Генетика пола. Теории определения пола - Контрольная работа

Изучение закономерностей наследования признаков, сцепленных с полом, и выяснение возможностей их использования в практической деятельности человека можно проводить только на животных с ярко выраженным половым диморфизмом, имеющих характерные признаки, гены которых находятся в половой Х-хромосоме. В условиях пришкольного участка для этих целей наиболее удобно использовать кур, канареек и других животных.

План опыта с курами

Тема опыта. Закономерности наследования окраски оперения у кур.

Задачи опыта. 1. Закрепить навыки ухода за курами. 2. Установить специфику наследования признаков, гены которых находятся в половых хромосомах. 3. Выяснить возможности использования в практической деятельности человека закономерностей наследования признаков, гены которых находятся в половых хромосомах.

Выбор и содержание исходных пар. Для опыта в качестве родительских форм отобрать молодых здоровых гомозиготных птиц двух пород: с полосатым оперением (плимутрок) и с черным оперением (австралорпы, украинские черные или др.). Опыт провести в двух вариантах: 1) прямое скрещивание (куры черные´петух полосатый); 2) обратное скрещивание (куры полосатые´петух черный). В каждом варианте взять по 2-3 курицы и одному петуху. Данные о родителях записать в журнал гибридизации по следующей схеме:

Дата Родители, гибриды Пол Прямое скрещивание Обратное скрещивание
количество особей окраска оперения количество особей окраска оперения
Р Куры
Петухи
F 1 Куры
Петухи
F 2 Куры
Петухи

Для получения отобранных для опыта птиц поместить в клетки отдельно по вариантам и содержать при одинаковом уходе и кормлении (обычных для кур). Снесенные яйца учитывать, хранить и помещать для насиживания отдельно по вариантам, снабдив этикеткой, в которой указана гибридная комбинация.

Гибриды F 1 . Выращивать гибридных цыплят нужно отдельно по вариантам в обычных для кур условиях кормления и содержания. Когда цыплята достигнут половой зрелости, в каждом варианте установить окраску оперения у курочек и петушков, подсчитать количество особей с одинаковым фенотипом, данные наблюдений занести в журнал гибридизации. Для получения гибридов F 2 в каждом варианте из гибридов F 1 отобрать по 2-3 курочки и одному петушку, поместить в клетки и содержать так же, как родителей. Яйца хранить и помещать для насиживания отдельно по вариантам с этикеткой, в которой указана комбинация.



Гибриды F 2 . Выращивать цыплят из F 2 нужно отдельно по вариантам, как гибриды F 1 . Когда они достигнут половой зрелости, в каждом варианте подсчитать количество курочек и петушков, определить окраску оперения. Данные наблюдений внести в журнал гибридизации.

Анализ результатов опыта. Данные учетов проанализировать и сделать выводы о характере окраски оперения у кур.

При правильном ведении опыта в разных вариантах характер наследования окраски оперения у птиц должен быть иным. При прямом скрещивании (1-й вариант) в F 1 все курочки и петушки должны быть полосатыми. Это говорит о том, что ген полосатости доминирует над геном черной окраски. В F 2 все петушки должны быть полосатыми, а из курочек 50% полосатыми и 50% черными. При обратном скрещивании в F 1 все петушки будут черными, как мать, а курочки - полосатыми, как отец; в F 2 50% петушков и 50% курочек будут черными, а 50% -полосатыми.

Такой характер наследования говорит о том, что у кур ген, определяющий окраску оперения, находится в половой хромосоме. (У птиц гетерогаметный пол женский. Половой комплекс самки - XX , самца - XY ). Схема наследования этого признака приведена на рисунке 75.


Данные опыта использовать на уроках общей биологии в X классе при изучении сцепленного с полом наследования и в практике птицеводства, для определения пола молодых цыплят, которые, как известно, в раннем возрасте не имеют внешне заметных половых различий, а вместе с тем экономически целесообразно сразу после рождения отделить петушков и курочек и определить им различные режимы кормления и содержания, так как в дальнейшем курочки пополнят стадо несушек, а петушки будут использованы как бройлеры.

Опыт с канарейками. Сцепленное с полом наследование можно продемонстрировать и на других объектах, например на канарейках, у которых доминантный ген А , определяющий зеленое оперение, и его рецессивная аллель (а ), определяющая коричневое оперение, находятся в половой (X ) хромосоме. Скрещивание, как и у кур, провести в двух вариантах: 1) прямое скрещивание (зеленый (АА )´коричневая (ау ); 2) обратное скрещивание (коричневый (аа )´зеленая (Ау ).

Причины более высокой смертности среди самцов млекопитающих можно объяснить исходя из особенностей наследования признаков, сцепленных с полом. Явление сцепленного с полом наследования впервые открыл Т. Морган при скрещивании мух-дрозофил с красной и белой окраской глаз. Если в скрещивании участвовали красноглазые самки и белоглазые самцы, все потомство рождалось красноглазым. Во втором же поколении наблюдалось расщепление в соотношении 3:1. Но в отличие от мендель-ского моногибридного скрещивания расщепление было только среди самцов: одна половина из них была с белыми глазами и другая - с красными; все самки были красноглазыми. При обратном (реципрокном) скрещивании белоглазых самок с красноглазыми самцами картина была иной: все самки имели красные глаза, самцы - белые. При скрещивании этих особей во втором поколении половина самцов и самок рождалась красноглазыми. Признаки, расщепление по которым при скрещивании связано с полом, называют сцепленными с полом. Эти признаки обусловливаются генами, локализованными в половых хромосомах. Установлено, что наследование их зависит в основном от Х-хромосомы. Y-Хромосома имеет небольшие размеры, состоит преимущественно из гетерохроматина и является генетически инертной, за исключением, возможно, некоторых генов, контролирующих воспроизводительную функцию и признаки пола. У самцов млекопитающих гены, локализованные в Х-хромосоме, не имеют доминантных или рецессивных партнеров (аллелей) на Y-хромо-соме. Рецессивные гены у них проявляют свое действие уже в одинарной дозе (гемизиготном состоянии) по типу доминантного.

Практическое использование сцепленного с полом наследования признаков. В птицеводстве оказалась полезной рецессивная, сцепленная с Х-хромосомой мутация карликовости. Карликовые куры отличаются от нормальных лучшей оплатой корма продукцией, для них требуется меньшая площадь содержания. Они резистентны к отдельным болезням.

В шелководстве получил распространение метод использования сцепленных с полом деталей для получения гусениц только мужского пола, дающих более крупные коконы, содержащие шелка на 25-30 % больше, чем коконы гусениц самок. Для этого В. А. Струнников вывел линию, сбалансированную по двум Z-леталям с помощью транслокации (переноса) фрагмента половой Z-хромосомы на W-хромосому. При скрещивании самцов с одной неаллельной деталью в каждой из двух хромосом (а и Ь) с самками без транслокаций рождаются только самцы:

Наследственные аномалии животных, сцепленные с полом. У

Сельскохозяйственных животных установлено несколько форм врожденных аномалий, обусловленных генами, локализованны-ми в половой хромосоме. Как правило, они имеют рецессивный характер проявления, и при этом поражаются преимущественно особи гетерогамного пола: у млекопитающих - самцы, у птиц - самки. Сцепленные с полом летальные и сублетальные аномалии изменяют численное соотношение полов при рождении или после него вследствие гибели или браковки у млекопитающих самцов, у птиц - самок. Например, А. И. Жигачевым установлено, что такая аномалия, как врожденная деформация передних конечностей в сочетании с анкилозом суставов, изученная у животных черно-пестрой, сычевской и костромской пород, проявляется, как правило, у бычков, родственных между собой, что указывает на сцепленное с полом наследование.

Явление сцепленного с полом наследования впервые открыл Т. Морган при скрещивании мух-дрозофил с красной и белой окраской глаз. Если в скрещивании участвовали красноглазые самки и белоглазые самцы, все потом­ство рождалось красноглазым. Во втором же поколении наблюда­лось расщепление в соотношении 3:1. Но скрещивания расщепление было только среди самцов: одна половина из них была с белыми глазами и другая - с красными; все самки были красноглазыми. При обрат­ном (реципрокном) скрещивании белоглазых самок с красногла­зыми самцами картина была иной: все самки имели красные глаза, самцы - белые. При скрещивании этих особей во втором поколении половина самцов и самок рождалась красноглазыми. Признаки, расщепление по которым при скрещивании связано с полом, называют сцепленными с полом . Эти признаки обусловлива­ются генами, локализованными в половых хромосомах. Установ­лено, что наследование их зависит в основном от Х-хромосомы.

Практическое использование сцепленного с полом наследова­ния признаков. В птицеводстве оказалась полезной рецессивная, сцепленная с Х-хромосомой мутация карликовости. Карликовые куры отличаются от нормальных лучшей оплатой корма продук­цией, для них требуется меньшая площадь содержания. Они резистентны к отдельным болезням. В шелководстве получил распространение метод использова­ния сцепленных с полом деталей для получения гусениц только мужского пола, дающих более крупные коконы, содержащие шелка на 25-30 % больше, чем коконы гусениц самок

Конец работы -

Эта тема принадлежит разделу:

Генетикапредмет, объект. Методы генетических исследований

Митоз упорядоченное деление ядра клетки при котором каждая их двух дочерних клеток получает такое же количество и те же типы хромосом какие имела..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Генетика- предмет, объект. Методы генетических исследований
Предмет генетики. Генетика-наука о наследственности и изменчивости организмов. Наследствен­ность - свойство живых существ обеспечивать

Роль ядра в передаче наследственной информации
Ядро - это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию(молекулы ДНК), осуществляющий основные функции: хранение, передача и реализаци

Кариотип и его видовые особенности
В соматических клетках хромосомы парные, а набор хромо­сом в них диплоидный. " Парность хромосом возникает при слиянии (оплодотворении) мужской и женской половых клеток, которые

Законы Менделя правило чистоты гамет
Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающих

Аллели, множественный аллелизм
Аллели - различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом и определяющие альтернативные варианты развития одного и того же

Взаимодействие аллельных генов. Летальные гены
При промежуточном наследовании потомство в первом поколении сохраняет единообразие, обладает признаком промежуточного характе­ра. Иногда признак принимает не среднее выражение, а уклоня­ется в стор

Учет врожденных болезней и аномалий. Методы генетического анализа
Гены, вызывающие гибель 100 % особей до достижения ими половой зрелости, называются летальными, более 50 % - субле­тальными (полулетальными) и менее 50 % - субви­тальными Летальные гены могут быть

Взаимодействие неаллельных генов. Схемы скрещиваний
Новообразование.Новообразованием называется такой тип взаимодействия генов, когда при их сочетании в одном организ­ме развивается совершенно новая форма признака. Комплемен

Гены-модификаторы, экспрессивность, пенетрантность, плейотропия
Гены-модификаторы.Гены, не проявляющие собственного действия, но усиливающие или ослабляющие эффект действия других генов, называются генами-модификаторами.

Сцепленное наследование признаков (полное и неполное). Определение расстояния между генами
Гены, расположенные в одной хромосоме, представляют собой группу сцепления. Сцепление генов - это совместное наследование генов, располо­женных в одной и той же хромосоме. Количество групп с

Соматический (митотический) кроссинговер и факторы, влияющие на кроссинговер. Сущность хромосомной теории наследственности
Сущность соматического кроссинговера заключается в том, что он осуществляется при митотическом делении соматических кле­ток главным образом эмбриональных тканей. Кроссинговер проис­ходит меж

Карты хромосом и метод их построения
гены расположены в хромосомах в линейной последователь­ности на определенных расстояниях друг от друга. На основании анализа частоты кроссинговера между генами к настоящему времени для многи

Хромосомное определение пола. Нарушения в развитии пола(интерсексуальность у животных, синдром Клайнфельтера, синдром Тернера, фримартинизм)
1 Хромосомное определение пола. У растений и животных наиболее распространён хромосомный механизм определения пола. В зависимости от того, какой пол является гетерогам

Бисексуальность организмов. Наследование признаков ограниченных полом
Все организмы, в том числе и раздельнополые, в генетическом отношении бисексуальны (двуполы), т.к. зиготы их получают генетическую информацию, потенциально дающую возможность развивать признаки муж

Проблема регуляции пола
Проблема регуляции пола вытекает из необходимости увели­чения продукции животноводства за счет преимущественного получения особей одного вида, дающих более высокий выход молока, мяса, и т. д. От вы

Доказательства роли ДНК в наследственности. Биологическая роль нуклеиновых кислот
1ый опыт на мышах. Ученый вводил мышам вирулентный капсульный и авирулентный бескапсульный штаммы пневмококков. При введении вирулентного штамма мыши заболевали пневмонией и погибали. При введении

Строение ДНК. Ее роль в жизнедеятельности клетки, репликация ДНК
ДНК - это длинная полимерная молекула, нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт д

Виды РНК, их функции, строение. Генетический код и его свойства
три основных вида РНК: информационная (иРНК), или матричная (мРНК), рибосомная (рРНК), и транспортная (тРНК). Они различаются по величине молекул и функциям. Все типы РН

Синтез белка в клетке
На­следственность реализуется в процессе биосинтеза белка. Синтез ферментов и других белков, необходимых для жизнедеятельности и развития организмов, происходит в основном на первой стадии интерфаз

Строение и размножение бактерий
Клетки бактерий окружены оболочкой, внутри которой находятся цитоплазма, ядерный аппарат, рибосомы, ферменты и другие включения. у них отсутствуют митохондрии, аппарат Гольджи и эндоплазматическая

Строение и размножение вирусов. Взаимодействие фага с бактериальной клеткой
Вирусы – неклеточные формы жизни. Частицы вирусов (от 20 до 450 нм). они имеют палочковидную, шарообразщую, многогранную форму. Вирусная частица содержит одну из нуклеиновых кислот, которая окружен

Конъюгация у бактерий
Конъюгация - перенос генетического материала от одной бак­териальной клетки (донора) к другой (реципиенту) при их непо­средственном контакте. Неравноценная роль

Трансдукция у бактерий
Трансдукция - перенос генов из одной бактериальной клетки в другую при помощи бактериофага. Явление трансдукции уста­новлено у кишечной палочки и актиномицетов. Как прав

Трансформация у бактерий
Трансформация - поглощение изолированной ДНК бактерии до­нора клетками бактерии реципиента. Явление трансформации кратко освещено при изложении доказательств роли ДНК в

Генная инженерия и задачи, которые она решает
Биотехнология - это наука об использовании живых организмов и биологических процессов в производстве. Генная инженерия

Клеточная инженерия. Соматическая гибридизация
Под клеточной инженерией понимают метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. С

Эмбриогенетическая инженерия. Клонирование эмбрионов млекопитающих
Эмбриогенетическая инженерия - это активная перестройка генома животных путем вмешательства в их развитие на самых ранних стадиях онтогенеза. Перестройка генома - это ре

Химерные животные. Трансгенные животные
1)Одно из перспективных направлений биотехнологии - искус­ственное получение химер (аллофенных животных). Понятие хи­мера означает составное животное. Сущность метода

Виды изменчивости
Мутационная изменчивость.Мутация - стойкое изменение в структуре ДНК и кариотипе. Мутационный процесс - первоис­точник наследственной изменчивости. В результате его у потом­

Вариационный ряд и его построение
Вариационный ряд - это упорядоченное изображе­ние реально существующего распределения особей в группе по величине признака. Вариационный ряд - это двойной ряд чисел, состоящ

Перечислить основные статистические параметры, характеризующие совокупность и что они показывают
Средние величины. Средняя арифметическая (х) показывает, какое значение признака наиболее характерно в целом для данной совокупности. Она используется для сравнения пород, стад, ли

Ошибки репрезентативности и их применение в биометрии
Биометрия- наука о применении математических методов в биологических исследованиях. Впрактичес­кой работе основные параметры совокупности х и а вычисляют не по гене

Определение достоверности разности между средними арифметическими двух выборочных совокупностей
При сравнении средних арифметических двух генеральных со­вокупностей любая разность между ними будет достоверна. В ве­теринарии, зоотехнии приходится сравнивать между собой средние величины не гене

Сцепленное наследование

Г. Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков.


Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался выдающийся американский генетик Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25°С дает многочисленное потомство. Самец и самка внешне хорошо различимы - у самца брюшко меньше и темнее.

Кроме того, они имеют всего 8 хромосом в диплоидном наборе и отличия по многочисленным признакам, могут размножаться в пробирках на дешевой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибридов, имеющих серое тело и нормальные крыльяи (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев - над геном недоразвитых) (рис. 327). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% серые длиннокрылые и 41,5% черные с зачаточными крыльями) и лишь незначительная часть мушек имела перекомбинированные признаки (8,5% черные длиннокрылые и 8,5% серые с зачаточными крыльями).

Анализируя полученные результаты, Морган пришел к выводу, что гены, обусловливающие развитие серой окраски тела и длинных крыльев, локализованы в одной хромосоме, а гены, обусловливающие развитие черной окраски тела и зачаточных крыльев, - в другой. Явление совместного наследования признаков Морган назвал сцеплением . Материальной основой сцепления генов является хромосома. Гены, локализованные в одной хромосоме, наследуются совместно и образуют одну группу сцепления . Поскольку гомологичные хромосомы имеют одинаковый набор генов, количество групп сцепления равно гаплоидному набору хромосом (например, у человека 46 хромосом, или 23 пары гомологичных хромосом, соответственно количество групп сцепления в соматических клетках человека - 23). Явление совместного наследования генов, локализованных в одной хромосоме, называют сцепленным наследованием. Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.

Вернемся к нашему примеру скрещивания мушек дрозофил. Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов - АВ и ав, а отцовский - один тип - ав . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и аавв . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Аавв и ааВв . Каковы причины появления таких особей? Для объяснения этого факта необходимо вспомнить механизм образования половых клеток - мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Ав и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но поскольку кроссинговер происходит не во всех гаметах, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

В зависимости от особенностей образования гамет, различают:

некроссоверные гаметы - гаметы с хромосомами, образованными без кроссинговера:
кроссоверные гаметы - гаметы с хромосомами, претерпевшими кроссинговер:

Соответственно этому различают:

© рекомбинантные (кроссоверные ) особи - особи, возникшие с участием кроссоверных гамет;

© нерекомбинантные (некроссоверные ) особи - особи, возникшие без участия кроссоверных гамет.

Гены в хромосомах имеют разную силу сцепления. Сцепление генов может быть:

© полным , если между генами, относящимися к одной группе сцепления, рекомбинация невозможна (у самцов дрозофилы полное сцепление генов, хотя у подавляющего большинства других видов кроссинговер протекает сходно как у самцов, так и у самок);

© неполным , если между генами, относящимися к одной группе сцепления, возможна рекомбинация.

Вероятность возникновения перекреста между генами зависит от их расположения в хромосоме: чем дальше друг от друга расположены гены, тем выше вероятность перекреста между ними. За единицу расстояния между генами, находящимися в одной хромосоме, принят 1 % кроссинговера. Его величина зависит от силы сцепления между генами и соответствует проценту рекомбинантных особей от общего числа потомков, полученных при скрещивании. Например, в рассмотренном выше анализирующем скрещивании получено 17% особей с перекомбинированными признаками. Следовательно, расстояние между генами серой окраски тела и длинных крыльев (а также черной окраски тела и зачаточных крыльев) равно 17%. В честь Т. Моргана единица расстояния между генами названа морганидой .

Результатом исследований Т.Моргана стало создание им хромосомной теории наследственности:

© гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;



© каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

© гены расположены в хромосомах в определенной линейной последовательности;

© гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

© сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинатных хромосом; частота кроссинговера:

¨ является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);

¨ зависит от силы сцепления между генами: чем сильнее сцеплены гены, тем меньше величина кроссинговера (обратная зависимость);

© каждый вид имеет характерный только для него набор хромосом - кариотип.

40.4. Генетика пола

Как известно, большинство животных и двудомных растений являются раздельнополыми организмами, причем внутри вида количество особей мужского пола приблизительно равно количеству особей женского пола.

Пол можно рассматривать как один из признаков организма. Наследование признаков организма, как правило, определяется генами. Механизм же определения пола имеет иной характер - хромосомный (рис. 328).

Пол чаще всего определяется в момент оплодотворения. У человека женский пол является гомогаметным, то есть все яйцеклетки несут Х-хромосому. Мужской организм - гетерогаметен, то есть образует два типа гамет - 50% гамет несет Х-хромосому и 50% - Y-хромосому. Если

образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому - мужской.

Соотношение полов, близкое к расщеплению 1:1, соответствует расщеплению при анализирующем скрещивании. Поскольку женский организм имеет две одинаковые половые хромосомы, его можно рассматривать как гомозиготный, мужской, образующий два типа гамет - как гетерозиготный.

Из приведенной схемы видно, как происходит формирование в равных количествах двух групп особей, отличающихся набором половых хромосом.

Существует четыре основных типа хромосомного определения пола (рис. 329):

© мужской пол гетерогаметен; 50% гамет несут Х-, 50% -У-хромосому;

© мужской пол гетерогаметен; 50% гамет несут Х-, 50% -не имеют половой хромосомы;

© женский пол гетерогаметен; 50% гамет несут Х-, 50% -У-хромосому;

© женский пол гетерогаметен; 50% гамет несут Х-, 50% - не имеют половой хромосомы.

40.5. Наследование признаков,
сцепленных с полом

Генетические исследования установили, что половые хромосомы отвечают не только за определение пола организма - они, как и аутосомы, содержат гены, контролирующие развитие определенных признаков.

Наследование признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т.Морган.

У дрозофилы красный цвет глаз доминирует над белым. Проводя реципрокное скрещивание, Т.Морган получил весьма интересные результаты. При скрещивании красноглазых самок с белоглазыми самцами, в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F 1 , то во втором поколении все самки оказываются красноглазыми, а у самцов происходит расщепление - 50% белоглазых и 50% красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F 2 половина самок и самцов - красноглазые, половина - белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т.Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме, а Y-хромосома таких генов не содержит.

Таким образом, благодаря проведенным скрещиваниям, был сделан очень важный вывод: ген цвета глаз сцеплен с полом, то есть находится в Х-хромосоме.

У человека мужчина получает Х-хромосому от матери. Половые хромосомы человека имеют небольшие гомологичные участки, несущие одинаковые гены (например, ген общей цветовой слепоты), это участки конъюгации (рис. 330). Но большинство генов, сцепленных с Х-хромосомой, отсутствуют в У-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных .

Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм). Эти аномалии чаще встречаются у мужчин (так как они гетерогаметны), хотя носителем этих аномалий чаще бывает женщина.

У большинства организмов генетически активна только Х-хромосома, в то время как Y-хромосома практически инертна, так как не содержит генов, определяющих признаков организма. У человека лишь некоторые гены, не являющиеся жизненно важными, локализованы в Y-хромосоме (например, гипертрихоз - повышенная волосатость ушной раковины). Гены, локализованные в Y-хромосоме, наследуются особым образом - только от отца к сыну.

Полное сцепление с полом наблюдается лишь в том случае, если Y-хромосома генетически инертна. Если же в Y-хромосоме имеются гены, аллельные генам Х-хромосомы, характер наследования признаков иной. Например, если мать имеет рецессивные гены, а отец доминантные, то все потомки первого поколения будут гетерозиготны с доминантным проявлением признака. В следующем поколении получится обычное расщепление 3:1, причем с рецессивными признаками будут только девочки. Такой тип наследования называют частично сцепленным с полом . Так наследуются некоторые признаки человека (общая цветовая слепота, кожный рак).

40.6. Генотип целостная,
исторически сложившаяся система генов.

Изучая закономерности наследования, Г.Мендель исходил из предположения, что один ген отвечает за развитие только одного признака. Например, ген, отвечающий за развитие окраски семян гороха, не влияет на форму семян. Причем эти гены располагаются в разных хромосомах, и их наследование независимо друг от друга. Поэтому может сложиться впечатление, что генотип представляет собой простую совокупность генов организма. Однако сам Мендель в ряде опытов столкнулся с явлениями наследования, которые не могли быть объяснены с помощью открытых им закономерностей. Так, при изучении наследования окраски семенной кожуры, Мендель обнаружил, что ген, вызывающий образование бурой семенной кожуры, способствует также развитию пигмента и в других частях растения. Растения с бурой семенной кожурой имели цветки фиолетовой окраски, а растения с белой семенной кожурой - белые цветки. В других опытах, проводя скрещивание белой и пурпурной фасоли, он получил во втором поколении целый ряд оттенков - от пурпурного до белого. Мендель пришел к заключению, что наследование пурпурного цвета зависит не от одного, а от нескольких генов, каждый из которых дает промежуточную окраску. Можно говорить о том, что Мендель не только установил законы независимого наследования пар аллелей, но и заложил основы учения о взаимодействии генов.

После переоткрытия законов наследования признаков, многочисленные опыты подтвердили правильность установленных Менделем закономерностей. Вместе с тем, постепенно накапливались и факты, показывающие, что полученные Менделем числовые соотношения при расщеплении гибридного поколения не всегда соблюдались. Это указывало на то, что взаимоотношения между генами и признаками носят более сложный характер. Выяснилось, что:

© один и тот же ген может оказывать влияние на развитие нескольких признаков;

© один и тот же признак может развиваться под влиянием многих генов.

Различают несколько типов взаимодействия аллельных генов:

© Полное доминирование , при котором рецессивный признак не проявляется;

© Неполное доминирование , при котором у гибридов наблюдается промежуточный характер наследования.

© Кодоминирование , в этом случае у гибридов проявляются оба признака. Например, кодоминирование проявляется у людей с 4 группой крови. Первая группа крови у людей с аллелями i O i O , вторая - с аллелями I A I A или I A í 0 ; третья - I В I В или I В í 0 ; четвертая группа имеет аллели I А I В.

Известно много примеров, когда гены влияют на характер проявления определенного неаллельного гена или на саму возможность проявления этого гена.

Комплементарными называют гены, обусловливающие при совместном сочетании в генотипе в гомозиготном или гетерозиготном состоянии новое фенотипическое проявление признака.

Классическим примером комплементарного взаимодействия генов является наследование формы гребня у кур (рис. 331). При скрещивании кур, имеющих розовидный и гороховидный гребень, все первое поколение имеет ореховидный гребень. При скрещивании гибридов первого поколения у потомков наблюдается расщепление по форме гребня: 9 ореховидных: 3 розовидных: 3 гороховидных: 1 листовидный. Генетический анализ показал,

что куры с розовидным гребнем имеют генотип А_bb , с гороховидным - ааВ_ , с ореховидным - А_В_ и с листовидным - ааbb , то есть развитие розовидного гребня происходит в том случае, если в генотипе имеется только один доминантный ген - А , гороховидного - наличие только гена В , сочетание генов А В обусловливает появление ореховидного гребня, а сочетание рецессивных аллелей этих генов - листовидного.

При комплементарном взаимодействии генов в дигибридном скрещивании получаются расщепления потомков отличные от менделевского: 9:7, 9:3:4, 13:3, 12:3:1, 15:1, 10:3:3, 9:6:1. Однако все они являются видоизменениями общей менделевской формулы 9:3:3:1.

Белое оперение определяется несколькими различными генами, например, у белых леггорнов - генамиССII , а у белых плимутроков - ccii (рис. 332). Доминантная аллель гена С определяет синтез предшественника пигмента (хромогена, обеспечивающего окраску пера), а его рецессивная аллель с - отсутствие хромогена. Ген I является подавителем действия гена С , а аллель i не подавляет его действия. Таким образом, белая окраска у кур определяется не наличием особых генов, определяющих развитие этой окраски, а наличием гена, подавляющего ее развитие.

При скрещивании, например, леггорнов (ССII )с плимутроками (ссii ), все потомство F 1 имеет белую окраску, которая определяется наличием в их генотипе гена-подавителя (СсIi ). Если же гибридов F 1 скрестить между собой, то во втором поколении происходит расщепление по окраске в отношении 13/16 белых: 3/16 окрашенных. Окрашенным оказывается та часть потомства, в генотипе которой имеется ген окраски и отсутствует его подавитель (С_ii ).

Скрещивая белую и пурпурную фасоли, Мендель столкнулся с явлением полимерии. Полимерией называют однозначное влияние двух, трех и более неаллельных генов на разви-

тие одного и того же признака. Такие гены называют полимерными , или множественными , и обозначают одной буквой с соответствующим индексом, например, А 1 , А 2 , а 1 , а 2 .

Полимерные гены контролируют большинство оличественных признаков организмов: высоту растения, массу семян, масличность семян, содержание сахара в корнеплодах сахарной свеклы, удойность коров, яйценоскость, вес тела и т.д.

Явление полимерии было открыто в 1908 г. при изучении окраски зерновки у пшеницы Нельсоном-Эле (рис. 333). Он предположил, что наследование окраски у зерновки пшеницы обусловлено двумя или тремя парами полимерных генов. При скрещивании краснозерной и белозерной пшеницы в F 1 наблюдалось промежуточное наследование признака: все гибриды первого поколения имели светло-красное зерно. В F 2 происходило расщепление в отношении 63 краснозерных на 1 белозерное. Причем краснозерные зерновки имели разную интенсивность окраски - от темно-красной до светло-красной. Исходя из наблюдений, Нельсоном-Эле определил, что признак окраски зерновок обуславливает три пары полимерных генов.

У человека по типу полимерии наследуется, например, окраска кожи.

Плейотропией называют множественное действие генов. Плейотропное действие генов имеет биохимическую природу: один белок-фермент, образующийся под контролем одного гена, определяет не только развитие данного признака,нои воздействует на вторичные реакции биосинтеза различных других признаков и свойств, вызывая их изменение.

Плейотропное действие генов впервые было обнаружено Г. Менделем, который обнаружил, что у растений с пурпурными цветками всегда имелись красные пятна в пазухах листьев, а семенная кожура была серого или бурого цвета. То есть развитие этих признаков определяется действием одного наследственного фактора (гена).

У человека встречается рецессивная наследственная болезнь-серповидно-клеточная анемия. Первичным дефектом этой болезни является замена одной из аминокислот в молекуле гемоглобина, что приводит к изменению формы эритроцитов. Одновременно с этим возникают глубокие нарушения в сердечно-сосудистой, нервной, пищеварительной, выделительной системах. Это приводит к тому, что гомозиготный по этому заболеванию погибает в детстве.

Плейотропия широко распространена. Изучение действия генов показало, что плейотропным эффектом, очевидно, обладают многие, если не все, гены.

Таким образом, выражение «ген определяет развитие признака» в значительной степени условно, так как действие гена зависит от других генов - от генотипической среды. На проявление действия генов влияют и условия окружающей внешней среды. Следовательно, генотип является системой взаимодействующих генов.

Генетика пола

Теории определения пола . Одной из важнейших проблем в биологии всегда была загадка рождения организмов разного пола. Сотни гипотез о природе этого явления были опубликованы в прошлых веках и особенно в 19 веке. Вот некоторые из них. Аристотель полагал, что зачатие мальчиков происходит чаще в ту пору, когда дуют северные ветры, тогда как зачатие девочек естественно связано с дуновением южных зефиров. Некоторые ученые считали, что дети должны быть того же или противоположного пола, что старший или младший из родителей. По нашим данным, пишет Лавровский в статье " Тайна снеговой воды", в потомстве животных, пьющих снеговую воду, должны преобладать самцы. Гарантирована почти 100% вероятность рождения мальчика, если мама на 5 см переросла папу, и появление на свет девочки, если мама горазда ниже папы, (Длигач Д.Л., 1972).Но довольно об этом, поговорим о наследовании пола с научной точки зрения.

Хромосомная теория определения пола. В 1901 году при изучении хромосомных наборов половых клеток самцов и самок было установлено, что они различаются одной парой хромосом. Хромосомы этой пары были названы половыми, а остальные хромосомы, одинаковые у самцов и самок, аутосомами. У большинства организмов, в том числе животных и человека, в кариотипе самок содержится две одинаковые хромосомы, которые обозначают буквой X. У самцов имеется Х-хромосома и отличная от нее хромосома, обычно меньшего размера, которая обозначается буквой У. Таким образом, генотип самок по половым хромосомам будет XX, а генотип самцов - ХУ.

Кроме такого типа определения пола, в природе встречаются и другие. Например, у птиц генотип самцов XX, а у самок содержится на одну хромосому меньше. Их генотип записывают обычно ХО или Х-. У пчел, ос и близких им видов пол зависит от количества хромосом. Самки имеют диплоидный набор хромосом – 2n, а самцы - гаплоидный n. У особей женского пола в процессе гаметогенеза образуется только один сорт гамет, несущий Х-хромосому. Поэтому этот пол называют гомогаметным, У самцов образуется два типа гамет, несущих X и У-хромосомы, и такой пол называется гетерогаметным, В связи с этим пол потомства будет зависеть от гетерогаметных особей, которыми у животных и человека являются самцы. Эта теория наглядно объясняет одинаковую вероятность рождения в природе самцов и самок.

Схема наследования пола у млекопитающих

Р ♀ ХХ х ♂ Х Y

Гаметы: Х Х Y

F ♀ XX ♂ XY

50% самок 50% самцов

Балансовая теория определения пола. Исследования на дрозофиле, проведенные учеником Т.Моргана К. Бриджесом, показали, что простой, на первый взгляд механизм определения пола в действительности сложнее. Несомненно, что Х-хромосома направляет развитие особи в сторону женского пола, однако У-хромосома у дрозофилы не влияет на пол. О том, что У-хромосома не оказывает никакого влияния на развитие пола у дрозофил, свидетельствует следующий факт. Можно получить мух с набором половых хромосом ХХУ; такие мухи будут настоящими плодовитыми самками, несмотря на наличие У-хромосомы. К.Бриджес скрещивал триплоидных (XXX) самок с нормальными самцами. В результате этого скрещивания он получил разнообразное потомство, наряду с нормальными самками и самцами были особи с отклонениями в формировании их половой системы.

Половые типы дрозофилы согласно балансовой теории

На основании опытов Бриджес пришел к выводу, что признаки женского пола контролируются Х-хромосомой, а признаки мужского пола - аутосомами. Пол же особи зависит от баланса между Х-хромосомами и аутосомами. Это следует из того, что все особи с балансом хромосом 1 и более представляют собой самок, соотношение 0,5 определяет самцов; баланс от 1 до 0,5 определяет промежуточное развитие пола.

У дрозофилы и у некоторых других насекомых иногда появляются так называемые гинандроморфы, у которых одни участки тела несут признаки женского пола, другие - мужского. Причины такой мозаичности легко объяснить. В начале своего развития животное обладает двумя Х-хромосомами и начинает развиваться как самка, однако при первом дроблении оплодотворенного яйца по тем или иным причинам происходит утрата одной из Х-хромосом. В результате образуются клетки, содержащие только одну Х-хромосому. Если эти клетки продолжают делиться, то формируютсяткани, характеризующиеся чисто мужскими признаками.

Бисексуальность организмов. Многочисленные опыты на животных и растениях позволяют считать, что организмы обладают бисексуальностью, то есть способностью при определенных условиях формировать женский или мужской пол. Подтверждением этого является изменение пола в онтогенезе. Один из примеров переопределения пола получен на аквариумных рыбках Т.Якимото. Для опыта были отобраны белые и красные медаки. Гетерогаметным полом у этих рыбок является мужской. Доминантный ген красной окраски R находится в У-хромосоме, а его рецессивный аллель г - в Х-хромосоме. Следовательно, белые самки имеют генотип X X, а красные

самцы - X У. В этом случае самцы всегда будут красными, поскольку в У-хромосоме находится доминантный ген R . При таком типе наследования сыновья всегда будут нести признаки отца. Вылупившихся из личинок мальков разделили на две группы, В первой группе кормление было обычным, а во второй мальки получали добавку женского полового гормона, В результате оказалось, что все красные рыбки во второй группе, генетически определяемые как самцы, по фенотипу были самками с нормально развитыми яичниками и выраженными вторичными половыми признаками. Они были способны скрещиваться с нормальными красными самцами,

Явление фримартинизма . У крупного рогатого скота иногда рождаются разнополые двойни. В этом случае бычки развиваются нормально, а телочки оказываются бесплодными. Таких животных называют фримартинами. Это обусловлено тем, что на ранних этапах эмбрионального развития между плодами устанавливаются анастомозы кровеносных сосудов. Мужские половые гормоны начинают вырабатываться несколько раньше и, попадая в организм телочки, они нарушают нормальное развитие ее половой системы, Кроме этого у телок-фримартинов был обнаружен химеризм по половым хромосомам. Присутствие У-хромосомы в генотипе таких телок приводит к изменению признаков в сторону мужского пола,

У кур функционирует только левый яичник. Если же он в силу возрастных изменений или болезни редуцируется, зачаток правой гонады превращается в семенник, в котором могут формироваться нормальные спермии. Половое поведение и внешние признаки птицы становятся характерными для особей мужского пола, Генетически женская особь превращается в петуха.

Патологии по половым хромосомам. У человека и животных обнаружены нарушения в группе половых хромосом. Более детально эти нарушения описаны у человека. Основной причиной этих аномалий является нерасхождение половых хромосом в результате мейоза и митоза.

Синдром Клайнфельтера характеризуется недоразвитием гонад. У организмов с такой аномалией генотип ХХУ. Возникновение синдрома Клайнфельтера связано с нерасхождением половых хромосом в мейозе. Животные с синдромом Клайнфельтера имеют признаки мужского пола, но стерильны. Такой дефект описан у человека, собак и котов.

Синдром Тернера характеризуется женским фенотипом. У организмов с этим дефектом вместо двух половых хромосом - одна (ХО). Эта аномалия описана у человека, козы и домашней мыши. У организмов с этим синдромом недоразвиты яичники, нет четко выраженных вторичных признаков женского организма и в большинстве случаев наблюдается бесплодие.

У животных встречаются и другие нарушения в группе половых хромосом, например трисомия (XXX), мозаицизм (ХХ/ХУ/ХХУ) и др. Этих животных нужно своевременно выделять в группы откорма, так как в большинстве случаев у них нарушены воспроизводительные способности.

Наследование признаков, сцепленных с полом. Половые хромосомы, так же, как и аутосомы, несут гены, контролирующие те или иные признаки. Признаки, гены которых локализованы в половых хромосомах, наследуются сцепленно с полом. Сцепленное с полом наследование было открыто Т.Морганом. Для своих опытов он использовал линию дрозофил с белыми глазами (white). Когда белоглазых мух скрещивали с красноглазыми, то полученное потомство не согласовывалось с менделевскими законами наследования. Если красноглазыми были самки, а белоглазыми самцы, то в F1 все мухи имели красные глаза, что соответствует гипотезе о до-

минантности этого признака. При скрещивании между собой мух из F1 три четверти потомства в F2 было красноглазым, а одна четверть - белоглазой. Однако все полученные самки были красноглазыми, а среди самцов половина потомков имели красные глаза и половина - белые. Это не совпадало с положениями законов Менделя.

При скрещивании белоглазых самок с красноглазыми самцами результаты были другими. Не все потомство от такого скрещивания было красноглазым, как следовало бы ожидать на основе закона Менделя, исходя из доминирования признака "красные глаза". Напротив, лишь половина потомства составляли мухи с такими глазами, тогда как вторая половина имела белые глаза; кроме того, все красноглазые мухи были самками, а белоглазые - самцами.

Морган показал, что эти результаты можно объяснить, если предположить, что ген, определяющий цвет глаз у дрозофил, находится в Х-хромосоме. Продемонстрируем схемы этих скрещиваний ниже.

w WW W w w

1. Р ♂ Х Y х ♀ Х Х 2. Р ♂ Х Y х ♀ Х Х

белогл. красног. красног. белогл.

w W W w

Гаметы: Х Y Х Х Y Х

W w W Ww w

F1 ♀ X X ♂ X Y ♀ X X ♂ XY

красног. красног. красног. белогл.

Описанное Морганом сцепленное наследование признаков было обнаружено у многих видов животных и человека. У кур сцепленно с полом наследуется поперечно-полосатая окраска оперения. Это явление используется в птицеводстве для разделения по полу цыплят в суточном возрасте. При скрещивании петушков, имеющих сплошную окраску оперения, с поперечно- полосатыми курами в потомстве петушки будут поперечно-полосатыми, а курочки - со сплошной окраской оперения.

В птицеводстве оказалась полезной рецессивная, сцепленная с полом мутация карликовости. Карликовые куры отличаются от нормальных лучшей оплатой корма продукцией, для них требуется меньшая площадь содержания, они резистентны к отдельным болезням. В бройлерном производстве разработана технология, где в качестве родительского стада используются «мини-куры». Для получения бройлеров используют карликовых курочек и петушков нормального роста. Следует отметить, что у кур гомозиготным является мужской пол. Схема получения бройлеров с использованием карликовых кур показана ниже.

Dw Dw dw

Р ♂ Х Х х ♀ Х О

Ген Признак норм. рост карлики

Гаметы: Dw dw

DW Х Х О

X нормальн. рост

dw Dw dw Dw

Х карлики F Х Х Х О

норм. рост норм. рост

У человека известно около 150признаков, сцепленных с полом. Характер наследования одной из форм дальтонизма - от матери к ее сыновьям - известен уже сотни лет. Другим примером сцепленного с полом признака у человека может служить гемофилия - тяжелое заболевание, для которого характерна неспособность крови свертываться. У нормальных людей при небольшом повреждении тканей кровотечение довольно быстро останавливается вследствие образования сгустков крови. У людей, больных гемофилией, даже небольшое кровотечение остановить невозможно без применения препаратов, усиливающих свертывание крови. Гемофилией страдают в основном особи мужского пола, так как у них имеется одна Х- хромосома, и если в ней окажется дефектный ген, то болезнь сразу проявляется. У женских особей две Х-хромосомы и вероятность нахождения дефектного гена в обоих хромосомах очень мала.

От признаков, сцепленных с полом, следует отличать признаки, ограниченные полом, которые развиваются только у особей одного пола, например молочная продуктивность коров, яйценоскость кур и т.д. Гены подобных признаков могут быть локализованы в любой паре хромосом, самцы и самки в одинаковой степени передают их как дочерям, так и сыновьям.

В практике животноводства ограниченные полом признаки могут подвергаться селекции как по линии самцов, так и через самок. Например, повышение молочности, многоплодия, яйценоскости осуществляется путем

селекции обоих родителей.

Проблема регуляции пола . Регуляция пола, имеет важное практическое значение. Так, в яичном птицеводстве желательно получать больше курочек, а в мясном - петушков. В молочном скотоводстве нужны телочки, в мясном - бычки. У тутового шелкопряда самцы дают на 25-30% больше шелка, чем самки, поэтому их преимущество очевидно.

Пол потомка зависит от гетерогаметного пола родительскойособи, образующего два сорта гамет с X и У-хромосомами. В зависимости от того, какая из гамет будет участвовать в оплодотворении, и будет определяться пол потомства. Так как у млекопитающих и человека гетерогаметным является мужской пол, то для регуляции пола потомства нужно разделить сперматозоиды на содержащие X и У хромосомы. Если в оплодотворении яйцеклетки будет участвовать сперматозоид, содержащий Х-хромосому, то родится самка, если У - самец,

Ученые пытались разделить сперматозоиды по размеру, массе, подвижности в электрическом поле и другими методами. Опыт по разделению спермы кроликов с помощью электрофореза проводила В.Шредер, Осеменяя кроликов анодной или катодной спермой, ей удалось изменить соотношение самцов и самок до 75%. Однако повторное проведение подобных опытов не подтвердило этих результатов.

Исследования Г.Паршунина и других показали, что избыток аминокислот в рационе кур приводит к существенному изменению в соотношении полов. Установлено, что метионин и глицин содействуютформированию курочек, а аспарагин – петушков.

Лавровский считает, что пол потомства зависит от тайн снеговой воды. По данным, полученным в его опытах, в потомстве животных, пьющих снеговую воду, должны преобладать самцы.

Несмотря на большое число проведенных опытов, проблема регулирования пола у млекопитающих путем разделения сперматозоидов до настоящего времени не решена. В то же время, сегодня разработан способ раннего определения пола. Барр, при исследовании клеток мужского и женского организма, обнаружил в клетках женского организма скопление хроматина под оболочкой ядра. Это образование представляет собой инактивированную Х-хромосому и названо "тельцем Барра". Таким образом, тельце Барра обнаруживается только в клетках женского организма. Для ранней диагностики пола, берут небольшое количество амниотическойжидкости на ранних стадиях беременности. В этой жидкости всегда обнаруживаются клетки эпителия. Размножив эти клетки на питательной среде, без труда можно определить - мужской или женский плод развивается в организме матери. В случаях, когда рождение мальчика нежелательно, например при сцепленных с полом наследственных болезнях, можно прервать беременность.

У животных можно получать организмы желательного пола с использованием биотехнологических приемов, таких как трансплантация и клонирование. Ученые в настоящее время разработали способ разделения эмбрионов на части, У домашних животных эмбрион можно разделить на 4, 8 или большее количество частей. При этом одну из частей эмбриона подсаживают в матку самки, а остальные замораживают и сохраняют длительное время в жидком азоте. После рождения потомка можно делать пересадки и остальных частей разделенного эмбриона. В этом случае пол потомков будет такой же, как и у рожденного животного.

Решить проблему регуляции пола у тутового шелкопряда с использованием явления партеногенеза удалось Б.Астаурову. У тутового шелкопряда гомогаметным полом является мужской. Для получения самцов, которые дают на 25-30% больше шелка, яйца самок (грену) подвергали температурному шоку или действию рентгеновских лучей. В результате этого ядро разрушалось. Далее яйца подвергали оплодотворению, в результате чего в яйцеклетку проникали сперматозоиды. Два сперматозоида сливались, восстанавливался диплоидный набор хромосом, и из таких яиц развивались только самцы.

В.Струнников и В.Тадзима разработали методику разделения грены тутового шелкопряда по окраске. Окраска яиц у тутового шелкопряда, наследуется сцепленно с полом, причем светлая окраска носит доминантный характер. При скрещивании самок из линии дающей светлую окраску яиц с самцами темноокрашенной линии мы получим грену, которая будет различаться по цвету. Из светлых яиц будут развиваться самцы, а из темных - самки. Сортировать грену можно с помощью фотоэлемента.