Экстремальное управление проектами. Большая энциклопедия нефти и газа

Настройка (экстремальное управление)

Экстремальное управление получило такое название от специфической цели этого управления. Задача экстремального управления заключается в достижении экстремальной цели, т. е. в экстремизации (минимизации или максимизации) некоторого показателя объекта, значение которого зависит от управляемых и неуправляемых параметров объекта. К экстремальному управлению приводит очень распространенная операция настройки.

Всякая настройка заключается в построении такой системы действий, которые обеспечивают наилучший режим работы настраиваемого объекта. Для этого необходимо уметь различать состояния объекта и квалифицировать эти состояния так, чтобы знать, какое из двух состояний следует считать «лучше» другого. Это означает, что в процессе настройки должна быть определена мера качества настройки.

Например, при настройке технологического процесса показателем его качества может служить число бракованных деталей в партии; в этом случае задача настройки процесса заключается в том, чтобы минимизировать брак. Однако далеко не все экстремальные объекты допускают столь простое количественное представление показателя качества настройки. Так, например, при настройке радиоприемников или телевизоров такими мерами качества настройки могут служить качество звучания и качество

изображения принимаемой передачи. Здесь уже довольно сложно определить показатель качества настройки в количественной форме. Однако, как будет показано ниже, для решения задач экстремального управления часто важно знать не абсолютное значение показателя качества, а знак его приращения в процессе управления. Это означает, что для управления достаточно знать, увеличился или уменьшился показатель качества. В случае настройки радиоаппаратуры человек довольно хорошо решает эту задачу, если речь идет о качестве звучания или изображения.

Рис. 1.3.1.

Таким образом, в дальнейшем предполагается, что всегда существует такой алгоритм переработки информации настраиваемого объекта, который позволяет количественно определись качество настройки этого объекта (или знак изменения этого качества в процессе управления). Качество настройки измеряется числом Q , которое зависит от состояния управляемых параметров объекта:

. (1.3.1)

Целью настройки является экстремизация этого показателя, т. е. решение задачи

где буквой S обозначена область допустимого изменения управляемых параметров.

На рис. 1.3.1 показана блок-схема экстремального объекта. Он образуется из собственно объекта настройки с управляемыми входами и наблюдаемыми выходами, которые несут информацию о состоянии объекта, и преобразователя, который на основе полученных сведений образует скалярный показатель качества объекта.

Примером экстремального объекта может служить радиоприемник в процессе поиска станции. Если слышимость станции уменьшается (как говорят, станция «уплывает»), то для получения наилучшего звучания передачи, т. е. для настройки приемника, необходимо подстроить контур. Управление настройкой в данном случае заключается в определении направления вращения рукоятки настройки. Уровень слышимости станции здесь является показателем качества настройки. Он не несет необходимой

Рис. 1.3.2.

информации об управлении, т. е. не указывает, в каком направлении следует вращать рукоятку настройки. Поэтому для получения необходимой информации вводится поиск -- пробное движение рукоятки настройки в произвольном направлении, что дает дополнительную и необходимую информацию для настройки. После этого уже можно точно сказать, в каком направлении следует крутить рукоятку: если слышимость уменьшилась, нужно крутить в обратном направлении, если уже увеличилась, следует вращать ручку настройки туда же до максимума слышимости. Такой простейший алгоритм поиска, применяемый при настройки радиоприемника, который является типичным примером экстремального объекта.

Таким образом, объекты экстремального управления отличаются недостаточностью информации на выходе объекта, наличием своеобразного информационного «голода». Для получения необходимой информации в процессе управления экстремальными объектами необходимо ввести поиск в виде специально организованных пробных шагов. Процесс поиска отличает настройку и экстремальное управление от всех других видов управления.

В качестве более «серьезного» примера однопараметрического экстремального объекта рассмотрим задачу об оптимальном демпфировании следящей системы второго порядка (рис. 1,3.2). На вход этой следящей системы подается задающее возмущение у* (t), определяющее состояние выхода у (t). Относительно характера поведения у* (t) ничего не известно. Более того, статистические свойства возмущения у* (t) могут изменяться непредвиденным образом.

Рис. 1.3.3.

Задача настройки заключается в выборе такого демпфирования о которое делает эту следящую систему оптимальной в смысле минимума функционала:

Величина Q является оценкой дисперсии невязки о(t)=y(t)-y*(t) на базе Т . Очевидно, что при настройке следящей системы следует добиваться минимизации величины Q.

Здесь в качестве объекта настройки выступает указанная следящая система, выходной информацией для определения качества работы объекта являются его вход и выход, а преобразователь образует показатель качества по формуле (1.3.3). Полученный экстремальный объект имеет характеристику, показанную на рис. 1.3.3. Характер зависимости Q (о ) выражает тот очевидный факт, что малое демпфирование столь же плохо, как и слишком большое. Как видно, характеристика (1.3.3) имеет ярко выраженный экстремальный характер с минимумом, соответствующим оптимальному демпфированию о *. Кроме того, характеристика зависит от свойств возмущения у* (t). Следовательно, оптимальное состояние о*, минимизирующее Q (о ), также зависит от характера задающего возмущения y*(t) и изменяется вместе с ним. Это и заставляет обратиться к созданию специальных систем автоматической настройки, поддерживающих объект в настроенном (экстремальном) состоянии независимо от свойств возмущений. Эта автоматические приборы, решающие задачу настройки, носят название экстремальных регуляторов или оптимизаторов (т. е. приборов для оптимизации объекта).

Отличительной особенностью экстремальных объектов является немонотонность (экстремальность) характеристики, что приводит к невозможности воспользоваться методом регулирования в целях управления подобными объектами. Действительно, наблюдая выходное значение Q объекта в рассмотренном выше примере (см. рис. 1.3.3), нельзя построить управление, т. е. определить, в каком направлении следует изменить управляемый параметр о. Эта неопределенность связана, прежде всего, с возможностью двух ситуаций и, выход из которых к цели о* производится прямо противоположным образом (в первом случае следует увеличивать о, а во втором -- уменьшать). Прежде чем управлять таким объектом, необходимо получить дополнительную информацию -- в данном примере эта информация заключается в определении, на какой ветви характеристики находится объект. Для этого, например, достаточно определить значение показателя качества в соседней точке о + ? о, где? о -- достаточно малое отклонение.

Следует отметить, что автоматизация процесса настройки оправдана лишь в том случае, если экстремальная характеристика объекта изменяется во времени, т. е. при блуждании экстремального состояния. Если же характеристика объекта не изменяется, то процесс поиска экстремума имеет однократный характер и, следовательно, не нуждается в автоматизации (достаточно стабилизировать объект в однажды определенном экстремальном состоянии).

На рис. 1.3.4 для иллюстрации показана блок-схема экстремального управления демпфированием следящей системы, отслеживающей положение цели у (t), характер поведения которой изменяется.

Рис. 1.3.4.

Здесь экстремальный регулятор решает задачу настройки, т. е. поддерживает такое значение демпфирования о , которое минимизирует показатель качества следящей системы.

1. Я (Клиент), настоящим выражаю свое согласие на обработку моих персональных данных, полученных от меня в ходе отправления заявки на получение информационно-консультационных услуг/приема на обучение по образовательным программам.

2. Я подтверждаю, что указанный мною номер мобильного телефона, является моим личным номером телефона, выделенным мне оператором сотовой связи, и готов нести ответственность за негативные последствия, вызванные указанием мной номера мобильного телефона, принадлежащего другому лицу.

В Группу компаний входят:
1. ООО «МБШ», юридический адрес: 119334, г. Москва, Ленинский проспект, д. 38 А.
2. ООО «МБШ Консалтинг», юридический адрес: 119331, г. Москва, проспект Вернадского, д. 29, офис 520.
3. ЧУДПО «МОСКОВСКАЯ БИЗНЕС ШКОЛА — СЕМИНАРЫ», юридический адрес: 119334, Москва, Ленинский проспект, д. 38 А.

3. В рамках настоящего соглашения под «персональными данными» понимаются:
Персональные данные, которые Клиент предоставляет о себе осознанно и самостоятельно при оформлении Заявки на обучение/получение информационно консультационных услуг на страницах Сайта Группы компаний
(а именно: фамилия, имя, отчество (если есть), год рождения, уровень образования Клиента, выбранная программа обучения, город проживания, номер мобильного телефона, адрес электронной почты).

4. Клиент — физическое лицо (лицо, являющееся законным представителем физического лица, не достигшего 18 лет, в соответствии с законодательством РФ), заполнившее Заявку на обучение/на получение информационно-консультационных услуг на Сайта Группы компаний, выразившее таким образом своё намерение воспользоваться образовательными/информационно-консультационными услугами Группы компаний.

5. Группа компаний в общем случае не проверяет достоверность персональных данных, предоставляемых Клиентом, и не осуществляет контроль за его дееспособностью. Однако Группа компаний исходит из того, что Клиент предоставляет достоверную и достаточную персональную информацию по вопросам, предлагаемым в форме регистрации (форма Заявки), и поддерживает эту информацию в актуальном состоянии.

6. Группа компаний собирает и хранит только те персональные данные, которые необходимы для проведения приема на обучение/получения информационно-консультационных услуг у Группы компаний и организации оказания образовательных/информационно-консультационных услуг (исполнения соглашений и договоров с Клиентом).

7. Собираемая информация позволяет отправлять на адрес электронной почты и номер мобильного телефона, указанные Клиентом, информацию в виде электронных писем и СМС-сообщений по каналам связи (СМС-рассылка) в целях проведения приема для оказания Группой компаний услуг, организации образовательного процесса, отправки важных уведомлений, таких как изменение положений, условий и политики Группы компаний. Так же такая информация необходима для оперативного информирования Клиента обо всех изменениях условий оказания информационно-консультационных услуг и организации образовательного и процесса приема на обучение в Группу компаний, информирования Клиента о предстоящих акциях, ближайших событиях и других мероприятиях Группы компаний, путем направления ему рассылок и информационных сообщений, а также в целях идентификации стороны в рамках соглашений и договоров с Группой компаний, связи с Клиентом, в том числе направления уведомлений, запросов и информации, касающихся оказания услуг, а также обработки запросов и заявок от Клиента.

8. При работе с персональными данными Клиента Группа компаний руководствуется Федеральным законом РФ № 152-ФЗ от 27 июля 2006г. «О персональных данных».

9. Я проинформирован, что в любое время могу отказаться от получения на адрес электронной почты информации путем направления электронного письма на адрес: . Также отказаться от получения информации на адрес электронной почты возможно в любое время, кликнув по ссылке «Отписаться» внизу письма.

10. Я проинформирован, что в любое время могу отказаться от получения на указанный мной номер мобильного телефона СМС-рассылки, путем направления электронного письма на адрес:

11. Группа компаний принимает необходимые и достаточные организационные и технические меры для защиты персональных данных Клиента от неправомерного или случайного доступа, уничтожения, изменения, блокирования, копирования, распространения, а также от иных неправомерных действий с ней третьих лиц.

12. К настоящему соглашению и отношениям между Клиентом и Группой компаний, возникающим в связи с применением соглашения, подлежит применению право Российской Федерации.

13. Настоящим соглашением подтверждаю, что я старше 18 лет и принимаю условия, обозначенные текстом настоящего соглашения, а также даю свое полное добровольное согласие на обработку своих персональных данных.

14. Настоящее соглашение, регулирующее отношения Клиента и Группы компаний действует на протяжении всего периода предоставления Услуг и доступа Клиента к персонализированным сервисам Сайта Группы компаний.

ООО «МБШ» юридический адрес: 119334, г. Москва, Ленинский проспект, д. 38 А.
ООО «МБШ Консалтинг» юридический адрес: 119331, г. Москва, проспект Вернадского, д. 29, офис 520.
ЧУДПО «МОСКОВСКАЯ БИЗНЕС ШКОЛА — СЕМИНАРЫ», юридический адрес: 119334, Москва, Ленинский проспект, д. 38 А.

Основными наиболее распространенными типами экстремальных систем, в которых оптимизируется статический режим работы объекта, являются экстремальные системы, которые обеспечивают работу объекта в экстремальной точке его статической характеристики.

Статическая характеристика должна отражать связь между функцией качества работы объекта и режимными параметрами работы объекта.

Экстремальные САУ целесообразно применять:

1. Существует показатель качества (технико-экономический, характеризующий работу объекта, и эта зависимость имеет ярко выраженный экстремум) (чаще всего)

2. Выгоды от увеличения функционала качества.

3. Существует возможность текущего определения функционала качества.

Устройство управления в этом случае называется оптимизатором или экстремальным регулятором.

Функционал качества для установления режима работы записывается: , где – перемен., определяющая режим работы объекта.

В зависимости от того, является ли экстремальная статическая характеристика стабильной или меняется в процессе работы объекта, экстремальные системы делят на две группы: - статические; - динамические.

Статические: Здесь обеспечивается экстремальное управление, соответствующее экстремуму статической характеристики объекта при неизменных параметрах, установленных для данной точки экстремума, и система подобна обычной системе стабилизации режимов.

Динамические: Здесь характеристика может смещаться самостоятельно и точка экстремума тоже. При этом возможно два случая:

Известно как смещается характеристика, и можно обойтись программным управлением;

Смещение самой экстремальной характеристики и точки экстремума носит случайный характер (нужно найти сначала оптимальную точку, затем двигаться к ней).

В экстремальных системах, когда экстремальная характеристика смещается, может быть автоматический поиск экстремума и смещение к нему.

В таких случаях осуществляется две операции:

1. Пробная поисковая (определение соотношения между текущим показателем качества Q и Q extr и определение направления движения. Сводится к определению крутизны характеристики: ).

2. Рабочая (отрабатывает найденные значения изменения настройки регулятора для обеспечения экстремума функции)

Можно определять величину и знак производной или использовать специальный шаговый метод поиска экстремума.

В зависимости от того, используется ли дополнительный сигнал для поиска экстремума, системы делятся:

· системы без дополнительного поискового сигнала (в зависимости от того, используется ли при формировании рабочих операций значения крутизны S 0 или знак производной системы делятся на пропорциональные (определ по крутизне dx раб /dt=h 0 S, т.е. осущ. зависимый поиск и скорость перемещ раб. органа зависит от крутизны, котор. определ «уставку» регулятора) и релейные (направл. движ определ. по знаку dx раб /dt=h 0 SignS= h 0 Sign, т.е. осущ. «независимый поиск» и РО перемещ из одного сост в др. и обратно, приводя объект к экстремуму статич. хар-ки. Здесь лог. устройство переключается при изменении знака производной – это ведет к изменению уставки регулятора и соотв. перемещ. рег. органа. Применяются для малоинерцион. объектов.). Для инерционных систем используется сист. шагового типа (здесь по команде командного генератора через шаг Dt измер. знач. показателя качества. и сравнив. его с заданным Q, в результате происходит или не происходит реверс сигнала на входе)


· сист с доп. поиск. сигналом (на вход подается гармонич сигнал и сигнал с логического устройства. Поиск экстремума проводится на основании исследования фазового сдвига сигнала X n на вых. сист. Поисковый сигнал по отнош. к основному – модулирующий сигнал.

На осн. сигн. X накладывается гармонич. поисковый сигнал и если нач сигн. X соотв. положению слева от точки экстремума (X 1), то на вых. экстр. звена дополнительный поисковый сигнал создаст гармонич. составляющую Q * с той же f, что и поисковый сигнал и фазового сдвига не будет. Осн. сигнал X 3 – гармонич. сост на вых экстр. звена сдвинута отн. поиск. сигн на угол –pi. Осн. сигнал X 2 – гармонич. сост на вых экстр. звена будет иметь f в 2 разка больше чем f исходн. сигнала. Т.о. по фазовом сдвигу м.о. определ. направл. движения.

Многомерные экстремальные сист. строятся для многопараметровых объектов, которые имеют несколько входов и выходов, причем один из выходов имеет экстремальную характеристику, а на др. выходы м/т накладываться ограничения.

Для построения таких экстремальных сист. используют спец. методы матем. программирования и алгоритмич. методы оптимизации.

Условие экстремальной функции многих переменных – это равенство нулю всех ее част. производных по параметрам

В частном случае, если обобщенная функция качества Q представл. экстремал. статич. хар-кой, то для проектирования многомерн. сист. м/б использован метод симплексного планирования и в этом случае в сист. вв. устройство для вычисл. град. экстрем. хар-ки и устройство для формир. сигнала управления.

Принцип построения устройства для выч. град. в опереции поиска экстремума зависит от метода определ. частн. производных и типа применяемого алгоритма.

Наиболее широко используются методы:

1. конечно приращения

2. производной по времени

3. синхронного детектирования

4. применение адаптивной модели

1. Метод конечного приращения основан на замене частных производных отношением конеч. приращений и определением его. При этом поочередно изменяются корд. управления и вычисл. соответств. им приращения, котор. явл. составляющими градиента функции.

2. Также поочередно изменяются управляющие воздействия и вычисляются частн. производные и градиент функции.

Недостатки 1 и 2: необходимость поочередного изменения упр. воздействий и вычисления градиента для каждого изменения упр. сигнала. Это требует доп. времени на расчет.

3. Координаты управления модулируются доп. гармонич. сигналами с различ. амплитудами а ni и частотами w ni . Кол-во детекторов опр. числом независ. координат определяющих экстремум функции Q xi . Выходной сигнал синхр. детектир. пропорционален частн. производн. . Т.к. модулирующие сигналы разделены по частотн. спектру, то составл. градиента определ. параллельно. С использованием ЭВМ это время будет MIN.

Cтраница 1


Экстремальное управление осуществляется за счет специальных поис-движений. Поисковый сигнал у вместе с рабочим сигналом подаются на вход экстремального объекта. Обработка реакций выходной величины х на поисковые сигналы позволяет определить расстояние от экстремума и сформировать управляющие воздействия, обеспечивающие к экстремуму.  


Алгоритм экстремального управления с помощью САО может быть проиллюстрирован рис. ЪА а на котором приведена зависимость IS (US), оптимизирующая ток АД при постоянном моменте нагрузки, и кривые изменения регулируемой координаты Is и управляющего воздействия Us во времени.  

Процесс экстремального управления состоит из отдельных циклов работы регулятора. Каждый такой цикл имеет 11 рабочих тактов. Автоматическим повторением циклов экстремальный регулятор осуществляет поиск оптимального значения параметра управляемого процесса.  

Системы экстремального управления составляют в настоящее время один из наиболее практически развитых типов адаптивных систем. Цель экстремального управления заключается в достижении экстремума некоторого показателя оптимума, представлякщего собой функцию одной или многих обобщенных координат объекта.  

Системы экстремального управления сложнее обычных САУ, и их целесообразно применять, если объект управления имеет достаточно ясно выраженный экстремум показателя качества, который существенно зависит от управляющих воздействий и внешних условий.  


Цель экстремального управления состоит в обеспечении оптимального, наилучшего в некотором смысле, статического режима работы объекта. Основным критерием оптимальности является обеспечение минимума или максимума заданной функции качества работы объекта при недостаточной априорной информации о характере ее изменений.  

Задача экстремального управления многопараметриче-ким объектом связана, прежде всего, со значительной ложностью объекта, дрейфом его свойств и большим: ислом ограничений.  

Итак, экстремальное управление du 4 (5 (t - 1 / 2) имеет один промежуточный импульс.  

Так появилось экстремальное управление как раздел технической кибернетики, который контактирует с теорией итеративных процессов, с одной стороны, теорией автоматического управления, с другой, и теорией планирования экстремальных экспериментов, с третьей.  

Иногда применение экстремального управления вообще может оказаться нецелесообразным из-за больших потерь на поиск. Для таких объектов иногда применяют систему стабилизации оптимального значения вектора состояния для одной какой-либо точки. Отклонения при дрейфе экстремальных характеристик при возмущениях в этом случае могут быть меньше потерь на поиск.  

Классификация объектов экстремального управления также условна и имеет целью лишь показать широту спектра экстремальных объектов. Некоторые из них имеют гипотетический и иллюстрационный характер. Так, с общих позиций едва ли целесообразно задачу решения систем обыкновенных дифференциальных уравнений (2.2.10) сводить к экстремальной задаче (2.2.15) и решать поисковым методом, так как уже существуют весьма эффективные методы решения поставленной задачи. Однако решение граничных задач систем обыкновенных уравнений или уравнений в частных производных методами экстремального управления следует считать перспективным, так как другие методы (например, метод сеток) едва ли можно считать эффективным, особенно для сложных задач.  

Исторически первыми адаптивными системами были системы экстремального регулирования (СЭР). В § 7.1 этой главы вводятся понятия экстремального управления и изучаются физические принципы построения таких систем; § 7.2 посвящен общим алгоритмам адаптивного управления, основанным на методе градиента.

Получены условия сходцмости процесса поиска экстремума.

В § 7.3 процесс поиска экстремума усложнен случайными внешними воздействиями. Получены дополнительные условия, накладываемые на параметры алгоритма управления, при которых обеспечивается отыскание экстремума.

§ 7.1. Принципы экстремального регулирования

Понятие экстремального управления. Характерным для многих объектов и процессов в ряде отраслей промышленности является наличие экстремума выходных характеристик. Такие объекты называются экстремальными. Их примерами могут служить различные топки, двигатели внутреннего сгорания, выпарные аппараты в химической промышленности, отсадочные и флотационные машины в обогатительной промышленности. Анализ технологических процессов показывает, что экстремальную статическую характеристику можно ожидать там, где одновременно протекает несколько процессов, ведущих к противоположным результатам. Например, температура топки определяется количеством сжигаемого топлива, а также температурой и количеством подаваемого воздуха. При малом количестве воздуха (при малой скорости воздуха, продуваемого через топку) топливо сгорает не полностью и, следовательно, выделяется меньше теплоты. При избытке воздуха (при большой скорости воздуха, продуваемого через топку) топливо сгорает полностью, но значительное количество теплоты расходуется на нагрев избытка воздуха и уносится из топки проточным течением воздуха. При некотором соотношении количества топлива и скорости воздуха температура свода печи будет максимальной. Уравнение для температуры топки имеет вид

(7.1.1)

где - скорость продуваемого через топку воздуха; - неопределенный параметр, зависящий от количества и качества топлива (он зависит от времени, так как в процессе горения изменяется количество и качество топлива).

Экстремальные характеристики топки приведены на рис. 7.1.1. Задача экстремального управления температурой топки состоит в определении закона изменения во времени скорости воздуха через топку, при котором температура топки имеет наибольшее значение.

На рис. 7.1.1 указаны значения , при которых достигается максимальное значение температуры в условиях «дрейфа» характеристики топки, вызванного изменением параметра .

В общем случае уравнение безынерционного экстремального объекта регулирования нетрудно получить из (1.1.1), если положить и разрешить полученное равенство , где пока полагаем ) относительно переменной . Тогда получим, опуская индекс у ,

Функция J обладает тем свойством, что для каждого фиксированного набора чисел существует набор , при котором достигает минимума или максимума. Это означает в случае минимума, что

Далее для простоты полагаем, что для любого набора ось набор единственный (функция имеет только одну точку экстремума-минимума). Как и ранее будем полагать, что весь интервал функционирования объекта можно разбить на подынтервалы в течение которых неопределенные параметры являются постоянными.

Безынерционность объекта позволяет упростить структуру адаптивного регулятора, сведя ее лишь к адаптору. Математически это означает, что . Другими словами, управляющее воздействие формируется как настраиваемые параметры (из условия ), поэтому они называются иногда управляющими параметрами.

Таким образом, уравнение экстремального объекта принимает вид

где - управляющие настраиваемые параметры.

Объекты экстремального управления (экстремальные объекты) можно классифицировать по различным признакам. Среди этих признаков можно выделить следующие: 1) число управляющих (оптимизирующих) параметров; 2) число экстремумов характеристики () объекта; 3) объем априорной информации об объекте: 4) инерционность объекта.

Рассмотрим каждый из этих признаков. Если число управляющих параметров , то экстремальный объект называется однопараметрическим, а если , то многопараметрическим. Топка, рассмотренная в предыдущем разделе, является однопараметрическим экстремальным объектом. Уравнение однопараметрического объекта имеет вид

(7.1.4)

Пример 7.1.1 (многопараметрический объект). При обработке результатов аэрофотосъемки широко применяется автоматическая система совмещения изображений. Суть этой системы сводится к следующему. Известно, что световой поток через совмещаемые изображения имеет экстремальный характер, при этом максимум потока достигается при совмещении (совпадении) изображений. Положение изображения определяется двумя декартовыми координатами и углом поворота (рис 7.1.2).

Таким образом, световой поток через совмещаемые изображения, измеряемый фотоэлементами, зависит от трех управляющих параметров . Задача совмещения заключается в определении таких их значений, при которых ток фотоэлемента максимален. Объект этой системы является трехпараметрическим.

Второй признак классификации позволяет различить многоэкстремальные объекты управления. Говоря об объеме информации об объекте, далее будем полагать, что объект (7.1.3) одноэкстремальный, а характеристика - непрерывная и непрерывно-дифференцируемая функция своих аргументов. Инерционностью экстремального объекта часто пренебрегают, поскольку главным в системах экстремального регулирования (СЭР) является «отслеживание» дрейфа экстремума статической характеристики объекта.