Научная электронная библиотека. Смотреть что такое "Критерий оптимальности" в других словарях

Критерием оптимальности называется количественная оценка оптимизируемого качества объекта. Иным образом, критерий оптимальности – это главный признак, по которому судят о том, насколько хорошо функционирует технологическая система, работает данный процесс, и т.д., а также, насколько хорошо решена задача оптимизации .

Критерий оптимальности является одним из выходов системы, и, к нему предъявляются следующие требования:

    Критерий оптимальности должен выражаться количественно;

    Критерий оптимальности должен быть единственным;

    Величина критерия оптимальности должна изменяться монотонно (без разрывов и скачков);

    Критерий оптимальности должен отражать наиболее существенные стороны процесса;

    Желательно чтобы критерий оптимальности имел ясный физический смысл и легко рассчитывался.

На основании выбранного критерия оптимальности составляется целевая функция, представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение. Вид критерия оптимальности или целевой функции определяется конкретной задачей оптимизации. Таким образом, задача оптимизации сводится к нахождению экстремума целевой функции.

Наиболее общей постановкой оптимальной задачи является выражение критерия оптимальности в виде экономической оценки (производительность, себестоимость продукции, прибыль, рентабельность). Однако в частных задачах оптимизации, когда объект является частью технологического процесса, не всегда удается или не всегда целесообразно выделять прямой экономический показатель, который бы полностью характеризовал эффективность работы рассматриваемого объекта. В таких случаях критерием оптимальности может служить технологическая характеристика, косвенно оценивающая экономичность работы агрегата (время контакта, выход продукта, степень превращения, температура). Например, устанавливается оптимальный температурный профиль, длительность цикла - "реакция - регенерация" и т.п.. Однако, в любом случае критерий оптимальности имеет экономическую природу.

Различают простые и сложные критерии оптимизации. Критерий оптимальности называется простым , если требуется определить экстремум целевой функции без задания условий на какие-либо другие величины. Такие критерии обычно используются при решении частных задач оптимизации (например, определение максимальной концентрации целевого продукта, оптимального времени пребывания реакционной смеси в аппарате и др.).

Критерий оптимальности называется сложным , если необходимо установить экстремум целевой функции при некоторых условиях, которые накладываются на ряд других величин и ограничений. Таким образом, процедура решения задачи оптимизации обязательно включает, помимо выбора управляющих параметров, еще и установление ограничений на эти параметры. Ограничения могут накладываться как по технологическим, так и по экономическим соображениям. Различают следующие основные ограничения:

    По количеству и качеству сырья и продукции (состав сырья, качество продукции, производительность и др.);

    По условиям технологии (размеры аппарата, время пребывания, температура зажигания и деструктурирования катализатора и др.);

    По экономическим соображениям;

    По охране труда и окружающей среды;

Таким образом, для решения задачи оптимизации необходимо:

      составить математическую модель объекта оптимизации;

      выбрать критерий оптимальности и составить целевую функцию;

      установить возможные ограничения, которые должны накладываться на переменные;

      выбрать метод оптимизации, который позволит найти экстремальные значения искомых величин.

Обычно оптимизируемая величина связана с экономичностью работы рассматриваемого объекта (аппарат, цех, завод). Оптимизируемый вариант работы объекта должен оцениваться какой-то количественной мерой - критерием оптимальности .

Критерием оптимальности называется количественная оценка оптимизируемого качества объекта.

На основании выбранного критерия оптимальности составляется целевая функция , представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение. Вид критерия оптимальности или целевой функции определяется конкретной задачей оптимизации. Таким образом, задача оптимизации сводится к нахождению экстремума целевой функции.

Наиболее общей постановкой оптимальной задачи является выражение критерия оптимальности в виде экономической оценки (производительность, себестоимость продукции, прибыль, рентабельность). Однако в частных задачах оптимизации, когда объект является частью технологического процесса, не всегда удается или не всегда целесообразно выделять прямой экономический показатель, который бы полностью характеризовал эффективность работы рассматриваемого объекта. В таких случаях критерием оптимальности может служить технологическая характеристика, косвенно оценивающая экономичность работы агрегата (время контакта, выход продукта, степень превращения, температура). Например, устанавливается оптимальный температурный профиль, длительность цикла "реакция-регенерация".

Рассмотрим более подробно требования, которые должны предъявляться к критерию оптимальности.

1. Критерий оптимальности должен выражаться количественно.

2. Критерий оптимальности должен быть единственным.

3. Критерий оптимальности должен отражать наиболее существенные стороны процесса.

4. Желательно чтобы критерий оптимальности имел ясный физический смысл и легко рассчитывался.

Любой оптимизируемый объект схематично можно представить в соответствии с рис. 2.

При постановке конкретных задач оптимизации желательно критерий оптимальности записать в виде аналитического выражения.

В том случае, когда случайные возмущения невелики и их воздействие на объект можно не учитывать, критерий оптимальности может быть представлен как функция входных , выходных и управляющих параметров:

Так как , то при фиксированных можно записать:
.

Математическое программирование ("планирование") – это раздел математики, занимающийся разработкой методов отыскания экстремальных значений функции, на аргументы которой наложены ограничения. Методы математического программирования используются в экономических, организационных, военных и др. системах для решения так называемых распределительных задач . Распределительные задачи возникают в случае, когда имеющихся в наличии ресурсов не хватает для выполнения каждой из намеченных работ эффективным образом и необходимо наилучшим образом распределить ресурсы по работам в соответствии с выбранным критерием оптимальности.


Временем рождения линейного программирования принято считать 1939г., когда была напечатана брошюра Леонида Витальевича Канторовича "Математические методы организации и планирования производства". Американский математик А. Данциг в 1947 году разработал весьма эффективный конкретный метод численного решения задач линейного программирования (он получил название симплекс метода ).

Линейное программирование - это метод математического моделирования, разработанный для оптимизации использования ограниченных ресурсов. ЛП успешно применяется в военной области, индустрии, сельском хозяйстве, транспортной отрасли, экономике, системе здравоохранения и даже в социальных науках. Широкое использование этого метода также подкрепляется высокоэффективными компьютерными алгоритмами, реализующими данный метод. На алгоритмах линейного программирования базируются оптимизационные алгоритмы для других, более сложных типов моделей и задач исследования операций (ИО), включая целочисленное, нелинейное и стохастическое программирование.

Оптимизационная задача – это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

В самом общем виде задача линейного программирования математически записывается следующим образом:

где X = (x 1 , x 2 , ... , x n) ; W – область допустимых значений переменных x 1 , x 2 , ... , x n ;f(Х) – целевая функция.

Для того чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать такое, что при любом .

Оптимизационная задача является неразрешимой, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешимой, если целевая функция f(Х) не ограничена сверху на допустимом множестве W .

Методы решения оптимизационных задач зависят как от вида целевой функции f(Х) , так и от строения допустимого множества W . Если целевая функция в задаче является функцией n переменных, то методы решения называют методами математического программирования.

Характерные черты задач линейного программирования следующие:

  • показатель оптимальности f(X) представляет собой линейную функцию от элементов решения X = (x 1 , x 2 , ... , x n) ;
  • ограничительные условия, налагаемые на возможные решения, имеют вид линейных равенств или неравенств.

Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

(2)
(3)
(4)
(5)

При этом система линейных уравнений (3) и неравенств (4), (5), определяющая допустимое множество решений задачи W , называется системой ограничений задачи линейного программирования, а линейная функция f(Х) называется целевой функцией или критерием оптимальности .

При описании реальной ситуации с помощью линейной модели следует проверять наличие у модели таких свойств, как пропорциональность и аддитивность . Пропорциональность означает, что вклад каждой переменной в целевой функции и общий объем потребления соответствующих ресурсов должен быть прямо пропорционален величине этой переменной. Например, если, продавая j -й товар в общем случае по цене 100 рублей, фирма будет делать скидку при определенном уровне закупки до уровня цены 95 рублей, то будет отсутствовать прямая пропорциональность между доходом фирмы и величиной переменной x j . Т.е. в разных ситуациях одна единица j -го товара будет приносить разный доход. Аддитивность означает, что целевая функция и ограничения должны представлять собой сумму вкладов от различных переменных. Примером нарушения аддитивности служит ситуация, когда увеличение сбыта одного из конкурирующих видов продукции, производимых одной фирмой, влияет на объем реализации другого.

Допустимое решение – это совокупность чисел (план ) X = (x 1 , x 2 , ... , x n) , удовлетворяющих ограничениям задачи. Оптимальное решение – это план, при котором целевая функция принимает свое максимальное (минимальное) значение.

На следующем шаге рассмотрим построение модели линейного программирования на примере .

Этапы операционного исследования и их содержание

Не существует строгой регламентации хода и содержания операционного исследования, но в любом выполненном проекте можно выделить характерные для ИСО этапы разработки.

1. Постановка задачи. Она включает содержательное описание задачи: объект и цель исследования, внутренние и внешние условия, ресурсы, значения параметров или их оценки, возможные способы действий и возможные результаты, другую имеющуюся информацию. Эту работу выполняют совместно ЛПР и аналитик. После тщательного анализа первоначальной постановки аналитик уточняет с ЛПР содержание задачи по всœем аспектам и особо согласовывает показатель, который предлагается в качестве критерия оптимальности.

2. Построение математической модели. Характер задач исследования операций таков, что их решение не может проводиться путем натурного эксперимента или физического моделирования. К примеру, выбор места и мощности нового производства, определœение оптимального плана выпуска продукции, формирование портфеля заказов немыслимо производить путем реализации и сравнения различных вариантов. Такая ситуация в науке не нова: так в астрономии нельзя манипулировать небесными телами, но предсказывать положение планет солнечной системы возможно благодаря использованию математической модели. Модели, и в частности математические, широко применяются в различных областях. Математические модели исследования операций отличаются своей направленностью, которая отражается в структуре модели. Математическая модель в ИСО включает:

зависимость критерия от управляемых и неуправляемых переменных;

уравнения, отражающие связи между переменными, к примеру, уравнения на основе материально-энергетических балансов;

ограничения, обусловленные реальными условиями и требованиями к показателям и переменным (неотрицательность, целочисленность, комплектность, допустимые и/или директивные значения и т.п.). В конкретных задачах могут отсутствовать отдельные составляющие модели полностью или частично за исключением критериальной функции, которая должна быть в модели обязательно.

3. Проверка адекватности модели. Математическая модель представляет собой формализованную гипотезу исследователя о реальных взаимосвязях и поведении системы. По этой причине прежде чем использовать модель для прогнозирования последствий и выбора решений, крайне важно убедиться в ее адекватности системе или операции с точки зрения поставленной цели исследования. Для "прозрачных" моделœей может быть достаточной качественная проверка, в сложных моделях необходим количественный анализ. В последнем случае для моделирования поведения на модели используются численные методы (иногда это называют прямой задачей: по задаваемым входам нужно определить выходы). Для осуществляемых ранее операций проверка адекватности может производиться по ретроспективным данным (при отсутствии качественных изменений в операции). В других случаях проверка проводится путем наблюдения за реакцией модели и системы на одинаковые решения. При обнаружении неадекватности модель корректируется: при качественном совпадении повысить количественную адекватность можно путем уточнения коэффициентов модели, при более серьезных расхождениях может потребоваться изменение и/или добавление ограничений и уравнений или даже построение другого вида модели. Следует заметить, что такая проверка невозможна для вновь разрабатываемых операций, и тогда приходится довольствоваться качественным тестированием модели.

4. Поиск оптимального решения на модели. Это центральный этап операционного исследования (с математической точки зрения - обратная задача). Он заключается в определœении решения, оптимального в смысле принятого критерия. Для отыскания оптимального решения на математической модели применяются методы оптимизации, главным образом методы математического программирования.

5. Анализ оптимального решения. Сюда входит анализ чувствительности полученного решения, параметрический и вариантный анализ, выявление альтернативных оптимальных решений и др. Анализ чувствительности критерия к отклонению переменных от их оптимальных значений позволяет определить разумные требования к точности реализации оптимального решения. Результаты параметрического и вариантного анализа показывают, каким будет оптимальное решение при изменении коэффициентов модели, состава ограничений или при изменении критерия. При этом может устанавливаться значимость отдельных элементов модели, то есть их влияние на оптимальное значение критерия. В случае неединственности оптимального решения появляется дополнительная возможность выбора по показателю, который не представлен в критерии. Важное место в анализе решения отводится интерпретации полученных результатов в терминах предметной области Л ПР.

6. Внедрение результатов исследования. Здесь главное требование состоит в крайне важности непосредственного участия разработчиков на всœех стадиях реализации предлагаемых решений.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, применение научных методов в ИСО отличается всœесторонним количественным исследованием, основанным на математической модели и ставящим своей целью определœение оптимального решения в интересах ЛПР.

Поставленная в операции цель может быть достигнута по-разному и в разной степени в зависимости от принимаемых решений. Критерий есть тот показатель, который характеризует (оценивает) эффективность решений с точки зрения достижения цели, а следовательно, позволяет выбрать среди них наилучшее. В ИСО применяют равнозначные термины: критерий оптимальности, критерий эффективности, целœевая функция. Последний термин подчеркивает неразрывную связь критерия с целью. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, решение может быть оптимальным только в смысле конкретного критерия в пределах адекватности используемой модели.

В исследовании операций к критерию предъявляются определœенные требования. Наиболее важные из них следующие.

1. Критерий должен быть количественной и неслучайной величиной.

2. Критерий должен правильно и полно отражать поставленную цель. Его можно рассматривать как количественную модель качественной цели.

3. Критерий должен иметь простой и понятный ЛПР физический смысл.

4. Критерий должен быть чувствителœен к управляемым (искомым) переменным.

При исследовании действующих систем к критерию могут предъявляться дополнительные требования, такие как измеримость, статистическая однозначность, статистическая эффективность и др.

Множество показателœей, которые в ИСО используются в качестве критериев, можно условно разделить на ряд групп: социальные (среднедушевой доход, обеспеченность жильем и т.п.), экономические (прибыль, рентабельность, себестоимость и др.), технико-экономические (производительность, урожайность и др.), технико-технологические (прочность, чистота материала, другие физические или химические показатели), прочие. Οʜᴎ приведены в порядке убывания глобальности применения: первые применяются в системах более высокого уровня (страна, регион, предприятие), последние - в основном на уровне процесса, объекта.

При этом во многих случаях не удается полностью отразить поставленную цель одним критерием и тем более это невозможно, когда в операции преследуется более одной цели. К примеру, цели типа повышение уровня жизни, улучшение экологической обстановки и т.п. нельзя "покрыть" одним критерием. В таких ситуациях вводится несколько показателœей, характеризующих достижение цели. Как правило, оптимальные решения, получаемые по разным показателям-критериям, не совпадают, что создает неопределœенность в выборе окончательного решения. Задачи, в которых приходится определять наилучшее решение по нескольким критериям, называются многокритериальными или задачами векторной оптимизации. Οʜᴎ составляют особый и более сложный класс задач исследования операций.

Рис.4

Рис.1

Измененное устройство выдает информацию (в том числе и управляющему устройству) о текущем состоянии объекта. В случае если на основании вектора измерений бывают найдены значения всœех координат состояния , не бывают найдены при известном значении вектора измерений , то система будет не полностью наблюдаемой. Управляющее устройства вырабатывает управляющее воздействие . Таких управляющих воздействий будет несколько, в связи с этим полагаем, что вектором - мерный

На вход управляющего устройства поступает задающее воздействие , ĸᴏᴛᴏᴩᴏᴇ содержит инструкцию о том, каково должно быть состояние объекта - так называемое ʼʼжелаемое состояниеʼʼ.

На объект управления может поступать возмущающие воздействие , представляющие нагрузку или помеху. Измерение координат объекта измерительным устройством может производиться с некоторыми случайными погрешностями , называемыми шумами измерения.

Задачей управляющего устройства является выработка такого управляющего воздействия , чтобы качество функционирования САУ в целом было бы наилучшим в некотором смысле.

В дальнейшем будем рассматривать только те объекты, которые являются управляемыми, ᴛ.ᴇ. вектор состояния которых можно изменять требуемым образом путем соответствующего измерения вектора управления. Вместе с тем, объект предполагается полностью наблюдаемым, ᴛ.ᴇ. в данном случае, очевидно, можно не делать разницы между векторами и .

Отметим, что в дальнейшем измеряемые внешние воздействия и при рассмотрении задач управления для упрощения задачи не учитывается. Кроме того мы ограничимся рассмотрением объектов, динамика которых описывается обыкновенными дифференциальными уравнениями. С учетом всœего сказанного функциональная схема САУ должна быть приведены к виду рис.2

рис.2

Уточним и конкретизируем постановку задачи оптимального управления. Ранее при обсуждении типовых задач ОУ 5 и 6, речь шла об несколько абстрактных понятиях – управления связи.

, где

и задавалось начальное и конечное значения вектора .

Существует много различных путей решения рассматриваемой задачи. Но только один способ управления объектом дает наилучший в некотором смысле результат. Этот способ управления и реализующую его систему называют оптимальными.

Чтобы иметь количественные основания для предпочтения одного способа управления всœем другим, крайне важно определить цель управления, а затем ввести меру, характеризующую эффективность достижения цели –критерий оптимальности управления. Обычно критерий оптимальности- это числовая величина, зависящая от изменяющихся во времени и пространстве координат и параметров системы так, что каждому закону управления соответствует определœенное значение критерия. В качестве критерия оптимальности бывают выбраны различные технические и экономические показатели рассматриваемого процесса.

Иногда к системе управления предъявляются различные, подчас противоречивые требования. Законы управления, который одновременно наилучшим образом удовлетворял бы каждому требованию, не существует.

По этой причине из всœех требований нужно выбрать одно главное, ĸᴏᴛᴏᴩᴏᴇ должно удовлетворяться наилучшим образом. Другие требования играют роль ограничений.

Следовательно, выбор критерия оптимальности должен производиться, только на основании изучения технологии и экономики рассматриваемого объекта и среды. Эта задача выходит за рамки теории ОУ.

В качестве критерия, характеризующего качество процесса управления, чаще всœего выбирается функционал

или

Относительно подынтегральной функции будем предполагать, что она непрерывна по всœем аргументам и имеет непрерывные частные производные по переменным .

Для выполнения задачи управления мы располагаем ограниченными энергетическими и материальными ресурсами. Учёт ограничений, естественно, стесняет выбор закона управления и одновременно делает задачу более определœенной. Некоторые задачи более определœенной. Некоторые задачи, сформулированные без учета ограничений, вообще не имеют смысла.

К примеру, задача о предельном воздействии в линœейной системе (в случае с нажимным устройством прокатного стана) при неограниченных управляющих воздействиях лишена смысла. Время процесса в данном случае будет равно нулю, а воздействия бесконечны.

Математически ограничения часто имеют вид неравенств, относящихся к координатам, управляющим воздействиям или их функциям. К примеру, используемая нами ранее в типовой задаче ʼʼ6ʼʼ запись

Носит достаточно абстрактный характер, говорит лишь о том, что соответствующая величина не может или не должна выходить за допустимые границы, вид которой здесь конкретизирован. Чаше всœего эта граница задается многомерным параллелœепипедом

Так, к примеру, для параллелœепипед предстает прямоугольником, за границы которого конец вектора управления не должен выходить. Такое управление принято называть допустимым.

Максимально допустимые значения координат или воздействий определяются характеристиками технологического процесса и оборудования. Заметим, что учет ограничений – существенно влияет на постановку задачи об оптимальном управлении.

Основную задачу определœения оптимального управления можно сформировать следующим образом.

В фазовом пространстве заданы начальное и конечное состояния ОУ. Среди всœех допустимых управлений , для которых соответствующих траектории проходят через начальное и конечное состояния (если такие управления существуют), крайне важно выбрать такое , для которого функционал (2) принимал минимальное (максимальное) значение.

Проиллюстрируем сказанное. Рассмотрим два пространства- управлений и состояний для .

Отметим в них начальное и конечное состояние векторов состояние управления

Кривые в пространстве управлений есть фазовые траектории вектора управления фазовые траектории вектора управления. Траектории допустимые траектории 5,6 –недопустимые т.к. выходят за область ограничений. Аналогично в пространстве состоящие фазовые траектории состояний допустимые, а недопустимые. Предполагается, что фазовой траектории под определœенным номером в пространстве управлений соответствует фазовая траектория в пространстве состояний под тем же номером. Требуется из допустимых управлений (кривая 4 не рассматривается, т.тк.ая 4 нерассматривается авлений ом. тствует фазовая траекттория к. она вызывает недопустимую траекторию состояния 4) выбрать такую, которая, вызывает допустимые траектории состояния доставляет экстремум функционалу (2).

Это шестая типовая задача у управления, как уже отмечалось выше, принято называть неклассической вариационной задачей оптимального управления. В случае если же ограничения на координаты и управления (3) отсутствуют, и всœе вектора управления и состояния являются допустимыми, то возникает пята я типовая задача или классическая вариационная задача оптимального управления, (исследованию которой и посвящена настоящая глава).

Второй важной задачей оптимального управления является синтез оптимального регулятора, ᴛ.ᴇ. определœение оптимального управления как функции либо вектора наблюдения , либо вектора состояния объекта , а не , как мы только что рассматривали.

Выше уже говорилось, что в теории оптимального управления в качестве критериев оптимальности, как правило, применяются интегральные функционалы вида (2). Учитывая зависимость отвида подынтегральной функции бывают получены различные критерии оптимизации, применяемые в практике проектирования оптимальных САУ.

Одним из наиболее распространенных критериев, для которого методика синтеза оптимального управления достаточно хорошо разработана, является время переходного процесса объекта управления из начального состояния в конечное . Этот критерий представляет собой частный случай функционала (2) при тогда

Казалось бы логично пользоваться интегральным критерием вида

, где

Отклонения регулируемой координаты от нового установившегося значения, ĸᴏᴛᴏᴩᴏᴇ она будут иметь после завершения переходного процесса.

Геометрически интеграл (5) интегрируется как площадь под кривой . Эта площадь, а, следовательно, и величина критерия оптимальности, будет тем меньше, чем быстрее затухает переходной процесс и чем меньше величина отклонения в совокупности. Значит управление системой нужно выбирать так, что минимизировать критерий (5). Неудобством этой интегральной оценки является то, что она годится только для монотонных процессов, когда не меняется . В случае если же имеет место колебательный процесс рис.5, то при вычислении интеграла (5) площади будут складываться алгебраически и минимум этого интеграла может соответствовать колебаниям с малым затуханием или вообще без затухания. Что избежать риски подобных ситуаций, следует использовать квадратичный, интегральный функционал

который не зависит от знаков отклонений, а значит и от формы переходного процесса (монотонный или колебательный).

В случае если при проектировании системы оптимального управления ставится задача ограничить резкие изменения выходной переменной во время изменения переходного процесса, при которых 1-ая производная может принимать достаточно большие значения, используется функция:

, где

Весовой коэффициент.

Минимизация этой формулы означает, что составляющая запрещает значительные отклонения от установившегося значения, составляющая запрещает существование больших производных . Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, получается не только быстрый, но и плавный, без разных колебаний переходной процесс. Иногда для этих целœей применяется и более сложные оценки вида:

Выбор того или иного функционала определяется техническими показателями и условиями работы проектируемой САУ и во многом зависит от инструкции и опыта инженера – проектировщика.

Критерий оптимальности - понятие и виды. Классификация и особенности категории "Критерий оптимальности" 2017, 2018.

Зная управляющее воздействие и можно из системы уравнений (11.2) или векторного уравнения (11.3), а при наличии возмущений из уравнения (11.4) однозначно определить движение объекта при если известно его начальное фазовое состояние при Если изменить управление и то движение фазовой точки будет происходить по другой траектории, т. е. для разных управлений получаем разные траектории, исходящие из одной точки (рис. 11.7). Поэтому перевод объекта из начального фазового состояния в конечное можно осуществить по разным фазовым траекториям в зависимости от управления. Среди множества траекторий существует наилучшая в определенном смысле, т. е. оптимальная траектория. Например, если поставлена задача минимального расхода топлива в течение интервала полета самолета, то следует подойти к выбору управления и соответствующей траектории именно с этой точки зрения. Удельный расход топлива зависит от развиваемой тяги - управляющего воздействия и . Интересуемый суммарный расход топлива - основной в данном случае показатель качества систем управления полетом самолета - определяется интегральным функционалом

Интегральный функционал (11.5), характеризующий основной показатель качества системы управления (в рассматриваемом примере расход топлива), называется критерием оптимальности. Каждому управлению и а следовательно, траектории полета самолета соответствует свое численное значение критерия оптимальности (11.5). Возникает задача выбора такого управления и и траектории движения при которых достигается минимальное значение критерия оптимальности.

Обычно используются критерии оптимальности, величина которых определяется не текущим состоянием объекта (в рассматриваемом примере удельным расходом топлива), а изменением его в течение всего процесса управления. Поэтому для определения критерия оптимальности требуется, как и в приведенном примере, интегрировать какую-либо функцию, величина которой в общем случае зависит от текущих значений фазовых координат х объекта и управляющего воздействия и, т. е. такой критерий оптимальности является интегральным функционалом вида

Рис. 11.7. Фазовые траектории движения объекта, соответствующие различным управляющим воздействиям.

Здесь - функция выходной величины х объекта и управляющего воздействия и, являющихся в общем случае векторами; длительность процесса управления. Согласно формуле (11.6), критерий оптимальности является числовой величиной, зависящей от функции .

Частным случаем критерия оптимальности (11.6) являются интегральные оценки качества переходных процессов:

Подынтегральная функция в этих критериях содержит только координаты объекта - установившееся хуст и текущее х значения выходной величины. Примером критерия, в котором подынтегральная функция содержит управление, является критерий (11.5), применяемый при минимизации расхода топлива, и интеграл

Квадрат управляющего воздействия (например, электрического тока, потребляемого объектом) определяет мощность, расходуемую при управлении объектом. Поэтому интеграл (11.8) будет мерой расхода энергии и применяется в задачах на минимизацию расходуемой энергии.

В тех случаях, когда фазовые координаты объекта представляют стационарные случайные функции, критерий оптимальности представляет собой интегральный функционал не во временной, а в частотной области. Такие критерии оптимальности используются при решении задачи оптимизации систем по минимуму дисперсии ошибки.

В простейших случаях критерий оптимальности может представлять собой не интегральный функционал, а просто функцию. Такой критерий используется при оптимизации конечного состояния объекта, например, в задаче минимизации отклонения (промаха) при наведении истребителя-перехватчика или ракеты на цель.

При решении поставленной выше задачи перевода объекта (процесса) из начального фазового состояния в конечное следует, очевидно, выбирать такое управление, для которого принятый критерий оптимальности - функционал - принимает наименьшее возможное значение.

Во многих случаях к системе управления предъявляются противоречивые требования (например, требования минимума расхода топлива и максимальной скорости полета самолета). При выборе управления, отвечающего одному требованию (критерию минимума расхода топлива), не будут удовлетворяться другие требования (максимальная скорость полета). Поэтому из всех требований выбирают одно основное, которое должно удовлетворяться наилучшим образом, а другие

требования учитываются в виде ограничений их значений. Например, при удовлетворении требования минимального расхода топлива ограничивается минимальное значение скорости полета самолета. Если имеются несколько равных показателей качества, которые не удается объединить в общий комбинированный показатель, выбор оптимальных управлений, соответствующих этим показателям в отдельности при ограничении остальных дает варианты решения, которые могут (при проектировании) помочь при выборе оптимального компромиссного варианта.

В общем случае ограничиваемые величины могут иметь, как и критерий оптимальности, вид функционалов от х и и, а соответствующие ограничения - вид неравенства