Крылатая ракета с ядерным двигателем. Принцип работы, фото

Россия была и сейчас остается лидером в области ядерной космической энергетики. Опыт проектирования, строительства, запуска и эксплуатации космических аппаратов, оснащенных ядерным источником электроэнергии, имеют такие организации, как РКК «Энергия» и «Роскосмос». Ядерный двигатель позволяет эксплуатировать летательные аппараты многие годы, многократно повышая их практическую пригодность.

Историческая летопись

В то же время доставка исследовательского аппарата на орбиты дальних планет Солнечной системы требует увеличения ресурса такой ядерной установки до 5-7 лет. Доказано, что комплекс с ЯЭРДУ мощностью порядка 1 МВт в составе исследовательского КА позволит обеспечить ускоренную доставку за 5-7 лет на орбиты искусственных спутников наиболее удаленных планет, планетоходов на поверхность естественных спутников этих планет и доставку на Землю грунта с комет, астероидов, Меркурия и спутников Юпитера и Сатурна.

Многоразовый буксир (МБ)

Одним из важнейших способов повышения эффективности транспортных операций в космосе является многоразовое использование элементов транспортной системы. Ядерный двигатель для космических кораблей мощностью не менее 500 кВт позволяет создать многоразовый буксир и тем самым значительно повысить эффективность многозвенной космической транспортной системы. Особенно полезна такая система в программе обеспечения больших годовых грузопотоков. Примером может стать программа освоения Луны с созданием и обслуживанием постоянно наращиваемой обитаемой базы и экспериментальных технологических и производственных комплексов.

Расчет грузооборота

Согласно проектным проработкам РКК «Энергия», при строительстве базы на поверхность Луны должны доставляться модули массой порядка 10 т, на орбиту Луны - до 30 т. Суммарный грузопоток с Земли при строительстве обитаемой лунной базы и посещаемой лунной орбитальной станции оценивается в 700-800 т, а годовой грузопоток для обеспечения функционирования и развития базы - 400-500 т.

Однако принцип работы ядерного двигателя не позволяет разогнать транспортник достаточно быстро. Из-за длительного времени транспортировки и, соответственно, значительного времени нахождения полезного груза в радиационных поясах Земли не все грузы могут быть доставлены с использованием буксиров с ядерным двигателем. Поэтому грузопоток, который может быть обеспечен на основе ЯЭРДУ, оценивается лишь в 100-300 т/год.

Экономическая эффективность

В качестве критерия экономической эффективности межорбитальной транспортной системы целесообразно использовать значение удельной стоимости транспортировки единицы массы полезного груза (ПГ) с поверхности Земли на целевую орбиту. РКК «Энергия» была разработана экономико-математическая модель, учитывающая основные составляющие затрат в транспортной системе:

  • на создание и выведение на орбиту модулей буксира;
  • на закупку рабочей ядерной установки;
  • эксплуатационные затраты, а также расходы на проведение НИОКР и возможные капитальные затраты.

Стоимостные показатели зависят от оптимальных параметров МБ. С использованием этой модели была исследована сравнительная экономическая эффективность применения многоразового буксира на основе ЯЭРДУ мощностью порядка 1 МВт и одноразового буксира на основе перспективных жидкостных в программе обеспечения доставки с Земли на орбиту Луны высотой 100 км полезного груза суммарной массой 100 т/год. При использовании одной и той же ракеты-носителя грузоподъемностью, равной грузоподъемности РН «Протон-М», и двухпусковой схемы построения транспортной системы удельная стоимость доставки единицы массы полезного груза с помощью буксира на основе ядерного двигателя будет в три раза ниже, чем при использовании одноразовых буксиров на основе ракет с жидкостными двигателями типа ДМ-3.

Вывод

Эффективный ядерный двигатель для космоса способствует решению экологических проблем Земли, полету человека к Марсу, созданию системы беспроводной передачи энергии в космосе, реализации с повышенной безопасностью захоронения в космосе особо опасных радиоактивных отходов наземной атомной энергетики, созданию обитаемой лунной базы и началу промышленного освоения Луны, обеспечению защиты Земли от астероидно-кометной опасности.

Скептики утверждают, что создание ядерного двигателя - это не значительный прогресс в области науки и техники, а лишь «модернизация парового котла», где вместо угля и дров в качестве топлива выступает уран, а в качестве рабочего тела - водород. Настолько ли бесперспективен ЯРД (ядерный реактивный двигатель)? Попробуем разобраться.

Первые ракеты

Все заслуги человечества в освоении околоземного космического пространства можно смело отнести на счет химических реактивных двигателей. В основе работы таких силовых агрегатов - преобразование энергии химической реакции сжигания топлива в окислителе в кинетическую энергию реактивной струи, и, следовательно, ракеты. В качестве топлива используются керосин, жидкий водород, гептан (для жидкотопливных ракетных двигателей (ЖТРД)) и полимеризованная смесь перхлората аммония, алюминия и оксида железа (для твердотопливных (РДТТ)).

Общеизвестно, что первые ракеты, используемые для фейерверков, появились в Китае еще во втором столетии до нашей эры. В небо они поднимались благодаря энергии пороховых газов. Теоретические изыскания немецкого оружейника Конрада Хааса (1556), польского генерала Казимира Семеновича (1650), русского генерал-лейтенанта Александра Засядко внесли существенный вклад в развитие ракетной техники.

Патент на изобретение первой ракеты с ЖТРД получил американский ученый Роберт Годдард. Его аппарат при весе 5 кг и длине около 3 м, работавший на бензине и жидком кислороде, в 1926 году за 2,5 с. пролетел 56 метров.

В погоне за скоростью

Серьезные экспериментальные работы по созданию серийных химических реактивных двигателей стартовали в 30-х годах прошлого века. В Советском Союзе пионерами ракетного двигателестроения по праву считаются В. П. Глушко и Ф. А. Цандер. С их участием были разработаны силовые агрегаты РД-107 и РД-108, обеспечившие СССР первенство в освоении космического пространства и заложившие фундамент для будущего лидерства России в области пилотируемой космонавтики.

При модернизации ЖТРД стало ясно, что теоретическая максимальная скорость реактивной струи не сможет превысить 5 км/с. Для изучения околоземного пространства этого может быть и достаточно, но вот полеты к другим планетам, а тем более звездам останутся для человечества несбыточной мечтой. Как следствие, уже в середине прошлого века стали появляться проекты альтернативных (нехимических) ракетных двигателей. Наиболее популярными и перспективными выглядели установки, использующие энергию ядерных реакций. Первые экспериментальные образцы ядерных космических двигателей (ЯРД) в Советском Союзе и США прошли тестовые испытания еще в 1970 году. Однако после Чернобыльской катастрофы под нажимом общественности работы в этой области были приостановлены (в СССР в 1988 году, в США - с 1994).

В основе функционирования ядерных силовых установок лежат те же принципы, что и у термохимических. Различие заключается лишь в том, что нагрев рабочего тела осуществляется энергией распада или синтеза ядерного горючего. Энергетическая эффективность таких двигателей значительно превосходит химические. Так например, энергия, которую может выделить 1 кг самого лучшего топлива (смесь бериллия с кислородом) - 3×107 Дж, тогда как для изотопов полония Po210 эта величина составляет 5×1011 Дж.

Высвобождаемая энергия в ядерном двигателе может использоваться различными способами:

нагревая рабочее тело, испускаемое через сопла, как в традиционном ЖРД,после преобразования в электрическую, ионизируя и разгоняя частицы рабочего тела,создания импульса непосредственно продуктами деления или синтеза.В качестве рабочего тела может выступать даже обычная вода, но гораздо эффективнее будет применение спирта, аммиака или жидкого водорода. В зависимости от агрегатного состояния топлива для реактора ядерные двигатели ракет подразделяют на твердо-, жидко- и газофазные. Наиболее проработан ЯРД с твердофазным реактором деления, использующий в качестве топлива ТВЭЛы (тепловыделяющие элементы), применяемые на атомных электростанциях. Первый такой двигатель в рамках американского проекта Nerva прошел наземные тестовые испытания в 1966 году, проработав около двух часов.

Конструктивные особенности

В основе любого ядерного космического двигателя лежит реактор, состоящий из активной зоны и бериллиевого отражателя, размещенных в силовом корпусе. В активной зоне и происходит деление атомов горючего вещества, как правило, урана U238, обогащенного изотопами U235. Для придания процессу распада ядер определенных свойств, здесь же расположены и замедлители - тугоплавкие вольфрам или молибден. В случае если замедлитель включают в состав ТВЭЛов, реактор называют гомогенным, а если размещают отдельно - гетерогенным. В состав ядерного двигателя также входят блок подачи рабочего тела, органы управления, теневая радиационная защита, сопло. Конструктивные элементы и узлы реактора, испытывающие высокие термические нагрузки, охлаждаются рабочим телом, которое затем турбонасосным агрегатом нагнетается в тепловыделяющие сборки. Здесь происходит его нагрев почти до 3 000˚С. Истекая через сопло, рабочее тело создает реактивную тягу.

Типичными органами управления реактором служат регулирующие стержни и поворотные барабаны, выполненные из вещества, поглощающего нейтроны (бора или кадмия). Стержни размещают непосредственно в активной зоне или в специальных нишах отражателя, а поворотные барабаны - на периферии реактора. Перемещением стержней или поворотом барабанов изменяют количество делящихся ядер в единицу времени, регулируя уровень энерговыделения реактора, и, следовательно, его тепловую мощность.

Для снижения интенсивности нейтронного и гамма-излучения, опасного для всего живого, в силовом корпусе размещают элементы первичной реакторной защиты.

Повышение эффективности

Жидкофазный ядерный двигатель принципом работы и устройством аналогичен твердофазным, но жидкообразное состояние топлива позволяет увеличить температуру протекания реакции, а, следовательно, тягу силового агрегата. Так если для химических агрегатов (ЖТРД и РДТТ) максимальный удельный импульс (скорость истечения реактивной струи) - 5 420 м/с, для твердофазных ядерных и 10 000м/с - далеко не предел, то среднее значение этого показателя для газофазных ЯРД лежит в диапазоне 30 000 - 50 000 м/с.

Существуют проекты газофазного ядерного двигателя двух типов:

Открытого цикла, при котором ядерная реакция протекает внутри плазменного облака из рабочего тела, удерживаемого электромагнитным полем и поглощающего все образовавшееся тепло. Температура может достигать нескольких десятков тысяч градусов. В этом случае активную область окружает термостойкое вещество (например, кварц) - ядерная лампа, свободно пропускающая излучаемую энергию.В установках второго типа температура протекания реакции будет ограничена температурой плавления материала колбы. При этом энергетическая эффективность ядерного космического двигателя несколько снижается (удельный импульс до 15 000 м/с), но повышается экономичность и радиационная безопасность.

Практические достижения

Формально, изобретателем силовой установки на атомной энергии принято считать американского ученого и физика Ричарда Фейнмана. Старт масштабных работ по разработке и созданию ядерных двигателей для космических кораблей в рамках программы Rover был дан в научно-исследовательском центре Лос-Аламос (США) в 1955 году. Американские изобретатели отдали предпочтение установкам с гомогенным ядерным реактором. Первый экспериментальный образец «Киви-А» был собран на заводе при атомном центре в Альбукерке (Нью-Мексико, США) и испытан в 1959 году. Реактор располагался на стенде вертикально соплом вверх. В ходе испытаний нагретая струя отработанного водорода выбрасывалась непосредственно в атмосферу. И хотя ректор проработал на малой мощности всего лишь около 5 минут, успех вдохновил разработчиков.

В Советском Союзе мощный импульс подобным исследованиям придала состоявшаяся в 1959 году в Институте атомной энергии встреча «трех великих К» - создателя атомной бомбы И. В. Курчатова, главного теоретика отечественной космонавтики М. В. Келдыша и генерального конструктора советских ракет С. П. Королева. В отличие от американского образца советский двигатель РД-0410, разработанный в конструкторском бюро объединения «Химавтоматика» (Воронеж), имел гетерогенный реактор. Огневые испытания состоялись на полигоне вблизи г. Семипалатинска в 1978 году.

Стоит отметить, что теоретических проектов было создано довольно много, но до практической реализации дело так и не дошло. Причинами тому послужило наличие огромного количества проблем в материаловедении, нехватка человеческих и финансовых ресурсов.

Для заметки: важным практическим достижением стало проведение летных испытаний самолетов с ядерным двигателем. В СССР наиболее перспективным был экспериментальный стратегический бомбардировщик Ту-95ЛАЛ, в США - В-36.

Проект "Орион" или импульсные ЯРД

Для полетов в космосе ядерный двигатель импульсного действия впервые предложил использовать в 1945 году американский математик польского происхождения Станислав Улам. В последующее десятилетие идею развили и доработали Т. Тейлор и Ф. Дайсон. Суть сводится к тому, что энергия небольших ядерных зарядов, подрываемых на некотором расстоянии от толкающей платформы на днище ракеты, сообщает ей большое ускорение.

В ходе стартовавшего в 1958 году проекта «Орион» именно таким двигателем планировалось оснастить ракету, способную доставить людей на поверхность Марса или орбиту Юпитера. Экипаж, размещенный в носовом отсеке, был бы защищен от разрушительных воздействий гигантских ускорений демпфирующим устройством. Результатом детальной инженерной проработки стали маршевые испытания масштабного макета корабля для изучения устойчивости полета (вместо ядерных зарядов использовалась обычная взрывчатка). Из-за дороговизны проект был закрыт в 1965 году.

Схожие идеи создания «взрыволета» высказывал и советский академик А. Сахаров в июле 1961 года. Для вывода корабля на орбиту ученый предлагал использовать обычные ЖТРД.

Альтернативные проекты

Огромное количество проектов так и не вышли за рамки теоретических изысканий. Среди них было немало оригинальных и очень перспективных. Подтверждением служит идея силовой ядерной установки на делящихся фрагментах. Конструктивные особенности и устройство этого двигателя позволяют обходиться вообще без рабочего тела. Реактивная струя, обеспечивающая необходимые тяговые характеристики, формируется из отработанного ядерного материала. В основе реактора лежат вращающиеся диски с подкритической ядерной массой (коэффициент деления атомов меньше единицы). При вращении в секторе диска, находящегося в активной зоне, запускается цепная реакция и распадающиеся высокоэнергетические атомы направляются в сопло двигателя, образуя реактивную струю. Сохранившиеся целые атомы примут участие в реакции при следующих оборотах топливного диска.

Вполне работоспособны проекты ядерного двигателя для кораблей, выполняющих определенные задачи в околоземном пространстве, на базе РИТЭГов (радиоизотопных термоэлектрических генераторов), но для осуществления межпланетных, а тем более межзвездных перелетов такие установки малоперспективны.

Огромный потенциал у двигателей, работающих на ядерном синтезе. Уже на сегодняшнем этапе развития науки и техники вполне реализуема импульсная установка, в которой, подобно проекту «Орион», под днищем ракеты будут подрываться термоядерные заряды. Впрочем, и осуществление управляемого ядерного синтеза многие специалисты считают делом недалекого будущего.

Достоинства и недостатки ЯРД

К бесспорным преимуществам использования ядерных двигателей в качестве силовых агрегатов для космических летательных аппаратов следует отнести их высокую энергетическую эффективность, обеспечивающую высокий удельный импульс и хорошие тяговые показатели (до тысячи тонн в безвоздушном пространстве), внушительный энергозапас при автономной работе. Современный уровень научно-технического развития позволяет обеспечить сравнительную компактность такой установки.

Основной недостаток ЯРД, послуживший причиной сворачивания проектно-исследовательских работ - высокая радиационная опасность. Это особенно актуально при проведении наземных огневых тестов в результате которых возможно попадание в атмосферу вместе с рабочим телом и радиоактивных газов, соединений урана и его изотопов, и разрушающее воздействие проникающей радиации. По этим же причинам неприемлем старт космического корабля, оборудованного ядерным двигателем, непосредственно с поверхности Земли.

Настоящее и будущее

По заверениям академика РАН, генерального директора «Центра Келдыша» Анатолия Коротеева, принципиально новый тип ядерного двигателя в России будет создан уже в ближайшее время. Суть подхода заключается в том, энергия космического реактора будет направлена не на непосредственный нагрев рабочего тела и формирования реактивной струи, а для производства электричества. Роль движителя в установке отводится плазменному двигателю, удельная тяга которого в 20 раз превышает тягу существующих на сегодняшний день химических реактивных аппаратов. Головным предприятием проекта выступает подразделение госкорпорации «Росатом» АО «НИКИЭТ» (Москва).

Полномасштабные макетные тесты были успешно пройдены еще в 2015 году на базе НПО «Машиностроения» (Реутов). Датой начала летно-конструкторских испытаний ядерной энергоустановки назван ноябрь нынешнего года. Важнейшие элементы и системы должны будут пройти проверку, в том числе и на борту МКС.

Функционирование нового российского ядерного двигателя происходит по замкнутому циклу, что полностью исключает попадание радиоактивных веществ в окружающее пространство. Массовые и габаритные характеристики основных элементов энергетической установки обеспечивают ее использование с существующими отечественными ракето-носителями «Протон» и «Ангара».

Уже в конце нынешнего десятилетия в России может быть создан космический корабль для межпланетных путешествий на ядерной тяге. И это резко изменит ситуацию и в околоземном пространстве, и на самой Земле.

Ядерная энергодвигательная установка (ЯЭДУ) будет готова к полету уже в 2018 году. Об этом сообщил директор Центра имени Келдыша, академик Анатолий Коротеев . «Мы должны подготовить первый образец (ядерной энергетической установки мегаваттного класса. – Прим. "Эксперта Online") к летно-конструкторским испытаниям в 2018 году. Полетит она или нет, это другое дело, там может быть очередь, но она должна быть готова к полету», – передало его слова РИА « Новости» . Сказанное означает, что один из самых амбициозных советско-российских проектов в области освоения космоса вступает в фазу непосредственной практической реализации.

Суть этого проекта, корни которого уходят еще в середину прошлого века, вот в чем. Сейчас полеты в околоземное пространство осуществляются на ракетах, которые движутся за счет сгорания в их двигателях жидкого или твердого топлива. По сути, этот тот же двигатель, что и в автомобиле. Только в автомобиле бензин, сгорая, толкает поршни в цилиндрах, передавая через них свою энергию колесам. А в ракетном двигателе сгорающие керосин или гептил непосредственно толкают ракету вперед.

За прошедшие полвека эта ракетная технология была отработана во всем мире до мелочей. Но и сами ракетостроители признают, что . Совершенствовать – да, нужно. Пытаться увеличить грузоподъемность ракет с нынешних 23 тонн до 100 и даже 150 тонн на основе «усовершенствованных» двигателей сгорания – да, нужно пытаться. Но это тупиковый путь с точки зрения эволюции. «Сколько бы специалисты всего мира по ракетным двигателям ни трудились, максимальный эффект, который мы получим, будет исчисляться долями процентов. Из существующих ракетных двигателей, будь это жидкостные или твердотопливные, грубо говоря, выжато все, и попытки увеличения тяги, удельного импульса просто бесперспективны. Ядерные же энергодвигательные установки дают увеличение в разы. На примере полета к Марсу – сейчас надо лететь полтора-два года туда и обратно, а можно будет слетать за два-четыре месяца », – оценивал в свое время ситуацию экс-глава Федерального космического агентства России Анатолий Перминов .

Поэтому ещё в 2010 году, тогдашнем президентом России, а ныне премьер-министром Дмитрием Медведевым было дано распоряжение к концу этого десятилетия создать в нашей стране космический транспортно-энергетический модуль на основе ядерной энергетической установки мегаваттного класса. На разработку этого проекта до 2018 года из средств федерального бюджета, «Роскосмоса» и «Росатома» запланировано выделить 17 млрд рублей. 7,2 млрд из этой суммы выделено госкопорации «Росатом» на создание реакторной установки (этим занимается Научно-исследовательский и конструкторский институт энерготехники имени Доллежаля), 4 млрд – Центру имени Келдыша на создание ядерной энергодвигательной установки. 5,8 млрд рублей предназначается РКК «Энергия» для создания транспортно-энергетического модуля, то есть, проще говоря, ракеты-корабля.

Естественно, все эти работы делаются не на пустом месте. С 1970 по 1988 годы в космос только СССР запустил более трех десятков спутников-шпионов, оснащенных ядерными силовыми установками малой мощности типа «Бук» и «Топаз». Они использовались при создании всепогодной системы наблюдения за надводными целями на всей акватории Мирового океана и выдачи целеуказания с передачей на носители оружия или командные пункты – система морской космической разведки и целеуказания «Легенда» (1978 год).

NASA и американские компании, производящие космические аппараты и средства их доставки, так и не смогли за это время, хоть и трижды пытались, создать ядерный реактор, который бы устойчиво работал в космосе. Поэтому в 1988 году через ООН был проведен запрет на использование космических аппаратов с ядерными энергетическими двигательными установками, и производство спутников типа УС-А с ЯЭДУ на борту в Советском Союзе было прекращено.

Параллельно в 60-70-е годы прошлого века Центр имени Келдыша вел активные работы по созданию ионного двигателя (электроплазменного двигателя), который наиболее подходит для создания двигательной установки большой мощности, работающей на ядерном топливе. Реактор выделяет тепло, оно генератором преобразуется в электричество. С помощью электричества инертный газ ксенон в таком двигателе сначала ионизируется, а затем положительно заряженные частицы (положительные ионы ксенона) ускоряются в электростатическом поле до заданной скорости и создают тягу, покидая двигатель. Вот такой принцип работы ионного двигателя, прототип которого уже создан в Центре имени Келдыша.

«В 90-х годах XX века мы в Центре Келдыша возобновили работы по ионным двигателям. Сейчас должна быть создана новая кооперация для такого мощного проекта. Уже есть прототип ионного двигателя, на котором можно отрабатывать основные технологические и конструктивные решения. А штатные изделия еще нужно создавать. У нас срок определен – к 2018 году изделие должно быть готово к летным испытаниям, а к 2015 году должна быть завершена основная отработка двигателя. Дальше – ресурсные испытания и испытания всего агрегата в целом », – отмечал в прошлом году начальник отдела электрофизики Исследовательского центра имени М.В. Келдыша, профессор факультета аэрофизики и космических исследований МФТИ Олег Горшков.

Какая практическая польза России от этих разработок? Эта польза намного превышает те 17 млрд рублей, которые государство намерено потратить до 2018 года на создание ракеты-носителя с ядерной силовой установкой на борту мощностью 1 МВт. Во-первых, это резкое расширение возможностей нашей страны и человечества вообще. Космический корабль с ядерным двигателем дает реальные возможности людям совершить и другим планетам. Сейчас многие страны таких кораблей. Возобновились они и в США в 2003 году, после того как к американцам попали два образца российских спутников с ядерными силовыми установками.

Однако, несмотря на это, член спецкомиссии NASA по пилотируемым полетам Эдвард Кроули, например, считает, что на корабле для международного полета к Марсу должны стоять российские ядерные двигатели. «Востребован российский опыт в сфере разработки ядерных двигателей. Я думаю, у России есть очень большой опыт как в разработке ракетных двигателей, так и в ядерных технологиях. У нее есть также большой опыт адаптации человека к условиям космоса, поскольку российские космонавты совершали очень долгие полеты », – сказал Кроули журналистам весной прошлого года после лекции в МГУ, посвященной американским планам пилотируемых исследований космоса.

Во-вторых , такие корабли позволяют резко активизировать деятельность и в околоземном пространстве и дают реальную возможность началу колонизации Луны (уже есть проекты строительства на спутнике Земли атомных станций). «Использование ядерных энергодвигательных установок рассматривается для больших пилотируемых систем, а не для малых космических аппаратов, которые могут летать на других типах установок, использующих ионные двигатели или энергию солнечного ветра. Использовать ЯЭДУ с ионными двигателями можно на межорбитальном многоразовом буксире. К примеру, возить грузы между низкими и высокими орбитами, осуществлять полеты к астероидам. Можно создать многоразовый лунный буксир или отправить экспедицию на Марс », – считает профессор Олег Горшков. Подобные корабли резко меняют экономику освоения космоса. По расчетам специалистов РКК «Энергия», ракета-носитель на ядерной тяге обеспечивает снижение стоимости выведения полезного груза на окололунную орбиту более чем в два раза по сравнению с жидкостными ракетными двигателями.

В-третьих , это новые материалы и технологии, которые будут созданы в ходе реализации этого проекта и затем внедрены в другие отрасли промышленности – металлургию, машиностроение и т.д. То есть это один из таких прорывных проектов, которые реально могут толкнуть вперед и российскую, и мировую экономику.

Ядерный ракетный двигатель - ракетный двигатель, принцип действия которого основан на ядерной реакции или радиоактивном распаде, при этом выделяется энергия, нагревающая рабочее тело, которым могут служить продукты реакций либо какое-то другое вещество, например водород. Существует несколько разновидностей ракетных двигателей, использующих вышеописанный принцип действия: ядерный, радиоизотопный, термоядерный. Используя ядерные ракетные двигатели, можно получить значения удельного импульса значительно выше тех, которые могут дать химические ракетные двигатели. Высокое значение удельного импульса объясняется большой скоростью истечения рабочего тела - порядка 8-50 км/с. Сила тяги ядерного двигателя сравнима с показателями химических двигателей, что позволит в будущем заменить все химические двигатели на ядерные.

Основным препятствием на пути полной замены является радиоактивное загрязнение окружающей среды, которое наносят ядерные ракетные двигатели.

Их разделяют на два типа - твердо-и газофазные. В первом типе двигателей делящееся вещество размещается в сборках-стержнях с развитой поверхностью. Это позволяет эффективно нагревать газообразное рабочее тело, обычно в качестве рабочего тела выступает водород. Скорость истечения ограничена максимальной температурой рабочего тела, которая, в свою очередь, напрямую зависит от максимально допустимой температуры элементов конструкции, а она не превышает 3000 К. В газофазных ядерных ракетных двигателях делящееся вещество находится в газообразном состоянии. Его удержание в рабочей зоне осуществляется посредством воздействия электромагнитного поля. Для этого типа ядерных ракетных двигателей элементы конструкции не являются сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 км/с. Могут быть использованы в качестве двигателей первой ступени, невзирая на утечку делящегося вещества.

В 70-х гг. XX в. в США и Советском Союзе активно испытывались ядерные ракетные двигатели с делящимся веществом в твердой фазе. В США разрабатывалась программа по созданию опытного ядерного ракетного двигателя в рамках программы NERVA.

Американцами был разработан графитовый реактор, охлаждаемый жидким водородом, который нагревался, испарялся и выбрасывался через ракетное сопло. Выбор графита был обусловлен его температурной стойкостью. По этому проекту удельный импульс полученного двигателя должен был вдвое превышать соответствующий показатель, характерный для химических двигателей, при тяге в 1100 кН. Реактор Nerva должен был работать в составе третьей ступени ракеты-носителя «Сатурн V», но в связи с закрытием лунной программы и отсутствием других задач для ракетных двигателей этого класса реактор так и не был опробован на практике.

В настоящее время в стадии теоретической разработки находится газофазный ядерный ракетный двигатель. В газофазном ядерном двигателе подразумевается использовать плутоний, медленно движущаяся газовая струя которого окружена более быстрым потоком охлаждающего водорода. На орбитальных космических станциях МИР и МКС проводились эксперименты, которые могут дать толчок к дальнейшему развитию газофазных двигателей.

На сегодняшний день можно сказать, что Россия немного «заморозила» свои исследования в области ядерных двигательных установок. Работа российских ученых больше ориентирована на разработку и совершенствование базовых узлов и агрегатов ядерных энергодвигательных установок, а также их унификацию. Приоритетным направлением дальнейших исследований в этой области является создание ядерных энергодвигательных установок, способных работать в двух режимах. Первым является режим ядерного ракетного двигателя, а вторым - режим установки генерирующей электроэнергии для питания аппаратуры, установленной на борту космического аппарата.

Часто в общеобразовательных публикациях о космонавтике не различают разницу между ядерным ракетным двигателем (ЯРД) и ядерной ракетной электродвигательной установкой (ЯЭДУ). Однако под этими аббревиатурами скрывается не только разница в принципах преобразования ядерной энергии в силу тяги ракеты, но и весьма драматичная история развития космонавтики.

Драматизм истории состоит в том, что если бы остановленные главным образом по экономическим причинам исследования ЯДУ и ЯЭДУ как в СССР, так и в США продолжились, то полёты человека на марс давно бы уже стали обыденным делом.

Всё начиналось с атмосферных летательных аппаратов с прямоточным ядерным двигателем

Конструкторы в США и СССР рассматривали «дышащие» ядерные установки, способные втягивать забортный воздух и разогревать его до колоссальных температур. Вероятно, этот принцип образования тяги был заимствован от прямоточных воздушно-реактивных двигателей, только вместо ракетного топлива использовалась энергия деления атомных ядер диоксида урана 235.

В США такой двигатель разрабатывался в рамках проекта Pluto. Американцы сумели создать два прототипа нового двигателя - Tory-IIA и Tory-IIC, на которых даже производились включения реакторов. Мощность установки должна была составить 600 мегаватт.

Двигатели, разработанные в рамках проекта Pluto, планировалось устанавливать на крылатые ракеты, которые в 1950-х годах создавались под обозначением SLAM (Supersonic Low Altitude Missile, сверхзвуковая маловысотная ракета).

В США планировали построить ракету длинной 26,8 метра, диаметром три метра, и массой в 28 тонн. В корпусе ракеты должен был располагаться ядерный боезаряд, а также ядерная двигательная установка, имеющая длину 1,6 метра и диаметр 1,5 метра. На фоне других размеров установка выглядела весьма компактной, что и объясняет её прямоточный принцип работы.

Разработчики полагали, что, благодаря ядерному двигателю, дальность полета ракеты SLAM составит, по меньшей мере, 182 тысячи километров.

В 1964 году министерство обороны США проект закрыло. Официальной причиной послужило то, что в полете крылатая ракета с ядерным двигателем слишком сильно загрязняет все вокруг. Но на самом деле причина состояла в значительных затратах на обслуживание таких ракет, тем более к тому времени бурно развивалось ракетостроение на основе жидкостных реактивных ракетных двигателей, обслуживание которых было значительно дешевле.

СССР оставалась верной идеи создания ЯРД прямоточной конструкции значительно дольше, чем США, закрыв проект только в 1985 году . Но и результаты получились значительно весомее. Так, первый и единственный советский ядерный ракетный двигатель был разработан в конструкторском бюро «Химавтоматика», Воронеж. Это РД-0410 (Индекс ГРАУ - 11Б91, известен также как «Ирбит» и «ИР-100»).

В РД-0410 был применён гетерогенный реактор на тепловых нейтронах, замедлителем служил гидрид циркония, отражатели нейтронов - из бериллия, ядерное топливо - материал на основе карбидов урана и вольфрама, с обогащением по изотопу 235 около 80 %.

Конструкция включала в себя 37 тепловыделяющих сборок, покрытых теплоизоляцией, отделявшей их от замедлителя. Проектом предусматривалось, что поток водорода вначале проходил через отражатель и замедлитель, поддерживая их температуру на уровне комнатной, а затем поступал в активную зону, где охлаждал тепловыделяющие сборки, нагреваясь при этом до 3100 К. На стенде отражатель и замедлитель охлаждались отдельным потоком водорода.

Реактор прошёл значительную серию испытаний, но ни разу не испытывался на полную длительность работы. Однако, вне реакторные узлы были отработаны полностью.

Технические характеристики РД 0410

Тяга в пустоте: 3,59 тс (35,2 кН)
Тепловая мощность реактора: 196 МВт
Удельный импульс тяги в пустоте: 910 кгс·с/кг (8927 м/с)
Число включений: 10
Ресурс работы: 1 час
Компоненты топлива: рабочее тело - жидкий водород, вспомогательное вещество - гептан
Масса с радиационной защитой: 2 тонны
Габариты двигателя: высота 3,5 м, диаметр 1,6 м.

Относительно небольшие габаритные размеры и вес, высокая температура ядерного топлива (3100 K) при эффективной системе охлаждения потоком водорода свидетельствует от том, что РД0410 является почти идеальным прототипом ЯРД для современных крылатых ракет. А, учитывая современные технологии получения самоостанавливающегося ядерного топлива, увеличение ресурса с часа до нескольких часов является вполне реальной задачей.

Конструкции ядерных ракетных двигателей

Ядерный ракетный двигатель (ЯРД) - реактивный двигатель, в котором энергия, возникающая при ядерной реакции распада или синтеза, нагревает рабочее тело (чаще всего, водород или аммиак).

Существует три типа ЯРД по виду топлива для реактора:

  • твердофазный;
  • жидкофазный;
  • газофазный.
Наиболее законченным является твердофазный вариант двигателя. На рисунке изображена схема простейшего ЯРД с реактором на твердом ядерном горючем. Рабочее тело располагается во внешнем баке. С помощью насоса оно подается в камеру двигателя. В камере рабочее тело распыляется с помощью форсунок и вступает в контакт с тепловыделяющим ядерным топливом. Нагреваясь, оно расширяется и с огромной скоростью вылетает из камеры через сопло.

В газофазных ЯРД топливо (например, уран) и рабочее тело находится в газообразном состоянии (в виде плазмы) и удерживается в рабочей зоне электромагнитным полем. Нагретая до десятков тысяч градусов урановая плазма передает тепло рабочему телу (например, водороду), которое, в свою очередь, будучи нагретым до высоких температур и образует реактивную струю.

По типу ядерной реакции различают радиоизотопный ракетный двигатель, термоядерный ракетный двигатель и собственно ядерный двигатель (используется энергия деления ядер).

Интересным вариантом также является импульсный ЯРД - в качестве источника энергии (горючего) предлагается использовать ядерный заряд. Такие установки могут быть внутреннего и внешнего типов.

Основными преимуществами ЯРД являются:

  • высокий удельный импульс;
  • значительный энергозапас;
  • компактность двигательной установки;
  • возможность получения очень большой тяги - десятки, сотни и тысячи тонн в вакууме.
Основным недостатком является высокая радиационная опасность двигательной установки:
  • потоки проникающей радиации (гамма-излучение, нейтроны) при ядерных реакциях;
  • вынос высокорадиоактивных соединений урана и его сплавов;
  • истечение радиоактивных газов с рабочим телом.

Ядерная энергодвигательная установка

Учитывая, что какую-либо достоверную информацию о ЯЭДУ по публикациям, в том числе и из научных статей, получить невозможно, принцип работы таких установок лучше всего рассматривать на примерах открытых патентных материалов, хотя и содержащих ноу-хау.

Так, например, выдающимся российским учёным Коротеевым Анатолием Сазоновичем, автором изобретения по патенту , приведено техническое решение по составу оборудования для современной ЯРДУ. Далее привожу часть указанного патентного документа дословно и без комментариев.


Сущность предлагаемого технического решения поясняется схемой, представленной на чертеже. ЯЭДУ, функционирующая в двигательно-энергетическом режиме, содержит электроракетную двигательную установку (ЭРДУ) (на схеме для примера представлено два электроракетных двигателя 1 и 2 с соответствующими системами подачи 3 и 4), реакторную установку 5, турбину 6, компрессор 7, генератор 8, теплообменник-рекуператор 9, вихревую трубку Ранка-Хильша 10, холодильник-излучатель 11. При этом турбина 6, компрессор 7 и генератор 8 объединены в единый агрегат - турбогенератор-компрессор. ЯЭДУ оснащена трубопроводами 12 рабочего тела и электрическими линиями 13, соединяющими генератор 8 и ЭРДУ. Теплообменник-рекуператор 9 имеет так называемые высокотемпературный 14 и низкотемпературный 15 входы рабочего тела, а также высокотемпературный 16 и низкотемпературный 17 выходы рабочего тела.

Выход реакторной установки 5 соединен со входом турбины 6, выход турбины 6 соединен с высокотемпературным входом 14 теплообменника-рекуператора 9. Низкотемпературный выход 15 теплообменника-рекуператора 9 соединен со входом в вихревую трубку Ранка-Хильша 10. Вихревая трубка Ранка-Хильша 10 имеет два выхода, один из которых (по «горячему» рабочему телу) соединен с холодильником-излучателем 11, а другой (по «холодному» рабочему телу) соединен со входом компрессора 7. Выход холодильника-излучателя 11 также соединен со входом в компрессор 7. Выход компрессора 7 соединен с низкотемпературным 15 входом в теплообменник-рекуператор 9. Высокотемпературный выход 16 теплообменника-рекуператора 9 соединен со входом в реакторную установку 5. Таким образом, основные элементы ЯЭДУ связаны между собой единым контуром рабочего тела.

ЯЭДУ работает следующим образом. Нагретое в реакторной установке 5 рабочее тело направляется на турбину 6, которая обеспечивает работу компрессора 7 и генератора 8 турбогенератора-компрессора. Генератор 8 производит генерацию электрической энергии, которая по электрическим линиям 13 направляется к электроракетным двигателям 1 и 2 и их системам подачи 3 и 4, обеспечивая их работу. После выхода из турбины 6 рабочее тело направляется через высокотемпературный вход 14 в теплообменник-рекуператор 9, где осуществляется частичное охлаждение рабочего тела.

Затем, из низкотемпературного выхода 17 теплообменника-рекуператора 9 рабочее тело направляется в вихревую трубку Ранка-Хильша 10, внутри которой происходит разделение потока рабочего тела на «горячую» и «холодную» составляющие. «Горячая» часть рабочего тела далее следует в холодильник-излучатель 11, где происходит эффективное охлаждение этой части рабочего тела. «Холодная» часть рабочего тела следует на вход в компрессор 7, туда же следует после охлаждения часть рабочего тела, выходящая из холодильника-излучателя 11.

Компрессор 7 производит подачу охлажденного рабочего тела в теплообменник-рекуператор 9 через низкотемпературный вход 15. Это охлажденное рабочее тело в теплообменнике-рекуператоре 9 обеспечивает частичное охлаждение встречного потока рабочего тела, поступающего в теплообменник-рекуператор 9 из турбины 6 через высокотемпературный вход 14. Далее, частично подогретое рабочее тело (за счет теплообмена с встречным потоком рабочего тела из турбины 6) из теплообменника-рекуператора 9 через высокотемпературный выход 16 вновь поступает к реакторной установке 5, цикл вновь повторяется.

Таким образом, находящееся в замкнутом контуре единое рабочее тело обеспечивает непрерывную работу ЯЭДУ, причем использование в составе ЯЭДУ вихревой трубки Ранка-Хильша в соответствии с заявляемым техническим решением обеспечивает улучшение массогабаритных характеристик ЯЭДУ, повышает надежность ее работы, упрощает ее конструктивную схему и дает возможность повысить эффективность ЯЭДУ в целом.

Ссылки: