Радиочастотная идентификация rfid. Технология радиочастотной идентификации

Министерство образования и науки Украины

Донецкий национальный университет

Кафедра Радиофизики

РЕФЕРАТ

На тему:

« Системы радиочастотной идентификации »

План

ВВЕДЕНИЕ

1 Классификация систем радиочастотной идентификации (РЧИ) и области применения

2 Состав системы РЧИ, физические принципы работы

3 Преимущества и недостатки радиочастотной идентификации

4 Характеристики систем РЧИ и её элементов. Международные стандарты

ВВЕДЕНИЕ

RFID (англ. Radio Frequency IDentification, радиочастотная идентификация)-- метод автоматической идентификации объектов, в котором посредством радиосигналов считываются или записываются данные, хранящиеся в так называемых транспондерах, или RFID-метках.

Любая RFID-система состоит из считывающего устройства (считыватель, ридер или интеррогатор) и транспондера (он же RFID-метка, иногда также применяется термин RFID-тег).

Большинство RFID-меток состоит из двух частей. Первая -- интегральная схема (ИС) для хранения и обработки информации, модулирования и демодулирования радиочастотного (RF) сигнала и некоторых других функций. Вторая -- антенна для приёма и передачи сигнала.

C введением RFID-меток в повседневную жизнь связан ряд проблем. Например, потребители, не обладающие считывателями, не всегда могут обнаружить метки, прикреплённые к товару на этапе производства и упаковки, и избавиться от них. Хотя при продаже, как правило, такие метки уничтожаются, сам факт их наличия вызывает опасения у правозащитных и религиозных организаций.

Уже известные приложения RFID (бесконтактные смарт-карты в системах контроля управления доступом и в платёжных системах) получают дополнительную популярность с развитием интернет-услуг.

В 1945 году Лев Сергеевич Термен изобрёл для Советского Союза устройство, которое позволило накладывать аудиоинформацию на случайные радиоволны. Звук вызывал колебание диффузора, которое незначительно изменяло форму резонатора, модулируя отражённую радиочастотную волну. И хотя устройство представляло лишь пассивный передатчик (т. н. «жучок»), это изобретение причисляют к первым предшественникам RFID-технологии.

Технология, наиболее близкая к данной -- система распознавания «свой-чужой» IFF (Identification Friend or Foe), изобретённая Исследовательской лабораторией ВМС США в 1937 году. Она активно применялась союзниками во время Второй мировой войны, чтобы определить, своим или чужим является объект в небе. Подобные системы до сих пор используются как в военной, так и в гражданской авиации.

Ещё одной вехой в использовании RFID-технологии является работа Гарри Стокмана (Harry Stockman) под названием «Коммуникации посредством отражённого сигнала» (англ. "Communication by Means of Reflected Power") (доклады IRE, стр. 1196--1204, октябрь 1948). Стокман отмечает, что «…значительные работы по исследованию и разработке были сделаны до того, как были решены основные проблемы в связи посредством отражённого сигнала, а также до того, как были найдены области применения данной технологии».

Первая демонстрация современных RFID-чипов (на эффекте обратного рассеяния), как пассивных, так и активных, была проведена в Исследовательской Лаборатории Лос Аламоса (англ. Los Alamos Scientific Laboratory) в 1973 году. Портативная система работала на частоте 915 МГц и использовала 12 битные метки.

Первый патент, связанный собственно с названием RFID, был выдан Чарльзу Уолтону (Charles Walton) в 1983 году (патент США за № 4,384,288).

1 Классификация систем РЧИ и области применения

Классификация RFID-систем

Существует несколько способов систематизации RFID-меток и систем:

1) По диапазону частот;

2) По типу источника питания;

3) По типу памяти;

4) По исполнению.

Диапазон частот.

Частоты электромагнитного излучения считывателя и обратного сигнала, передаваемого меткой значительно влияют на характеристики работы радиочастотной системы в целом. Как правило, чем выше диапазон рабочих частот системы RFID, тем больше дальности, на которых считывается информация с радиочастотных меток.

Сегодня RFID-системы используют четыре частотных диапазона: 125-150 кГц, 13,56 МГц, 862-950 МГц и 2,4-5 ГГц. Чем объясняется выбор этих диапазонов частот? Это те частоты, для которых в большинстве стран разрешено вести коммерческие разработки. Для примера отметим, что диапазон 2,45 ГГц - это частоты, на которых работают беспроводные устройства стандарта Bluetooth и Wi-Fi.

Для каждого из упомянутых частотных диапазонов действуют свои стандарты со своей степенью проработки. Наиболее общие их характеристики представлены в таблице.

Диапазон частот

Характеристики системы

Примеры применения

Малая дальность считывания, низкая стоимость меток.

Контроль доступа.

Идентификация животных. Системы инвентаризации.

Средняя дальность считывания.

Контроль доступа.

Смарт карты.

Большая дальность и скорость считывания, требуется точное

нацеливания считывателя, высокая стоимость меток.

Наблюдение за перевозкой грузов железной дорогой,

Системы взымания платы за пользование дорогой с водителей автомобилей.

Низкочастотные метки имеют встроенные антенны в виде многоконтурных (несколько сотен) обмоток. Пассивные системы данного диапазона имеют низкие цены, и в связи с физическими характеристиками, используются для подкожных меток при чипировании животных, людей и рыб. При этом, в связи с длиной волны, существуют проблемы со считыванием на большие расстояния, а также проблемы, связанные с появлением коллизий при считывании.

Системы средних частот (13МГц) дешевы, не имеют экологических и лицензионных проблем, хорошо стандартизованы, имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В отличие от Mifare 1К в данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования.

На основе стандарта 14443 В разработано несколько десятков систем, например, система оплаты проезда общественного транспорта Парижского региона.

Для существовавших в данном диапазоне частот стандартов были найдены серьёзные проблемы в безопасности: совершенно отсутствовала криптография у дешёвых чипов карты Mifare Ultralight, введённая в использование в Нидерландах для системы оплаты проезда в городском общественном транспорте OV-chipkaart, позднее была взломана считавшаяся более надёжной карта Mifare Classic.

Как и для диапазона низких частот, в системах, построенных в диапазоне средних частот, существуют проблемы со считыванием на большие расстояния, считывание в условиях высокой влажности, наличия металла, а также проблемы, связанные с появлением коллизий при считывании.

Метки данного диапазона обладают наибольшей дальностью регистрации, во многих стандартах данного диапазона присутствуют антиколлизионные механизмы. Ориентированные изначально для нужд складской и производственной логистики, метки диапазона UHF не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. При этом скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку ещё и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.

Долгое время не существовало чипов, которые бы удовлетворяли этим требованиям полностью. Выпущенный компанией Philips чип Gen 1.19 обладал неизменяемым идентификатором, но не имел никаких встроенных функций по паролированию банков памяти метки, и данные с метки мог считать кто угодно, имеющий соответствующее оборудование. Разработанные впоследствии чипы стандарта Gen 2.0 имели функции паролирования банков памяти (пароль на чтение, на запись), но не имели уникального идентификатора метки, что позволяло при желании создавать идентичные клоны меток.

Наконец, в 2008 году компания NXP выпустила два новых чипа, которые на сегодняшний день отвечают всем выше перечисленным требованиям. Чипы SL3S1202 и SL3FCS1002 выполнены в стандарте EPC Gen 2.0, но отличаются от всех своих предшественников тем, что поле памяти TID (Tag ID), в которое при производстве обычно пишется код типа метки (и он в рамках одного артикула не отличается от метки к метке), разбито на две части. Первые 32 бита отведены под код производителя метки и её марку, а вторые 32 бита -- под уникальный номер самого чипа. Поле TID -- неизменяемое, и, таким образом, каждая метка является уникальной. Новые чипы имеют все преимущества меток стандарта Gen 2.0. Каждый банк памяти может быть защищен от чтения или записи паролем, EPC-номер может быть записан производителем товара в момент маркировки.

В высокочастотных RFID-системах по сравнению со среднечастотными и низкочастотными ниже стоимость меток, при всём этом выше стоимость прочего оборудования.

В настоящее время частотный диапазон УВЧ открыт для свободного использования в Российской Федерации в так называемом «европейском» диапазоне -- 863--868 МГЦ.

Высокочастотные метки имеют одноконтурные обмотки (диполь-антенна).

Метки ближнего поля (англ. UHF Near-Field), не являясь непосредственно радиометками, а используя магнитное поле антенны, позволяют решить проблему считывания в условиях высокой влажности, присутствия воды и металла. С помощью данной технологии ожидается начало массового применения RFID-меток в розничной торговле фармацевтическими товарами (нуждающимися в контроле подлинности, учёте, но при всём этом зачастую содержащими воду и металлические детали в упаковке).

Наименьшими размерами и стоимостью обладают пассивные метки класса Read Only (только чтение) и малой дальности (расстояние до считывателя не более 2 метров).

По типу источника питания RFID-метки делятся на пассивные, активные полупассивные

Активные и пассивные метки.

Радиочастотная метка обычно включает в себя приемник, передатчик, антенну и блок памяти для хранения информации. Приемник, передатчик и память конструктивно выполняются в виде отдельной микросхемы (чипа), поэтому внешне кажется, что радиочастотная метка состоит всего из двух частей: многовитковой антенны и чипа. Иногда в состав конструкции метки включается источник питания (например, литиевая батарейка).

Метки с источниками питания называются активными (Active). Дальность считывания активных меток не зависит от энергии считывателя. Они имеют большие размеры и могут быть оснащены дополнительной электроникой. При этом, такие метки наиболее дороги, а у батарей ограничено время работы.

Активные метки в большинстве случаев более надёжны и обеспечивают самую высокую точность считывания на максимальном расстоянии. Активные метки, обладая собственным источником питания, также могут генерировать выходной сигнал большего уровня, чем пассивные, позволяя применять их в более агрессивных для радиочастотного сигнала средах: воде (включая людей и животных, которые в основном состоят из воды), металлах (корабельные контейнеры, автомобили), для больших расстояний на воздухе. Большинство активных меток позволяет передать сигнал на расстояния в сотни метров при жизни батареи питания до 10 лет. Некоторые RFID-метки имеют встроенные сенсоры, например, для мониторинга температуры скоропортящихся товаров. Другие типы сенсоров в совокупности с активными метками могут применяться для измерения влажности, регистрации толчков/вибрации, света, радиации, температуры и газов в атмосфере (например, этилена).

Пассивные метки (Passive) не имеют собственного источника питания, а необходимую для работы энергию получают из поступающего от считывателя электромагнитного сигнала. Дальность чтения пассивных меток зависит от энергии считывателя.

Электрический ток, индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования кремниевого CMOS-чипа, размещённого в метке, и передачи ответного сигнала.

Коммерческие реализации низкочастотных RFID-меток могут быть встроены в стикер (наклейку) или имплантированы под кожу (см. VeriChip).

В 2006 Hitachi изготовила пассивное устройство, названное µ-Chip (мю-чип), размерами 0.15х0.15 мм (не включая антенну) и тоньше бумажного листа (7.5 мкм). Такого уровня интеграции позволяет достичь технология «кремний-на-изоляторе» (SOI). µ-Chip может передавать 128-битный уникальный идентификационный номер, записанный в микросхему на этапе производства. Данный номер не может быть изменён в дальнейшем, что гарантирует высокий уровень достоверности и означает, что этот номер будет жёстко привязан (ассоциирован) с тем объектом, к которому присоединяется или в который встраивается этот чип. µ-Chip от Hitachi имеет типичный радиус считывания 30 см (1 фут). В феврале 2007 года Hitachi представила RFID-устройство, обладающее размерами 0,05 х 0,05 мм, и толщиной, достаточной для встраивания в лист бумаги.

Компактность RFID-меток зависит от размеров внешних антенн, которые по размерам превосходят чип во много раз и, как правило, определяют габариты меток. Наименьшая стоимость RFID-меток, которые стали стандартом для таких компаний, как Wal-Mart, Target, Tesco в Великобритании, Metro AG в Германии и Министерства обороны США, составляет примерно 5 центов за метку фирмы SmartCode (при покупке от 100 млн штук). К тому же, из-за разброса размеров антенн, и метки имеют различные размеры -- от почтовой марки до открытки. На практике максимальная дистанция считывания пассивных меток варьируется от 10 см (4 дюймов) (согласно стандарту ISO 14443) до нескольких метров (стандарты EPC и ISO 18000-6), в зависимости от выбранной частоты и размеров антенны. В некоторых случаях антенна может быть изготовлена печатным способом.

Производственные процессы от Alien Technology под названием Fluidic Self Assembly, от SmartCode -- Flexible Area Synchronized Transfer (FAST) и от Symbol Technologies -- PICA направлены на дальнейшее уменьшение стоимости меток за счёт применения массового параллельного производства. Alien Technology сегодня использует процессы FSA и HiSam для изготовления меток, в то время как PICA -- процесс от Symbol Technologies -- находится ещё на стадии разработки. Процесс FSA позволяет производить свыше 2 миллионов ИС пластин в час, а PICA процесс -- более 70 миллиардов меток в год (если его доработают). В этих технических процессах ИС присоединяются к пластинам меток, которые в свою очередь присоединяются к антеннам, образуя законченный чип. Присоединение ИС к пластинам и в дальнейшем пластин к антеннам -- самые пространственно чувствительные элементы процесса производства. Это значит, что при уменьшении размеров ИС монтаж (англ. Pick and place) станет самой дорогой операцией. Альтернативные методы производства, такие как FSA и HiSam, могут значительно уменьшить себестоимость меток. Стандартизация производства (англ. Industry benchmarks) в конечном счёте приведёт к дальнейшему падению цен на метки при их широкомасштабном внедрении.

Некремниевые метки могут изготавливаться из полимерных полупроводников. В настоящее время их разработкой занимаются несколько компаний по всему миру. Метки, изготавливаемые в лабораторных условиях и работающие на частотах 13.56 МГц, были продемонстрированы в 2005 году компаниями PolyIC (Германия) и Philips (Голландия). В промышленных условиях полимерные метки будут изготавливаться методом прокатной печати (технология напоминает печать журналов и газет), в результате чего они будут дешевле, чем метки на основе ИС. В конечном счёте это может закончиться тем, что для большинства сфер применения метки станут печатать так же просто, как и штрих-коды, и они станут такими же дешёвыми.

Пассивные метки УВЧ и СВЧ диапазонов (860--960 МГц и 2,4-2,5 ГГц) передают сигнал методом модуляции отражённого сигнала несущей частоты (англ. Backscattering Modulation -- модуляция обратного рассеяния). Антенна считывателя излучает сигнал несущей частоты и принимает отражённый от метки модулированный сигнал. Пассивные метки ВЧ диапазона передают сигнал методом модуляции нагрузки сигнала несущей частоты (англ. Load Modulation -- нагрузочная модуляция). Каждая метка имеет идентификационный номер. Пассивные метки могут содержать перезаписываемую энергонезависимую память EEPROM-типа. Дальность действия меток составляет 1--200 см (ВЧ-метки) и 1-10 метров (УВЧ и СВЧ-метки).

Преимуществом активных меток по сравнению с пассивными является значительно большая (не менее, чем в 2-3 раза) дальность считывания информации и высокая допустимая скорость движения активной метки относительно считывателя.

Преимуществом пассивных меток является практически неограниченный срок их службы (не требуют замены батареек). Недостаток пассивных меток в необходимости использования более мощных устройств считывания информации, обладающих соответствующими источниками питания.

Полупассивные RFID-метки, также называемые полуактивными, очень похожи на пассивные метки, но оснащены батареей, которая обеспечивает чип энергопитанием. При этом дальность действия этих меток зависит только от чувствительности приёмника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

Способы записи информации на метки.

Информация в устройство памяти радиочастотной метки может быть занесена различными способами. Способ записи информации зависит от конструктивных особенностей метки. В зависимости от этого различают следующие типы меток:

Read Only - метки, которые работают только на считывание информации. Необходимые для хранения данные заносятся в память метки изготовителем и не могут быть изменены в процессе эксплуатации.

WORM - метки ("Write Once Read Many") для однократной записи и многократного считывания информации. Они поступают от изготовителя без каких-либо данных пользователя в устройстве памяти. Необходимая информация записывается самим пользователем, но только один раз. При необходимости изменить данные потребуется новая метка.

R/W - метки ("Read/Write") многократной записи и мнократного считывания информации.

2 Состав системы РЧИ, физические принципы работы

В состав системы входят: антенна для приема и передачи сигнала, считывающее устройство (считыватель, ридер) и RFID-метка для хранения информации.

Низкочастотная идентификация

Данный метод РЧИ работает на несущих частотах от сотен килогерц, до единиц мегагерц. У нас в стране на это выделено 2 частотные зоны: 125 кГц (LF), и 13,56 МГц (HF).

Принцип работы меток предельно прост и описывается как работа обычного трансформатора. Все мы знаем что трансформатор - это элемент позволяющий изменять величину протекающего по нему тока и поданного на его первичную обмотку напряжения в соотношении количества витков его первичной и вторичной обмотки U1/U2=N1/N2. А вот импеданс обмоток меняется уже в совершенно другой пропорции: Z1/Z2=(N1/N2)^2. соответственно небольшое изменение импеданса в нагрузке будет явно выражено для опрашивающего устройства. Соответственно получаем следующую систему: приёмо-передающий модуль, в качестве антенны у которого некая обмотка (первичная). Метка - это чип, со вторичной обмоткой соответственно. При поднесении считывателя к метке, через обмотку метки начинает течь ток и от него запитывается чип, который изменяя импеданс в нагрузке обмотки передаёт информацию считывателю.

Наиболее функциональна, из представленных, технология РЧИ на частоте 13,56 МГц. Она обладает высокой скоростью передачи данных и большими объёмами хранимой информации на метке (единицы килобайт).

Минус этой системы - малое расстояние считывания информации с метки - обычно не превышающее 30 см, а средний показатель не превышает 10 см. Один из самых ярких примеров применения этой технологии - билеты Московского Метрополитена.

Высокочастотная идентификация

В Российской Федерации есть ещё один стандарт РЧИ - 868 МГц (UHF). Принцип действия этой технологии уже совершенно иной, нежели у низкочастотных методов. Тут мы имеем дело с нелинейной радиолокацией. Этот метод был обкатан десятилетиями применения в технических разведках, таких как Агентство Национальной Безопасности США, и в нашем славном Комитете Государственной Безопасности СССР. Для технологии РЧИ он был просто удешевлён и миниатюризирован, но остался по сути тем же что и для специальных применений.

Высокочастотный метод работает по следующему принципу. Считыватель радиометок представляет собой активное приёмопередающее устройство с непрерывным излучением несущей частоты. Приёмная часть соответственно так же включена постоянно. Колебательная энергия излучается в эфир через антенную систему.

Радиометка представляет собой чип снабженный антенной системой - обычно полуволновой, или четверть волновой диполь.

Радиометка принимает посредством собственной антенной системы высокочастотную энергию переданную считывателем. В чипе находится мостовой выпрямитель (банальный линейный блок питания с небанальными микроскопическими размерами) и с его помощью часть принятого УВЧ сигнала служит питанием микросхемы. После того как микросхема запитывается, начинается активный опрос метки считывателем. Ответная информация высылается меткой посредством амплитудной модуляции отражённого сигнала, которая получается с помощью изменения эффективной поверхности рассеяния (ЭПР) метки с помощью нелинейного элемента - варикапа (диод с переменной ёмкостью).

Технология РЧИ в УВЧ диапазоне позволяет: производить считывание пассивных меток на расстоянии до 10 метров. Среднее же расстояние считывание меток в промышленных условиях составляет от полуметра до 3-х метров. Единовременно в поле считывателя может находиться до 200…300 меток, и ВСЕ(!!!) они будут идентифицированы. Огромная скорость опроса меток - до 100…200 опросов в секунду в зависимости от применяемого оборудования. Объем памяти пассивной УВЧ радиометки в наши дни достигает единиц килобайт. Кроме того, в чип размером 0,5х0,5х0,2 мм встроен собственный криптопроцессор, позволяющий защитить эфирный канал передачи данных «метка-считыватель».

Ограничения же данной технологии лежат исключительно в свойствах маркируемых ими материалов. Естественно, что идеальными для маркировки являются диэлектрики. Они позволяют не задумываться о размещении метки, и её типе. Совсем другую задачу ставят металлы и водосодержащие материалы. Но и для них существуют специальные УВЧ метки для сложных материалов.

Во всём мире эта технология внедряется повсеместно в производстве, торговле, логистике… К сожалению, в России продвижение технологии УВЧ РЧИ идет в прямом смысле со скрипом. Связано это с обилием дешёвой рабочей силы, и отсутствием в заинтересованности учета товара, груза и прочего (иначе говоря в банальной непорядочности методов и средств работы отечественного бизнеса).

Кроме того, ходит тьма мифов о самой технологии РЧИ, которые так же мешают её внедрению в повседневную жизнь.

3 Преимущества и недостатки радиочастотной идентификации

Преимущества радиочастотной идентификации

1. Возможность перезаписи. Данные RFID-метки могут перезаписываться и дополняться много раз, тогда как данные на штрих-коде не могут быть изменены -- они записываются сразу при печати.

2. Отсутствие необходимости в прямой видимости. RFID-считывателю не требуется прямая видимость метки, чтобы считать её данные. Взаимная ориентация метки и считывателя часто не играет роли. Метки могут читаться через упаковку, что делает возможным их скрытое размещение. Для чтения данных метке достаточно хотя бы ненадолго попасть в зону регистрации, перемещаясь в том числе и на довольно большой скорости. Напротив, устройству считывания штрих-кода всегда необходима прямая видимость штрих-кода для его чтения.

3. Большее расстояние чтения. RFID-метка может считываться на значительно большем расстоянии, чем штрих-код. В зависимости от модели метки и считывателя, радиус считывания может составлять до нескольких сотен метров. В то же время подобные расстояния требуются не всегда.

Больший объём хранения данных. RFID-метка может хранить значительно больше информации, чем штрих-код. На микросхеме площадью в 1 смІ может храниться до 10000 байт информации, в то время как штриховые коды могут вместить 100 байт (знаков) информации, для воспроизведения которых понадобится площадь размером с лист формата А4.

4. Поддержка чтения нескольких меток. Промышленные считыватели могут одновременно считывать множество (более тысячи) RFID-меток в секунду, используя так называемую антиколлизионную функцию. Устройство считывания штрих-кода может единовременно сканировать только один штрих-код.

5. Считывание данных метки при любом её расположении. В целях обеспечения автоматического считывания штрихового кода, комитеты по стандартам (в том числе EAN International) разработали правила размещения штрих-меток на товарной и транспортной упаковке. К радиочастотным меткам эти требования не относятся. Единственное условие -- нахождение метки в зоне действия считывателя.

6. Устойчивость к воздействию окружающей среды. Существуют RFID-метки, обладающие повышенной прочностью и сопротивляемостью жёстким условиям рабочей среды, а штрих-код легко повреждается (например, влагой или загрязнением). В тех сферах применения, где один и тот же объект может использоваться неограниченное количество раз (например, при идентификации контейнеров или возвратной тары), радиочастотная метка оказывается более приемлемым средством идентификации, так её не требуется размещать на внешней стороне упаковки. Пассивные RFID-метки имеют практически неограниченный срок эксплуатации.

7. Интеллектуальное поведение. RFID-метка может использоваться для выполнения других задач, помимо функции носителя данных. Штрих-код же не программируем и является лишь средством хранения данных.

8. Высокая степень безопасности. Уникальное неизменяемое число-идентификатор, присваиваемое метке при производстве, гарантирует высокую степень защиты меток от подделки. Также данные на метке могут быть зашифрованы. Радиочастотная метка обладает возможностью закрыть паролем операции записи и считывания данных, а также зашифровать их передачу. В одной метке можно одновременно хранить открытые и закрытые данные.

Недостатки радиочастотной идентификации

1. Стоимость системы выше стоимости системы учёта, основанной на штрих-кодах.

2. Сложность самостоятельного изготовления. Штрих-код можно напечатать на любом принтере.

3. Подверженность помехам в виде электромагнитных полей.

4. Недоверие пользователей, возможности использования её для сбора информации о людях.

5. Установленная техническая база для считывания штрих-кодов существенно превосходит по объёму решения на основе RFID.

6. Недостаточная открытость выработанных стандартов.

4 Характеристики систем РЧИ и её элементов

Характеристики технологии

Штрих-код

Необходимость в прямой видимости метки

Чтение даже скрытых меток

Чтение без прямой видимости невозможно

Объём памяти

От 10 до 10 000 байт

До 100 байт

Возможность перезаписи данных и многократного использования метки

Дальность регистрации

Одновременная идентификация нескольких объектов

До 200 меток в секунду

Невозможна

Устойчивость к воздействиям окружающей среды: механическому, температурному химическому, влаге

Повышенная прочность и сопротивляемость

Зависит от материала, на который наносится

Срок жизни метки

Более 10 лет

Зависит от способа печати и материала, из которого состоит отмечаемый объект

Безопасность и защита от подделки

Подделка практически невозможна

Подделать легко

Работа при повреждении метки

Невозможна

Затруднена

Идентификация движущихся объектов

Затруднена

Подверженность помехам в виде электромагнитных полей

Идентификация металлических объектов

Возможна

Использование как стационарных, так и ручных терминалов для идентификации

Возможность введения в тело человека или животного

Возможна

Затруднена

Габаритные характеристики

Средние и малые

Стоимость

Средняя и высокая

Международные стандарты

Существует огромное множество компаний, выпускающих собственные устройства радиочастотной идентификации, при всём этом считыватели производства какой-либо фирмы могут считывать информацию только своих фирменных меток и не понимают метки других фирм. В отсутствие стандартов оборудование различается по рабочим частотам, по форматам хранимых данных, по алгоритмам работы и способам закрытия данных.

В настоящее время оборудование радиочастотной идентификации, выпущенное двумя любыми компаниями, несовместимо друг с другом.

Выпускаемые сегодня сканеры штрихового кода "понимают" практически все существующие символики. При этом по взглядам EAN International существующее положение в области штрихового кодирования не является удовлетворительным: число основных, наиболее часто используемых кодов достигло четырех (EAN-13, EAN-8, UPC-A, UPC-E), в то время как в идеальном для пользователей случае это мог бы быть один единственный код EAN-13.

Областью деятельности EAN International является товарная нумерация, в которой RFID - это лишь один из способ обозначения номера товара наряду со штриховым кодированием, оптической, биометрической, магнитной идентификацией и т.д. Поэтому EAN International видит цель стандартизации RFID в том, чтобы новая система, во-первых, была совместима с существующей системой EAN/UCC и затраты пользователей при внедрении EAN/UCC не пропали даром.

Во-вторых, стандарты радиочастотной идентификации в идеальном случае должны обеспечивать единый формат представления данных. Заслуживает внимания предложение Gencod-EAN FRANCE об использовании в качестве единого формата данных в радиочастотных метках справочников международного стандарта ЭДИФАКТ ООН/ EANCOM.

В-третьих, при стандартизации технических требований к устройствам RFID была бы крайне нежелательной ситуация, при которой в качестве международного стандарта были бы закреплены чьи-то фирменные технологии, защищенные патентами.

Международным органом по стандартизации в области RFID является Рабочая группа N4 (WG 4), образованная в августе 1997 года в составе подкомитета по автоматической идентификации (SC 31) объединенного технического комитета N1 (JTC1) Международной организации по стандартизации (ISO) -

ISO/JTC1/SC31/WG4. Председателем ISO/JTC1/SC31/WG4 утвержден технический директор EAN International Анри Бартель, что свидетельствует о признании ведущей роли международной ассоциации EAN International и стандартов EAN/UCC в области разработки стандартов радиочастотной идентификации.

ISO/JTC1/SC31/WG4 приступила к разработке стандартов радиочастотных систем, гарантирующие их совместимость. Первый шаг - стандартизация интерфейса ("air interface") между считывателем и радиочастотной меткой. На этом этапе должны быть стандаризированы рабочие частоты, физические характеристики среды и сигналов, которыми обмениваются считыватели и метки (транспондеры). Разработкой стандартов "air interface" занимается специальная группа TF3 в составе ISO/JTC1/SC31/WG4. В работе WG4/ТF3 наряду с Австрией, Германией, Данией, США, Францией и Японией принимают участие представители ЮНИСКАН/EAN РОССИЯ/AIM РОССИЯ. Анализ характеристик выпускаемого оборудования RFID и опрос международных экспертов выявил основные диапазоны рабочих частот, вокруг которых начались работы по стандартизации для воздушного интерфейса. К ним относятся:

менее 135 кГц

Другим первоочередным направлением работы в области стандартизации RFID является определение структуры, состава и характеристик элементов данных, записываемых на радиочастотную метку. ISO/JTC1/SC31/WG4 работает в этом направлении совместно с рабочей группой WG2 "Элементы данных", возглавляемой генеральным секретарем ICODIF/EAN БЕЛЬГИЯ-ЛЮКСЕМБУРГ Этьеном Боне. Первое совместное заседание специалистов WG4 и WG2 состоялось 8-9.07.98 в г.Осло (Норвегия), в нем приняли участие и представители ЮНИСКАН/EAN РОССИЯ/AIM РОССИЯ.

1. http://ru.wikipedia.org/wiki/RFID; Википедия.

2. http://www.indel.by/ru/book/print/117 Indel.by - официальный сайт ЗАО [!!! В соответствие с ФЗ-99 от 05.05.2014 данная форма заменена на непубличное акционерное общество] «ИнделКо».

3. http://rfidforyou.com/index/o_tekhnologi_rfid/0-4; RFID4YOU О технологии Радиочастотной Идентификации по-русски и доступно - 2010.

Ещё одной вехой в использовании RFID-технологии является послевоенная работа Гарри Стокмана (Harry Stockman ) под названием «Коммуникации посредством отражённого сигнала» (англ. "Communication by Means of Reflected Power" ) (доклады IRE , стр. 1196-1204, октябрь 1948) . Стокман отмечает, что «…значительные работы по исследованию и разработке были сделаны до того, как были решены основные проблемы в связи посредством отражённого сигнала, а также до того, как были найдены области применения данной технологии» .

Первая демонстрация современных RFID-чипов (на эффекте обратного рассеяния), как пассивных, так и активных, была проведена в Исследовательской лаборатории Лос-Аламоса (англ. Los Alamos Scientific Laboratory ) в 1973 году . Портативная система работала на частоте 915 МГц и использовала 12-битные метки.

Классификация RFID-меток [ | ]

Существует несколько способов систематизации RFID-меток и систем :

По источнику питания [ | ]

По типу источника питания RFID-метки делятся на :

  • Пассивные
  • Активные
  • Полупассивные

Пассивные [ | ]

RFID-антенна

Пассивные RFID-метки не имеют встроенного источника энергии . Электрический ток , индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования кремниевого КМОП -чипа, размещённого в метке, и передачи ответного сигнала.

Коммерческие реализации низкочастотных RFID-меток могут быть встроены в стикер (наклейку) или имплантированы под кожу (см. VeriChip).

Компактность RFID-меток зависит от размеров внешних антенн, которые по размерам превосходят чип во много раз и, как правило, определяют габариты меток. Наименьшая стоимость RFID-меток, которые стали стандартом для таких компаний, как Wal-Mart , Target , Tesco в Великобритании, Metro AG в Германии и Министерства обороны США , составляет примерно 5 центов за метку фирмы (при покупке от 100 млн штук) . К тому же, из-за разброса размеров антенн, и метки имеют различные размеры - от почтовой марки до открытки. На практике максимальная дистанция считывания пассивных меток варьируется от 10 см (4 дюймов) (согласно стандарту ISO 14443) до нескольких метров (стандарты EPC и ISO 18000-6), в зависимости от выбранной частоты и размеров антенны. В некоторых случаях антенна может быть изготовлена печатным способом.

Производственные процессы от под названием Fluidic Self Assembly , от - Flexible Area Synchronized Transfer (FAST) и от Symbol Technologies - PICA направлены на дальнейшее уменьшение стоимости меток за счёт применения массового параллельного производства. Alien Technology в настоящее время использует процессы FSA и HiSam для изготовления меток, в то время как PICA - процесс от Symbol Technologies - находится ещё на стадии разработки. Процесс FSA позволяет производить свыше 2 миллионов ИС пластин в час, а PICA процесс - более 70 миллиардов меток в год (если его доработают). В этих технических процессах ИС присоединяются к пластинам меток, которые в свою очередь присоединяются к антеннам, образуя законченный чип. Присоединение ИС к пластинам и в дальнейшем пластин к антеннам - самые пространственно чувствительные элементы процесса производства. Это значит, что при уменьшении размеров ИС монтаж (англ. Pick and place ) станет самой дорогой операцией. Альтернативные методы производства, такие как FSA и HiSam, могут значительно уменьшить себестоимость меток. Стандартизация производства (англ. Industry benchmarks ) в конечном счёте приведёт к дальнейшему падению цен на метки при их широкомасштабном внедрении.

Некремниевые метки могут изготавливаться из полимерных полупроводников . В настоящее время их разработкой занимаются несколько компаний по всему миру. Метки, изготавливаемые в лабораторных условиях и работающие на частотах 13,56 МГц, были продемонстрированы в 2005 году компаниями (Германия) и Philips (Голландия). В промышленных условиях полимерные метки будут изготавливаться методом прокатной печати (технология напоминает печать журналов и газет), в результате чего они будут дешевле, чем метки на основе ИС. В конечном счёте это может закончиться тем, что для большинства сфер применения метки станут печатать так же просто, как и штрих-коды , и они станут такими же дешёвыми.

Активные метки обычно имеют гораздо больший радиус считывания (до 300 м) и объём памяти, чем пассивные, и способны хранить больший объём информации для отправки приёмопередатчиком.

Полупассивные [ | ]

Полупассивные RFID-метки, также называемые полуактивными, очень похожи на пассивные метки, но оснащены батареей, которая обеспечивает чип энергопитанием . При этом дальность действия этих меток зависит только от чувствительности приёмника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

По типу используемой памяти [ | ]

По типу используемой памяти RFID-метки делятся на :

По рабочей частоте [ | ]

Метки диапазона LF (125-134 кГц) [ | ]

RFID-метка 125 кГц

Пассивные системы данного диапазона имеют низкие цены, и в связи с физическими характеристиками, используются для подкожных меток при чипировании животных и людей. Однако, в связи с длиной волны, существуют проблемы со считыванием на большие расстояния, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона HF (13,56 МГц) [ | ]

Системы 13МГц дешевы, не имеют экологических и лицензионных проблем, хорошо стандартизованы, имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В отличие от в данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования.

На основе стандарта 14443 В разработано несколько десятков систем, например, система оплаты проезда общественного транспорта Парижского региона.

Для существовавших в данном диапазоне частот стандартов были найдены серьёзные проблемы в безопасности: совершенно отсутствовала криптография у дешёвых чипов карты Mifare Ultralight , введённая в использование в Нидерландах для системы оплаты проезда в городском общественном транспорте , позднее была взломана считавшаяся более надёжной карта Mifare Classic .

Как и для диапазона LF, в системах, построенных в HF-диапазоне, существуют проблемы со считыванием на большие расстояния, считывание в условиях высокой влажности, наличия металла, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона UHF (860-960 МГц) [ | ]

Метки данного диапазона обладают наибольшей дальностью регистрации, во многих стандартах данного диапазона присутствуют антиколлизионные механизмы . Ориентированные изначально для нужд складской и производственной логистики, метки диапазона UHF не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code ) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку ещё и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.

Долгое время не существовало чипов, которые бы удовлетворяли этим требованиям полностью. Выпущенный компанией Philips чип Gen 1.19 обладал неизменяемым идентификатором, но не имел никаких встроенных функций по паролированию банков памяти метки, и данные с метки мог считать кто угодно, имеющий соответствующее оборудование. Разработанные впоследствии чипы стандарта Gen 2.0 имели функции паролирования банков памяти (пароль на чтение, на запись), но не имели уникального идентификатора метки, что позволяло при желании создавать идентичные клоны меток.

Наконец, в 2008 году компания NXP выпустила два новых чипа , которые на сегодняшний день отвечают всем выше перечисленным требованиям. Чипы SL3S1202 и SL3FCS1002 выполнены в стандарте EPC Gen 2.0 , но отличаются от всех своих предшественников тем, что поле памяти TID (Tag ID ), в которое при производстве обычно пишется код типа метки (и он в рамках одного артикула не отличается от метки к метке), разбито на две части. Первые 32 бита отведены под код производителя метки и её марку, а вторые 32 бита - под уникальный номер самого чипа. Поле TID - неизменяемое, и, таким образом, каждая метка является уникальной. Новые чипы имеют все преимущества меток стандарта Gen 2.0. Каждый банк памяти может быть защищен от чтения или записи паролем, EPC-номер может быть записан производителем товара в момент маркировки .

В UHF RFID-системах по сравнению с LF и HF ниже стоимость меток, при этом выше стоимость прочего оборудования.

В настоящее время частотный диапазон УВЧ открыт для свободного использования в Российской Федерации в так называемом «европейском» диапазоне - 863-868 МГЦ.

Радиочастотные UHF-метки ближнего поля [ | ]

По сравнению с переносными, считыватели такого типа обычно обладают большей зоной чтения и мощностью и способны одновременно обрабатывать данные с нескольких десятков меток. Стационарные считыватели подключаются к ПЛК , интегрируются в DCS или подключаются к ПК. Задача таких считывателей - поэтапно фиксировать перемещение маркированных объектов в реальном времени, либо идентифицировать положение меченых предметов в пространстве .

Мобильные [ | ]

Обладают сравнительно меньшей дальностью действия и зачастую не имеют постоянной связи с программой контроля и учёта. Мобильные считыватели имеют внутреннюю память, в которую записываются данные с прочитанных меток (потом эту информацию можно загрузить в компьютер) и, как и стационарные считыватели, способны записывать данные в метку (например, информацию о произведённом контроле) .

В зависимости от частотного диапазона метки, дистанция устойчивого считывания и записи данных в них будет различна.

RFID и альтернативные методы автоматической идентификации [ | ]

По функциональности RFID-метки, как метод сбора информации, очень близки к штрих-кодам, наиболее широко применяемым сегодня для маркировки товаров. Несмотря на удешевление стоимости RFID-метки, в обозримом будущем полное вытеснение штрих-кодов радиочастотной идентификацией вряд ли состоится по экономическим причинам (система не будет окупаться).

В то же время и сама технология штрих-кодов продолжает развиваться. Новые разработки (например, двумерный штрих-код Data Matrix) решают ряд проблем, ранее решавшихся лишь применением RFID. Технологии могут дополнять друг друга. Компоненты с неизменными потребительскими свойствами могут маркироваться постоянной маркировкой на основе оптических технологий распознавания, несущей информацию об их дате выпуска и потребительских свойствах, а на RFID-метку можно записать информацию, подверженную изменению, такую, как данные о конкретном получателе заказа на возвращаемой многоразовой упаковке.

Преимущества радиочастотной идентификации [ | ]

Недостатки радиочастотной идентификации [ | ]

  • Работоспособность метки утрачивается при частичном механическом повреждении.
  • Стоимость системы выше стоимости системы учёта, основанной на штрих-кодах.
  • Сложность самостоятельного изготовления . Штрих-код можно напечатать на любом принтере.
  • Подверженность помехам в виде электромагнитных полей.
  • Недоверие пользователей, возможности использования её для сбора информации о людях.
  • Установленная техническая база для считывания штрих-кодов существенно превосходит по объёму решения на основе RFID.
  • Недостаточная открытость выработанных стандартов .

Характеристики технологии [ | ]

Характеристики технологии RFID Штрих-код QR-код
Необходимость в прямой видимости метки Чтение даже скрытых меток Чтение без прямой видимости невозможно
Объём памяти От 10 до 512 000 байт До 100 байт До 3 072 байт
Возможность перезаписи данных и многократного использования метки Есть Нет Нет
Дальность регистрации До 100 м До 4 м До 1 м
Одновременная идентификация нескольких объектов До 200 меток в секунду Невозможна Зависит от считывателя
Устойчивость к воздействиям окружающей среды: механическому, температурному, химическому, влаге Повышенная прочность и сопротивляемость Зависит от материала, на который наносится
Срок жизни метки Более 10 лет Зависит от способа печати и материала, из которого состоит отмечаемый объект
Безопасность и защита от подделки Подделать возможно Подделать легко Подделать легко
Работа при повреждении метки Невозможна Затруднена Затруднена
Идентификация движущихся объектов Да Затруднена Затруднена
Подверженность помехам в виде электромагнитных полей Есть Нет Нет
Идентификация металлических объектов Возможна Возможна Возможна
Использование как стационарных, так и ручных терминалов для идентификации Да Да Да
Возможность введения в тело человека или животного Возможна Затруднена Затруднена
Габаритные характеристики Средние и малые Малые Малые
Стоимость Средняя и высокая Низкая Низкая

Критика [ | ]

RFID и права человека [ | ]

, сенатор штата Калифорния , на слушаниях 2003 года

Использование RFID-меток вызвало серьёзную полемику, критику и даже бойкотирование товаров. Четыре основных проблемы этой технологии, связанные с неприкосновенностью частной жизни , следующие:

Основное беспокойство вызывается тем, что иногда RFID-метки остаются в рабочем состоянии даже после того, как товар куплен и вынесен из магазина, и поэтому могут быть использованы для слежки и других неблаговидных целей, не связанных с инвентаризационной функцией меток. Считывание с небольших расстояний также может представлять опасность, если, например, считанная информация накапливается в базе данных, или грабитель использует карманный считыватель для оценки богатства проходящей мимо потенциальной жертвы. Серийные номера на RFID-метках могут выдавать дополнительную информацию даже после избавления от товара. Например, метки в перепроданных или подаренных вещах могут быть использованы для установления круга общения человека.

Эксперты [кто? ] по безопасности настроены против использования технологии RFID для аутентификации людей, основываясь на риске кражи идентификатора. Например, атака «человек посередине» делает возможным атакующему в реальном времени украсть идентификатор личности. На данный момент, из-за ограничений в ресурсах RFID меток, теоретически не представляется возможным защитить их от таких моделей атак, поскольку это потребует сложных протоколов передачи данных [ ] .

Стандарты [ | ]

Негативное отношение к технологии RFID усугубляется пробелами, существующими во всех нынешних стандартах. Хотя процесс совершенствования стандартов не закончился, во многих прослеживается тенденция скрывать от публики часть команд меток. Например, команда Аутентификация в фирменной технологии Philips MIFARE , использующей стандарт ISO/IEC 14443, после которой метка должна шифровать свои ответы и воспринимать только шифрованные команды, может быть нейтрализована некоторой командой, которую фирма-разработчик держит в секрете. После выполнения этой команды возможно успешное использование ReadBlock , фиктивно зашифрованной на константе (которая используется для подсчёта CRC в стандарте ISO/IEC 14443). Таким образом можно прочитать MIFARE-карточку. Более того, анализируя потребляемый карточкой ток, инженер-схемотехник может прочитать все пароли доступа ко всем блокам MIFARE-карточки (в силу относительной прожорливости EEPROM ячеек и схемотехнической реализации чтения памяти в чипе). Так, в наиболее распространённых RFID-карточках может изначально содержаться закладка.

Часть подозрений в отношении RFID может быть снята выработкой полных и открытых стандартов, отсутствие каковых вызывает подозрения и недоверие к технологии.

Применение меток диапазона СВЧ в Российской Федерации в настоящее время регулируется СанПиН 2.1.8/2.2.4.1383-03, утверждёнными Постановлением Главного государственного санитарного врача РФ № 135 от 09.06.2003 г. Несмотря на распространяемое заблуждение о несоответствии данного оборудования стандартам , при реальных расчётах учитывается напряженность электромагнитного поля или плотность потока мощности, излучаемая оборудованием, а не выходная мощность прибора, как это было установлено в СанПиН 2.2.4/2.1.8.055-96, утративших силу с 30.06.2003 г.; фактические значения для расчёта предельно допустимого уровня в реально существующем в России UHF-оборудовании примерно в 10-20 раз ниже, чем установленные санитарно-гигиеническими нормами.

Развитие RFID-рынка [ | ]

По мнению экспертов, рынок RFID-систем в России ещё только зарождается, так что предложение в этом сегменте существенно превышает спрос. Из-за этого отставания отечественный рынок развивается опережающими темпами - совокупный среднегодовой темп роста в период с по 2010 год превышает 19 %. Тогда как среднегодовой темп роста мирового RFID рынка (CAGR) превышает 15 %.

По оценкам участников рынка, объём мирового рынка RFID продукции в 2008 году составил $5,29 млрд. Ожидается, что к 2018 году он вырастет более чем в 5 раз. Объём российского рынка RFID - чуть более одного процента от мирового рынка, и составляет $69 млн.

Также госкорпорация создает в Санкт-Петербурге серийное производство приборов и систем на основе акустоэлектронных и хемосорбционных устройств, в том числе датчиков давления и деформации , устройств радиочастотной идентификации (RFID), высокочастотных полосовых фильтров и газосигнализаторов . Инициатором проекта является ОАО «Авангард». Общий бюджет проекта оценивается в 1,24 млрд рублей, вклад Роснано составит 550 млн рублей. Начало выпуска готовой продукции намечено на 2012 год. Выход проекта на плановые показатели ожидается в 2015 году .

Все системы радиочастотной идентификации в России внедряются впервые. Компании, устанавливающей RFID-систему, не нужно тянуть за собой устаревшее оборудование и частоты, подстраивать под задачу уже имеющееся на объекте оборудование, есть возможность внедрять самые передовые разработки.

В силу своей дороговизны RFID в России используется преимущественно для осуществления логистических операций , в метрополитене крупных городов (Москва , Санкт-Петербург , Казань , Екатеринбург), наземном транспорте (например в Республике Башкортостан) и в библиотечных системах. Однако, по мнению генерального директора «Роснано » Анатолия Чубайса , в ближайшие годы возможен переход на наночипы для банковских карт с RFID, с помощью которых технология станет массово использоваться в розничной торговле.

Применение [ | ]

Станция выдачи книг в библиотеке СПБГУ

На текущий момент RFID-технологии применяются в самых разнообразных сферах человеческой деятельности:

В применениях используется информация об объекте, его свойствах, качествах, информация о положении объекта.

Стандарты [ | ]

Основная статья:

Международные стандарты RFID, как составной части технологии автоматической идентификации, разрабатываются и принимаются международной организацией ISO совместно с IEC. Подготовка проектов (разработка) стандартов производится в тесном взаимодействии с инициативными заинтересованными организациями и компаниями.

Организации-разработчики стандартов [ | ]

EPCglobal [ | ]

AIM Global - международная торговая ассоциация, представляющая поставщиков автоматической идентификации и мобильных технологий. Ассоциация активно поддерживает развитие AIM стандартов за счёт собственного Technical Symbology Committee, Global Standards Advisory Groups и группы экспертов RFID, а также через участие в промышленных, национальных (ANSI) и международных (ISO) группах разработок.

В России разработка стандартов в области RFID поручена [ ] Ассоциации UNISCAN/GS1 Russia.

GRIFS [ | ]

  • ISO 11784 - «Радиочастотная идентификация животных - Структура кодов»
  • ISO 11785 - «Радиочастотная идентификация животных - Техническая концепция»
  • ISO 14223 - «Радиочастотная идентификация животных - Транспондеры с расширенными функциями»
  • ISO 10536 - «Идентификационные карты. Бесконтактные чиповые карты»
  • ISO 14443 - «Идентификационные карты. Бесконтактные чиповые карты. Карты с малым расстоянием считывания»
  • ISO 15693 - «Идентификационные карты. Бесконтактные чиповые карты. Карты средней дальности считывания»
  • DIN/ISO 69873 - «Носители данных для инструмента и зажимных устройств»
  • ISO/IEC 10374 - «Идентификация контейнеров»
  • VDI 4470 - «Системы охраны товаров»
  • ISO 15961 - «RFID для управления товарами: управляющий компьютер, функциональные команды меток и другие синтаксические возможности»
  • ISO 15962 - «RFID для управления товарами: синтаксис данных»
  • ISO 15963 - «Уникальная идентификация радиочастотных меток и регистрация владельца для управления уникальностью»
  • ISO 18000 - «RFID для управления товарами: беспроводной интерфейс»
  • ISO 18001 - «Информационные технологии - RFID для управления товарами - Рекомендуемые профили приложений»

См. также [ | ]

Примечания [ | ]

  1. Раздел сайта, посвящённый RFID (англ.) . EFF . Проверено 14 октября 2008. Архивировано 29 января 2011 года.
  2. Пересказ содержания Обращения Священного Синода Русской Православной Церкви к органам власти стран Содружества Независимых Государств и Балтии от 6 октября 2005 года (рус.) . Официальный сайт Московской Патриархии (17 октября 2005 г.). Проверено 14 октября 2008. Архивировано 29 января 2011 года.
  3. Hacking Exposed Linux: Linux Security Secrets & Solutions (third ed.). McGraw-Hill Osborne Media. 2008. pp. 298. ISBN 978-0-07-226257-5 .
  4. «Альпина Паблишер» , 2007. - С. 47. - 290 с. - ISBN 5-9614-0421-8 .
  5. Stockman, Harry (1948). "Communication by means of reflected power". IRE : 1196-1204. Stockman1948. Проверено 2013-12-06 .
  6. История технологии (рус.) . Scale Company. Проверено 14 октября 2008. Архивировано 29 января 2011 года.
  7. google books - поиск по номеру патента
  8. , глава 1, параграф 1.2.1 «Метка» и его подпараграфы.
  9. rfid-news.ru Архивировано 6 апреля 2010 года.
  10. Hitachi Unveils Smallest RFID Chip (англ.) . Проверено 30 января 2011. Архивировано 23 августа 2011 года.
  11. Hitachi разработала самые маленькие чипы RFID (рус.) . CNews (21 февраля 2007). Проверено 14 октября 2008. Архивировано 29 января 2011 года.
  12. Маниш Бхуптани, Шахрам Морадпур. RFID-технологии на службе вашего бизнеса = RFID Field Guide: Deploying Radio Frequency Identification Systems / Троицкий Н.. - Москва: «Альпина Паблишер» , 2007. - С. 70. - 290 с. - ISBN 5-9614-0421-8 .
  13. Mark Roberti. A 5-Cent Breakthrough (англ.) . RFID Journal. Проверено 14 октября 2008. Архивировано 29 января 2011 года.
  14. Polymer technology opens up new fields of application for RFID in logistics (англ.) . PRISMA press release (26 января 2006). Проверено 5 февраля 2010. Архивировано 23 августа 2011 года.
  15. Daniel M. Dobkin. RFID Basics: Backscatter Radio Links and Link Budgets (англ.) . The RF in RFID: Passive UHF RFID in Practice . www.rfdesignline.com (10 февраля 2007). Проверено 5 февраля 2010. Архивировано 23 августа 2011 года.
  16. Маниш Бхуптани, Шахрам Морадпур. RFID-технологии на службе вашего бизнеса = RFID Field Guide: Deploying Radio Frequency Identification Systems / Троицкий Н.. - Москва:

Наиболее перспективная в области автоматической идентификации на настоящий момент для транспорта RFID-технология (Radio Frequency Identification) занимает пока не более четверти рынка.

Коммерческое использование этой технологии стало возможным с появлением в 1958 г. интегральной микросхемы, которая позволила существенно уменьшить размеры радиочастотной метки. Суть интегральной микросхемы заключается в интеграции нескольких электронных компонентов в монолитном кристалле полупроводника. Это позволяет заменить устройство, состоящее из корпуса со множеством электронных компонентов одной тонкой пластинкой. С 1970-х гг. радиочастотные метки стали применяться для идентификации текстильных товаров, животных, грузовых контейнеров, автомобилей и т.п.

Область применения системы определяется ее частотой. RFID-системы делятся на следующие группы, представленные в табл. 2.4.

Таблица 2.4

Области применения RFID

Как правило, стоимость радиочастотных меток возрастает с повышением рабочей частоты. Наименьшими размерами и стоимостью обладают низкочастотные пассивные метки класса read-only (только чтение).

Для считывания данных с радиочастотных меток могут использоваться стационарные считыватели, которые устанавливаются в определенных местах и считывают данные автоматически со всех меток, попадающих в их радиус действия или по команде оператора. В случае необходимости считывания данных на складах или терминалах могут использоваться переносные терминалы сбора данных, аналогичные сканерам штрихового кода.

RFID-терминал считывает информацию с радиочастотных меток, декодирует ее, выводит на экран и передает в информационную систему (рис. 2.16). При использовании соответствующих классов меток («чтение- запись») с помощью такого терминала можно редактировать или добавлять информацию, хранимую в метке.

Рис. 2.16.

Основные преимущества RFID-технологии заключаются в следующем:

  • для считывания данных не нужен контакт или прямая видимость; данные могут считываться через грязь, краску, пар, воду, пластмассу, древесину и т.н.;
  • высокое быстродействие и точность считывания данных большого объема с возможностью редактирования, удаления и добавления информации;
  • пассивные транспондеры (без автономного питания) имеют фактически неограниченный срок эксплуатации;
  • RFID-метки несут большой объем информации и могут быть интеллектуальными (например, сообщать определенным считывателям разные части записанных данных);
  • записанная в радиочастотной метке информация может быть зашифрована и недоступна посторонним считывателям;
  • радиочастотные метки надежно защищены от внешних воздействий;
  • расположение метки может быть свободным относительно считывателя.

Наряду с неоспоримыми достоинствами радиочастотной идентификации присущи и следующие недостатки:

  • относительно высокая стоимость по сравнению со штриховым кодированием;
  • невозможность размещения под металлическими и электропроводными поверхностями;
  • взаимное влияние разных меток, одновременно находящихся в зоне действия считывателя;
  • подверженность помехам в виде электромагнитных полей;
  • влияние на здоровье человека в виде электромагнитного излучения.

Принципиальная схема работы системы RFID представлена на рис. 2.17.

Процесс радиочастотной идентификации выполняется следующим образом:

  • считыватель непрерывно или с заданным интервалом времени излучает радиосигнал на определенной частоте (синхроимпульсы);
  • пассивный транспондер, попадая в зону действия радиосигнала, использует его энергию для электропитания (заряжает конденсатор), считывает код из запоминающего устройства и модулирует ответный радиосигнал (конденсатор разряжается); активный транспондер использует собственный источник энергии (батарейку);
  • считыватель принимает данные от транспондера, при необходимости расшифровывает и проверяет их и передает в приложение, управляющее системой;
  • компьютерное приложение анализирует полученные данные, заносит их в БД и при необходимости формирует управляющие воздействия в системе.

Рис. 2.17.

Наибольшее распространение в мире получили пассивные транспондеры благодаря небольшим размерам, отсутствию необходимости их обслуживания и дешевизне. В то же время активные транспондеры могут передавать данные на большее расстояние с более надежной связью, обладают широкими возможностями обработки записанных в них данных, но требуют периодической замены элемента питания.

Одной из основных проблем в системах радиочастотной идентификации является устранение ситуации, когда несколько транспондеров одновременно передают свои данные. В противном случае сигналы нескольких транспондеров появятся на входе считывателя и произойдет их взаимное искажение. Это явление называется коллизией. Для выделения и идентификации отдельного транспондера из группы аналогичных устройств применяют различные антиколлизионные методы доступа, характеристика которых приведена в табл. 2.5.

Антиколлизионные процедуры

В настоящее время достаточно большое количество компаний выпускают собственные устройства радиочастотной идентификации, при этом считыватели производства какой-либо фирмы могут считывать информацию только своих фирменных меток и не понимают метки других фирм. В отсутствие стандартов оборудование различается по рабочим частотам, по форматам хранимых данных, по алгоритмам работы и способам шифрования данных. Таким образом, в системе радиочастотной идентификации могут использоваться оборудование и метки производства только одной фирмы. Этот существенный недостаток RFID-технологии по сравнению со штриховым кодированием в настоящее время преодолевается путем разработки соответствующих стандартов. Стандарты помимо унификации интерфейсов передачи данных, частот и других технических параметров должны обеспечить единые форматы и структуры данных с используемыми системами штрихового кодирования и электронного обмена данными.

Разработкой международных стандартов занимаются рабочие группы технических комиссий ISO. Международным органом по стандартизации в области RFID является «Рабочая группа N4» (WG4), которая работает совместно с Европейской ассоциацией товарной нумерации EAN и Советом по единому коду UCC. Последними в 2003 г. была основана некоммерческая организация «EPCglobal» - международный консорциум, одной из целей которого является разработка единых стандартов для систем RFID и штрих-кодирования.

Практическое применение

Одной из существенных проблем, снижающих пропускную способность платных автомобильных дорог, является процедура взимания платы за проезд. Пункты оплаты на дорогах с интенсивным движением, несмотря на наличие нескольких пунктов оплаты, вызывают необходимость остановки автомобиля, и дальнейшее его движение возможно только после расчета, который может занять существенное время в случае необходимости размена крупных купюр и г.д.

На платной дороге в г. Санкт-Петербурге «Западный скоростной диаметр» для снижения времени задержек автотранспорта на пунктах оплаты внедрена RFID-технология.

Постоянные пользователи магистрали могут приобрести транспондеры, которые устанавливаются в автомобиле, и перевести на свой лицевой счет предварительную оплату. При проезде пункта оплаты транспондер передает на считыватель номер лицевого счета, и необходимая сумма автоматически списывается с лицевого счета пользователя и зачисляется на счет оператора.

Пользователь тем самым экономит время, ему нс надо думать о подготовке денег для оплаты, а оператор может сократить количество обслуживающего персонала, повысить пропускную способность пунктов оплаты и привлекательность использования магистрали.

Для стимулирования использования транспондеров, учитывая меньшую себестоимость процедуры взимания платы, оператор устанавливает для таких пользователей более низкие тарифы.

Компания «Benetton Group», занимающаяся продажей одежды, начала оснащать свои изделия и упаковки RFID-этикетками с 2003 г.

Идентификаторы RFID встраиваются непосредственно в ярлыки для одежды и этикетки на упаковочных коробках, куда впечатывается антенна и полупроводниковая микросхема толщиной около 1 мм. Компания торгует только собственными товарами, что ликвидирует проблему совместимости RFID-этикеток и считывающего оборудования. Новая система позволит существенно усовершенствовать логистику фирмы за счет того, что в процессе доставки товаров в 5 тыс. магазинов «Benetton», расположенных в 120 странах, в любом пункте можно за считанные минуты ввести самые подробные данные о поступившем товаре (цвете, размере, фасоне и т.п.). Это позволит существенно быстрее реагировать на спрос в различных магазинах, а в самих магазинах значительно сократит время па поиск и распаковывание нужного товара.

  • Вейс Т. Электронные «интеллектуальные ярлыки» Benetton // Computerworld Россия.2003. № 3. С. 37.

Пока в стране идут новогодние праздники и все отдыхают наконец соберу весь накопленный материал в одну кучку. Я давно не писал в блог, постараюсь исправиться в нынешнем году. Я не пишу о политике, философии, событиях моей жизни, только о железках. Увы о железах на работе я писать не могу в силу определенных причин, но копится материал научно-популярного и просветительского толка. Очень сложно написать лучше, чем уже написано в той же википедии.

RFID – R adio F requency ID entification – радиочастотная идентификация. На сегодня RFID метки это более широкое понятие и сюда приплетают в том числе и беспроводные сенсоры, хотя идентификация – не их основное занятие. RFID метка – это небольшое устройство, которое позволяет на расстоянии, в отсутствие прямой видимости считать сохраненные на нем данные, тем самым идентифицировать объект. Это как штрихкод, наклеенный на товар, только работающий по радио.

RFID метки бывают разных типов. По способу электропитания различают пассивные (полностью получают питание для работы от излучения считывателя) и активные (имеют на себе батарейку). Само собой у пассивных дальность действия ниже, зато срок службы ничем не ограничен. У активных все лучше, и дальность действия, и начинка поинтеллектуальнее, но батарейку нужно будет менять.

По радиочастотному диапазону различают LF (125 кГц), HF (13.56 МГц) и UHF (860-960 МГц).

Принцип действия

Считыватель и метка имеют катушки индуктивности, образующие колебательный контур. Когда считыватель создает переменное магнитное поле своей катушкой, магнитный поток проходя через катушку метки возбуждает в ней ток. Точно так же как работает к примеру беспроводная зарядка. Метка от возбужденного в катушке тока получает питание, и используя транзистор может на некоторое время (питаясь в это время от накопленного в конденсаторе заряда) замыкать катушку накоротко, тем самым меняя значение амплитуды тока в катушке считывателя. Считыватель фиксирует эти изменения, тем самым принимая сигнал от метки.

Устройства UHF диапазона работают аналогично, только вместо катушек – диполи:

(Иллюстрация из книги RFID Handbook by Klaus Finkenzeller 2 редакция)

Само собой это означает что весь обмен данными между меткой и считывателем происходит публично, и при решении задач определения подлинности нужно это учитывать.

Активные метки более разнообразны по устройству, некоторые вообще по сути являются радиомаяками, по несколько раз в секунду просто посылая в эфир свой номер (parsec). RFID метка помимо микроконтроллера, обеспечивающего передачу уникального номера может быть оснащена различными датчиками. Например датчиком давления. Такой датчик можно разместить в шину автомобиля и непрерывно контролировать давление воздуха в шине.

С каждым днем RFID меткам находят все больше применений. Начиная от использования в качестве ключей для домофона заканчивая противокражными метками в магазинах самообслуживания. Именно увеличение спроса, снижение стоимости из-за массового производства позволяет находить все новые и новые применения.

Метка передает считывателю в ответе на запрос свой уникальный номер. Более сложные метки имеют немного памяти на борту и могут хранить какую либо информацию, например количество оставшихся поездок, что избавляет от необходимости создания центрального сервера и поддержки его на связи всегда. Метка также может иметь на борту криптопроцессор и обеспечивать проверку подлинности или обмен секретными данными. Изучается вопрос добавления RFID меток к банкноты как дополнительная мера защиты.

В будущем возможно все продукты будут снабжены RFID метками на стадии производства, а холодильник RFID считывателем. Тогда взяв вечером спросонья из холодильника пакет молока он молвит человеческим голосом “Сдурел? Выкинь, оно во мне уже пол года лежит, испортилось давно”.

Примеры

Екарта – проездная карточка на все виды транспорта в г.Екатеринбурге. Представляет собой карточку Mifare. Внешний вид:

Немного ацетоновых ванн и видно катушку индуктивности по периметру. Система полностью децентрализованная и информация о количестве денег хранится на самой карте в зашифрованном виде.

Московский метрополитен. Конструкция попроще для удешевления, карточка одноразовая:

Брелок от домофона “Факториал”

Внутри тоже RFID чип от Texas Instruments

При этом при каждом открывании двери данные в ключе перезаписываются, таким образом невозможно увеличить количество ключей. Копия будет работать, но после первого открывания перестанет работать оригинал, так как данные в ключе меняются. Этим хитрым апгрейдом факториал разом сделал бизнес копирования домофонных ключей невозможным.

Активные метки parsec

Представляют собой герметичный контейнер с микроконтроллером, батарейкой и радиомодулем, который посылает в эфир пару раз в секунду свой уникальный номер. Закрепив такой на автомобиле можно определять какие авто на данный момент сейчас находятся к примеру в гараже. Основная задача этих меток в автоматическом открывании ворот и шлагбаумов.

При этом вариант на последнем фото снабжен еще и пассивной меткой, можно повесить как брелок для ключей, и открывать не только ворота но и двери.

Правда безопасность автомобиля, основанная на наличии такой метки уязвима .

Если разберем ключ от автомобиля то найдем в нем чип иммобилайзера, который по сути тоже RFID метка:

Справа на крышке. Надежность и секретность механических замков ограничивается точностью механической обработки и достигла своего предела. Электронные замки и ключи имеют значительно большее число комбинаций.

RFID метки могут внедряться на стадии производства, например гитар:

Производитель таким образом не только облегчает себе отслеживание продукции на складах, но и гарантирует себе способ отличить свою продукцию от подделок.

Вот шапка с RFID меткой пришитой при производстве:

Еще одна от куртки:

Немного растворителей и достаем метки:

Отдельного слова заслуживают так называемые противокражные метки, или 1-битные транспондеры. Это RFID метка которая передает всего 1 бит – информацию о своем наличии. Такие метки используются для защиты товара от краж. Я про одну такую. Чаще всего встречаются метки электромагнитной системы (метка – колебательный контур), и акустомагнитной. Метки других типов в наших краях встречаются редко.

Если вы параноик

Возможно вам пригодится RFID Zapper . Перманентно отключить метку можно также в микроволновке, просто включив на пару секунд. Пассивные метки считываются на расстоянии в несколько метров (для LF и HF вообще не более 20 см). Что бы считать метку на расстоянии 100 метров в считыватель придется закачивать неприлично большие мощности.

Технология RFID (Radio Frequency Identification) пока остается довольно дорогой для отечественного рынка и работает только на крупных складах. Но руководители компаний, уже внедривших методику, успели по достоинству оценить преимущества радиочастотной идентификации товаров. Технология позволила решить целый ряд проблем, связанных с хранением и учетом продукции.

Как работает RFID?

Система RFID Reader довольно проста в использовании. На каждую единицу товара наносится специальная метка, в которой зашифрованы все данные: вес, объем, дата погрузки или разгрузки, основные параметры хранения. На выходе из складского помещения монтируется металлический каркас с чувствительными RFID датчиками. Они сканируют метки на каждой упаковке, которую проносят через ворота, и отправляют информацию в общую базу данных.

Программу можно настроить на идентификацию личных карточек сотрудников или объединить с системой видеонаблюдения. Это позволит не только упростить учет и отслеживание перемещений товаров, но и сократит число нарушений на складах.

Примеры использования

В мире существует практика использования систем на основе RFID технологии. Радиометки используются в различных областях:

На одном из заводов Toyota , расположенном в США, радиочастотная идентификация помогает контролировать заполненность трейлеров при погрузке. Аналогичные технологии внедрены на предприятиях Shevrolet и в крупных азиатских портах. Метки наносят на крупнотоннажные контейнеры, а погрузочную технику оснащают считывателями. Это позволило повысить товарооборот, так как пропала необходимость пересчитывать и сверять большие объемы товара вручную. При такой системе отслеживания снижается количество ошибок, произошедших по вине человека.

На заводах Sony Electronics используют перезаписываемые RFID метки. Их наносят на кинескопы на поточных линиях завершающих этапов производства. Сканируя метку, система передает данные в центральную базу, а оператор получает информацию о тестировании и местонахождении конкретной единицы продукции.

В ряде европейских стран радиочастотные метки избавили автовладельцев от необходимости пользования кассой каждый раз при заправке автомобиля. Электронные считыватели монтируют непосредственно на топливные насосы. Система запускает подачу топлива после получения соответствующего сигнала от сканера.

Транспортные компании также взяли технологию на вооружение . Метки ставят в нижней части лобового стекла грузовиков. В каждой контрольной точке и в конечном пункте располагают радиочастотные сканеры. Считывается не только дата и номер транспортного средства, но и вся информация по товару: накладные, путевые листы и т. д. В процессе движения автомобиля полностью исключается бумажная работа, передача данных осуществляется через центральный сервер.

В нашей стране RFID технологии появились около десяти лет назад и применяются в основном на складах. Но производители радиочастотного оборудования уже наладили серийный выпуск, так как уверены в его активном внедрении.

Применение RFID на складах

Использование RFID технологии для склада оправдано с экономической и практической точек зрения, особенно, если речь идет о терминалах с большим товарооборотом. Приобретение оборудования для крупных компаний окупается довольно быстро.

Преимущества системы радиочастотных меток:

Специалистам, которые занимаются устройством RFID на предприятии, особое внимание стоит уделить тем задачам, которые будут поставлены перед системой. Необходимо определить оптимальную дальность считывания, настроить антенны соответствующим образом, изучить специфику технологических процессов на складе. Важно понять принцип перемещения товарных позиций. Например, упаковка, пронесенная через RFID -считыватель , не обязательно должна покинуть пределы склада. Она может транспортироваться на другой участок, поэтому система не должна отмечать ее, как отгруженную.

Перспективы RFID

Подобные технологии чипирования уже используются в России, например, в новых паспортах. Но система работает пока не так активно, как в развитых странах. Эксперты прогнозируют RFID большое будущее, вплоть до полного замещения современных компьютеров. Конечно, это случится не скоро. Пока технологии дорабатываются с целью расширения функциональности и повышения эффективности. Одно из самых перспективных направлений развития – это работа во всевозможных интернет-магазинах. Учитывая ежедневный оборот, их склады нуждаются в особо строгом учете товаров, отслеживании перемещений.

Положительный опыт применения RFID в этом качестве представила компания Paxar. Ее специалистами была создана программа Magicmirror, основанная на радиочастотных технологиях. Это некое электронное зеркало. Посетитель фирменного магазина одежды Paxar может выбрать в коллекции любую модель с RFID меткой и поднести ее к зеркалу. На дисплей выйдет подробная информация о составе ткани, доступных цветах и размерах. Программа на основании данных сканера предложит также аксессуары, подходящие к этому предмету одежды. С помощью радиочастотного считывателя покупатель сможет вызвать продавца-консультанта, находясь в примерочной кабинке.

Технология хороша, особенно в применении к товарным складам. Однако, на сегодняшний день разработчики систем сталкиваются с некоторыми сложностями. Пути решения проблем со временем должны быть найдены, но пока технология внушает пользователям некоторые опасения.

Сложности использовании RFID-технологии для склада

Итак, чего же опасаются разработчики и конечные пользователи радиочастотных сканеров:

  1. Цена . Первое оборудование, работающее по RFID технологии, было довольно громоздким и дорогостоящим. Оно неудобное в применении и требовало финансовых вложений, непосильных для мелких фирм. Инженерам удалось постепенно сделать установки более компактными. Ведь небольшие и легкие сканеры стоят дешевле, да и в использовании более просты. Стоимость же самих радиочастотных меток снижается не так быстро, как хотелось бы. Позволить себе оснастить весь склад микрочипами стоимостью в 10 евроцентов может далеко не каждая компания. Специалисты уверены, что как только стоимость меток упадет до 1 евроцента, спрос на них возрастет в разы.
  2. Компьютерные угрозы – вирусы. Средний объем памяти микрочипа всего 2 кб. Изначально считалось, что метку просто невозможно заразить вирусом, но амстердамские ученые доказали противоположное. Они не только заразили микрочип, но и проанализировали возможные последствия этой ситуации. Неисправная метка выдает недостоверную информацию или вовсе перестает работать. Радиочастотная передача данных заражает и сканеры, через которые проходит чип. Это нарушает работу центральной базы данных и может полностью остановить работу склада, что означает колоссальные убытки для фирмы. Что еще опаснее – вирус может распространяться по радиоканалам и на другие метки, вызывая хаос. В применении к гипермаркетам и другим крупным объектам последствия совершенно непредсказуемы.
  3. Возможность взлома . Собственно о взломе речь не идет, ведь чипы не защищены. Сканер способен считать информацию с большого расстояния, что дает большое поле для деятельности преступников. Любой человек, получивший товар с меткой, может воспользоваться считывателем и получить доступ к базе данных. Сюда относятся и сведения о кредитных картах покупателей, и другая конфиденциальная информация.
  4. Кража данных из электронных документов . Например, при считывании паспортов, сканер автоматически отправляет данные в центральный компьютер. В Германии, Англии и США RFID технологии давно используются в оборонном секторе и в сфере здравоохранения. Но недавнее исследования показали, что данные с чипов можно скопировать с расстояния 100 метров, имея специальный сканер. То есть преступник может получить доступ к самым важным сведениям, распространение которых совершенно недопустимо.

Все эти опасения имеют место и при использовании RFID на складах. Специалисты активно ищут методы «поломки» чипа после того, как вещь передана покупателю, но пока все они малоэффективны. Программы деактивации метки вызывают лишь ее усыпление, а не выведение из строя.

Вот несколько способов, которые изобрели сами потребители, желающие сохранить тайну личной жизни:

  • срезание антенны. В ряде случаев это сделать невозможно. Например, при удалении метки с одежды придется испортить ткань;
  • обработка вещи в микроволновой печи. Излучение вызывает взрыв чипа, что тоже не проходит бесследно для купленного товара.

Немецкие инженеры много лет трудились над созданием прибора, способного вызвать необратимую деактивацию RFID метки. Технология основана на сильном воздействии электромагнитного импульса. Но пока аппарат тестируется и в свободном доступе его не найти.

Системы защиты данных

При невозможности вывести из строя метку, ученые решили разработать способы ее защиты. На сегодняшний день их несколько:

  1. Защита данных паролем. Чип отправляет сканеру верные сведения только после введения секретного кода. Другой код может запустить программу самоуничтожения чипа, например, после покупки вещи. Технология оказалась уязвимой для хакеров, поэтому не нашла широкого распространения.
  2. Аппаратно-сетевая защита. Система блокирует все метки на складе и открывает нужную только по запросу. Программа постоянно сканирует эфир, предоставляя сведения о попытке несанкционированно считывания. Данная технология применима к чипам любой сложности и объема. Она достаточно эффективна и защищена от атак хакеров.
  3. Слом антенны. При покупке товара покупатель просто обламывает кончик антенны, ответственный за передачу данных на расстоянии. При возврате товара продавец может идентифицировать вещь, поднеся сканер вплотную к метке.
  4. Установка «глушилок». Устройство работает по принципу самих RFID-меток, копируя алгоритмы микросхем. Разница в том, что «глушилка» на запросы сканера выдает недостоверную информацию – цифровой мусор. Создание такого мешающего чипа осложняется тем, что он должен распознавать различные считывающие устройства и выдавать поток ненужной информации незарегистрированным приборам.

В перспективе, использование RFID-технологий в организации работы склада должно повысить скорость товарооборота и эффективность всей складской системы. Если есть серьезная программа защиты данных, или информация на чипах не представляет особой ценности для третьих лиц, то радиочастотные метки – отличное решение для любого бизнеса.