.

Теплозащитное покрытие из более 38 тысяч плиток изготовлено из специальных материалов: кварцевое волокно, высокотемпературные органические волокна, частично материал на основе углерода. Керамическая броня обладает способностью аккумулировать тепло, не пропуская его к корпусу корабля. Общая масса этой брони составила около 9 тонн.

Длина грузового отсека «Бурана» - около 18 метров. В его обширном грузовом отсеке мог разместиться полезный груз массой до 30 тонн. Туда можно было поместить крупногабаритные космические аппараты - большие спутники, блоки орбитальных станций. Посадочная масса корабля - 82 тонны.

«Буран» оснастили всеми необходимыми системами и оборудованием как для автоматического, так и для пилотируемого полета. Это и средства навигации и управления, и радиотехнические и телевизионные системы, и автоматические устройства регулирования теплового режима, и система жизнеобеспечения экипажа, и многое-многое другое.

Основная двигательная установка, две группы двигателей для маневрирования расположены в конце хвостового отсека и в передней части корпуса.

«Буран» явился ответом американской военной космической программе. Потому после потепления отношений с США судьба корабля была предрешена.

На днях случайно заметил, что уже пять раз в комментариях отвечал на вопрос о степени успешности программы «Спейс Шаттл». Такая регулярность вопросов требует полноценной статьи. В ней я попытаюсь ответить на вопросы:

  • Какие цели ставила программа «Спейс Шаттл»?
  • Что получилось в итоге?

Тема многоразовых носителей очень объемная, поэтому в этой статье я специально ограничиваюсь только этими вопросами.

Что планировали?

Идея многоразовых кораблей занимала умы ученых и инженеров в США ещё с 50-х годов. С одной стороны, жалко разбивать о землю сброшенные отработавшие ступени. С другой стороны, аппарат, сочетающий в себе свойства самолёта и космического корабля, будет в русле самолётной философии, где многоразовость естественна. Рождались различные проекты: X-20 Dyna Soar , Recoverable Orbital Launch System (позже Aerospaceplane). В шестидесятые годы эта достаточно незаметная деятельность продолжалась в тени программ «Джемини» и «Аполлон». В 1965 году, за два года до полёта «Сатурна-V», был создан подкомитет по технологиям многоразовых ракет-носителей при Координационном совете по воздушно-космическим операциям (в котором участвовали ВВС США и NASA). Результатом этой работы был документ, изданный в 1966 году, в котором говорилось о необходимости преодоления серьезных трудностей, но обещалось блестящее будущее для работы на околоземной орбите. У ВВС и NASA было различное видение системы и различные требования, поэтому вместо одного проекта были представлены идеи кораблей различной компоновки и степени многоразовости. После 1966 года NASA стало задумываться о создании орбитальной станции. Такая станция подразумевала необходимость доставки большого количества грузов на орбиту, что, в свою очередь, поднимало вопрос о стоимости такой доставки. В декабре 1968 года была создана рабочая группа, которая стала заниматься т.н. объединенным аппаратом запуска и посадки Integral Launch and Reentry Vehicle (ILRV). Отчет этой группы был представлен в июле 1969 года и утверждал, что ILRV должен уметь:
  • Снабжать орбитальную станцию
  • Запускать и возвращать с орбиты спутники
  • Выводить на орбиту разгонные блоки и полезную нагрузку
  • Выводить на орбиту топливо (для последующей заправки других аппаратов)
  • Обслуживать и ремонтировать спутники на орбите
  • Проводить короткие пилотируемые миссии
В отчете рассматривались три класса кораблей: многоразовый корабль «верхом» на одноразовой ракете-носителе, полутораступенчатый корабль («половинка» ступени - это баки или двигатели, которые сбрасываются в полёте) и двухступенчатый корабль, обе ступени которого многоразовые.
Параллельно, в феврале 1969 года президент Никсон создал рабочую группу, задачей которой было определение направления движения в освоении космоса. Результатом работы этой группы была рекомендация создания многоразового корабля, который мог бы:
  • Стать фундаментальным улучшением существующей космической техники с точки зрения стоимости и объемов выводимого на орбиту
  • Транспортировать людей, грузы, топливо, другие корабли, разгонные блоки и прочее на орбиту как самолёт - регулярно, дешево, часто и много.
  • Быть универсальным для совместимости с широким спектром гражданских и военных полезных нагрузок.
Изначально инженеры двигались в направлении двухступенчатой полностью многоразовой системы: большой крылатый пилотируемый корабль нес на себе небольшой крылатый пилотируемый корабль, который уже выходил на орбиту:


Такая комбинация теоретически была самой дешевой в эксплуатации. Однако требование большой полезной нагрузки делало систему слишком большой (а, следовательно, и дорогой). К тому же военные хотели возможности горизонтального маневра в 3000 км для посадки на космодроме старта на первом витке с полярной орбиты, что ограничивало инженерные решения (например, становились невозможными прямые крылья).


Судя по подписи «high cross-range» (большой горизонтальный маневр) эта картинка нравилась военным

Итоговая компоновка очень сильно зависела от следующих требований:

  • Размер и емкость грузового отсека
  • Величина горизонтального маневра
  • Двигатели (тип, тяга и другие параметры)
  • Способ посадки (на двигателях или планированием)
  • Используемые материалы
В итоге на слушаниях в Белом Доме и Конгрессе были приняты финальные требования:
  • Грузовой отсек 4,5х18,2 м (15х60 футов)
  • 30 тонн на низкую околоземную орбиту, 18 тонн на полярную орбиту
  • Возможность горизонтального маневра на 2000 км

В районе 1970 года выяснилось, что на орбитальную станцию и шаттл одновременно денег не хватит. И станция, для которой шаттл должен был возить грузы, была отменена.
В то же время в инженерной среде царил ничем не сдерживаемый оптимизм. Опираясь на опыт эксплуатации экспериментальных ракетных самолётов (X-15), инженеры прогнозировали снижение стоимости килограмма на орбиту на два порядка (в сто раз). На симпозиуме, посвященном программе «Спейс Шаттл», который проходил в октябре 1969 года, «отец» шаттла Джордж Мюллер говорил:

«Наша цель - снизить стоимость килограмма на орбиту с $2000 для Сатурна-V до уровня $40-100 за килограмм. Этим мы откроем новую эру освоения космоса. Задачей на будущие недели и месяцы для этого симпозиума, для ВВС и NASA является обеспечение уверенности в том, что мы можем это сделать.»

Б.Е. Черток в четвертой части «Ракет и людей» приводит несколько другие цифры, но того же порядка:
Для различных вариантов на базе «Спейс шаттла» прогнозировалось достижение стоимости выведения в пределах от 90 до 330 долларов на килограмм. Более того, предполагалось, что «Спейс шаттл» второго поколения позволит снизить эти цифры до 33-66 долларов на килограмм.

По расчетам Мюллера запуск шаттла должен будет стоить $1-2,5 миллиона (сравните с $185 млн. для Сатурна-V).
Также были проведены достаточно серьезные экономические расчеты, которые показали, что для того, чтобы хотя бы сравняться по стоимости с ракетой-носителем «Титан-III» при прямом сравнении цен без учета дисконта, шаттлу нужно стартовать 28 раз в год. На фискальный 1971 год президент Никсон выделил $125 миллионов на производство одноразовых ракет-носителей, что составило 3,7% от бюджета NASA. Т.е., если бы шаттл уже был в 1971 году, то он бы сэкономил всего лишь 3,7 процента бюджета NASA. Ядерный физик Ральф Лапп (Ralph Lapp) посчитал, что за период 1964-1971 шаттл, если бы уже был, сэкономил бы 2,9% бюджета. Естественно, такие цифры не могли защитить шаттл, и NASA встало на скользкую дорожку игры с цифрами: «если бы была построена орбитальная станция, и если бы она нуждалась в миссии снабжения каждые две недели, то тогда бы шаттлы экономили миллиард долларов в год». Также продвигалась идея «с такими возможностями пуска полезные нагрузки станут дешевле, и их будет больше, чем сейчас, что ещё увеличит экономию». Только комбинация идей «шаттл будет летать часто и экономить деньги на каждом пуске» и «новые спутники для шаттла будут дешевле существующих для одноразовых ракет» смогла сделать шаттл экономически выгодным.


Экономические расчеты. Обратите внимание, что если убрать «новые спутники» (нижняя треть таблицы), то шаттлы становятся экономически невыгодными.


Экономические расчеты. Платим больше сейчас (левая часть) и выигрываем в будущем (правая заштрихованная часть).

Параллельно шли сложные политические игры с участием фирм-потенциальных производителей, ВВС, правительства и NASA. Например, NASA проиграло офису менеджмента и бюджета Исполнительного офиса Президента США битву за ускорители первой ступени. NASA хотело ускорители на ЖРД, но из-за того, что ускорители на РДТТ были дешевле в разработке, были выбраны последние. ВВС, которые добивались военных пилотируемых программ с X-20 и MOL, фактически получали военные миссии шаттла бесплатно в обмен на политическую поддержку NASA. Производство шаттлов намеренно размазывалось по всей стране между разными компаниями для экономического и политического эффекта.
В итоге этих сложных маневров, контракт на разработку системы «Спейс Шаттл» был подписан летом 1972 года. История производства и эксплуатация выходит за рамки этой статьи.

Что получили?

Сейчас, когда программа закончена, можно с достаточной точностью сказать, какие цели были достигнуты, а какие - нет.

Достигнутые цели :

  1. Доставка грузов различного типа (спутники, разгонные блоки, сегменты МКС).
  2. Возможность ремонта спутников на низкой околоземной орбите.
  3. Возможность возврата спутников на Землю.
  4. Возможность отправить в полёт до восьми человек.
  5. Реализована многоразовость.
  6. Реализована принципиально новая компоновка космического корабля.
  7. Возможность горизонтального маневра.
  8. Большой грузовой отсек.
  9. Стоимость и время разработки уложились в сроки, обещанные президенту Никсону в 1971 году.

Не достигнутые цели и провалы :

  1. Качественное облегчение доступа в космос. Вместо снижения цены за килограмм на два порядка, «Спейс Шаттл» стал одним из самых дорогих средств доставки спутников на орбиту.
  2. Быстрая подготовка шаттлов между полётами. Вместо ожидаемого срока в две недели между полётами, шаттлы готовились к пуску месяцами. До катастрофы «Челленджера» рекорд между полётами составлял 54 дня, после «Челленджера» - 88 дней. За все годы эксплуатации шаттлов они запускались в среднем 4,5 раза в год вместо минимально допустимых по расчетам 28 раз в год.
  3. Простота обслуживания. Выбранные технические решения были очень трудоемкими в обслуживании. Главные двигатели требовали демонтажа и много времени на сервис. Турбонасосные агрегаты двигателей первой модели требовали полной переборки и ремонта после каждого полёта. Плитки теплозащиты были уникальны - в каждое гнездо ставилась своя плитка. Всего плиток 35 000, к тому же, они могут быть потеряны или повреждены в полёте.
  4. Замена всех одноразовых носителей. Шаттлы никогда не стартовали на полярные орбиты, что нужно в основном для разведывательных спутников. Велись подготовительные работы, но они были остановлены после катастрофы «Челленджера».
  5. Надежный доступ в космос. Четыре орбитера означали, что катастрофа шаттла - это потеря четверти флота. После катастрофы полёты прекращались на годы. Также, шаттлы были печально известны постоянными переносами пусков.
  6. Грузоподъемность шаттлов оказалась на пять тонн ниже требуемой спецификациями (24,4 вместо 30)
  7. Большие возможности горизонтального маневра никогда не применялись в реальности из-за того, что шаттл не летал на полярные орбиты.
  8. Возврат спутников с орбиты прекратился в 1996 году. С орбиты было возвращено всего пять спутников.
  9. Ремонт спутников тоже оказался слабо востребован. Всего было отремонтировано пять спутников (правда, Хаббл обслуживали пять раз).
  10. Принятые инженерные решения негативно влияли на надежность системы. На взлете и посадке были участки без шансов на спасение экипажа при аварии. Из-за этого погиб «Челленджер». Миссия STS-9 чуть не кончилась катастрофой из-за пожара в хвостовой части, который возник уже на посадочной полосе. Случись этот пожар минутой раньше, шаттл бы упал без шансов на спасение экипажа.
  11. То, что шаттл всегда летал пилотируемым, подвергало риску людей без необходимости - для рутинного запуска спутников хватало автоматики.
  12. Из-за низкой интенсивности эксплуатации шаттлы устарели морально раньше, чем физически. В 2011 году «Спейс Шаттл» был очень редким примером эксплуатации процессора 80386. Одноразовые носители можно было модернизировать постепенно новыми сериями.
  13. Закрытие программы «Спейс Шаттл» наложилось на отмену программы «Созвездие», что привело к потере самостоятельного доступа в космос на многие годы, имиджевым потерям и необходимости покупать места на космических кораблях другой страны.
  14. Новые системы управления и надкалиберные обтекатели позволили запускать большие спутники на одноразовых ракетах.
  15. Шаттл держит печальный антирекорд среди космических систем по количеству погибших людей.

Программа «Спейс Шаттл» дала США уникальные возможности по работе в космосе, но, с точки зрения разницы «что хотели - что получили» приходится сделать вывод о том, что она не достигла своих целей.

Почему так получилось?
Специально подчеркиваю, что в этом пункте я высказываю свои соображения, возможно, какие-то из них неверны.
  1. Шаттлы были результатом множества компромиссов между интересами нескольких больших организаций. Возможно, если бы был один человек или команда единомышленников, которые имели бы четкое видение системы, она могла получиться удачнее.
  2. Требование «быть всем для всех» и заменить все одноразовые ракеты повысило стоимость и сложность системы. Универсальность при объединении разнородных требований приводит к усложнению, удорожанию, излишнему функционалу и худшей эффективности, чем специализация. Легко добавить будильник в мобильный телефон - динамик, часы, кнопки и электронные компоненты уже есть. Но летающая подводная лодка будет сложнее дороже и хуже специализированных самолёта и подлодки.
  3. Сложность и стоимость системы растет с размером экспоненциально. Возможно, шаттл на 5-10 тонн полезной нагрузки (в 3-4 раза меньше реализованного) был бы более успешен. Их можно было бы построить больше, часть флота сделать беспилотными, сделать одноразовый модуль для повышения грузоподъемности редких более тяжелых миссий.
  4. «Головокружение от успехов». Успешная реализация трёх программ последовательно увеличивающейся сложности могла вскружить головы инженерам и менеджерам. В самом деле, что пилотируемый первый пуск без беспилотной отработки, что отсутствие систем спасения экипажа на участках выведения/спуска говорят о некоторой самоуверенности.
Эй, а «Буран»?
Предвидя неизбежные сравнения, придется чуть-чуть сказать и про него. По «Бурану» нет статистики эксплуатации за много лет. С ним получилось в чем-то проще - его накрыло обломками развалившегося СССР, и нельзя сказать, была бы эта программа успешной. Первую часть этой программы - «сделать как у американцев» выполнили, а что было бы дальше - неизвестно.
А желающих устроить в комментах холивар «Что лучше?» прошу предварительно дать определение, что такое по-вашему «лучше». Потому что обе фразы «Буран имеет бОльший запас характеристической скорости (delta-V), чем Спейс Шаттл» и «Шаттл не сбрасывает дорогие маршевые двигатели со ступенью ракеты-носителя» верны.

Список источников (не учитывая википедии):

  1. Ray A. Williamson