Смотреть страницы где упоминается термин алгоритм джонсона. Задача Джонсона

, опубликовавшего алгоритм в 1977 году.

Алгоритм

См. также

Напишите отзыв о статье "Алгоритм Джонсона"

Ссылки

Литература

  • Томас Х. Кормен и др. Алгоритмы: построение и анализ. - 2-е изд. - М .: Издательский дом «Вильямс» , 2007. - С. 726. - ISBN 5-8459-0857-4 .
  • Томас Х. Кормен и др. Алгоритмы: построение и анализ. - 1-е изд. - М .: МЦНМО , 2004. - С. 523. - ISBN 5-900916-37-5 .

Отрывок, характеризующий Алгоритм Джонсона

– Нет, я, кажется, домой поеду…
– Как домой, да вы вечер у нас хотели… И то редко стали бывать. А эта моя… – сказал добродушно граф, указывая на Наташу, – только при вас и весела…
– Да, я забыл… Мне непременно надо домой… Дела… – поспешно сказал Пьер.
– Ну так до свидания, – сказал граф, совсем уходя из комнаты.
– Отчего вы уезжаете? Отчего вы расстроены? Отчего?.. – спросила Пьера Наташа, вызывающе глядя ему в глаза.
«Оттого, что я тебя люблю! – хотел он сказать, но он не сказал этого, до слез покраснел и опустил глаза.
– Оттого, что мне лучше реже бывать у вас… Оттого… нет, просто у меня дела.
– Отчего? нет, скажите, – решительно начала было Наташа и вдруг замолчала. Они оба испуганно и смущенно смотрели друг на друга. Он попытался усмехнуться, но не мог: улыбка его выразила страдание, и он молча поцеловал ее руку и вышел.
Пьер решил сам с собою не бывать больше у Ростовых.

Петя, после полученного им решительного отказа, ушел в свою комнату и там, запершись от всех, горько плакал. Все сделали, как будто ничего не заметили, когда он к чаю пришел молчаливый и мрачный, с заплаканными глазами.
На другой день приехал государь. Несколько человек дворовых Ростовых отпросились пойти поглядеть царя. В это утро Петя долго одевался, причесывался и устроивал воротнички так, как у больших. Он хмурился перед зеркалом, делал жесты, пожимал плечами и, наконец, никому не сказавши, надел фуражку и вышел из дома с заднего крыльца, стараясь не быть замеченным. Петя решился идти прямо к тому месту, где был государь, и прямо объяснить какому нибудь камергеру (Пете казалось, что государя всегда окружают камергеры), что он, граф Ростов, несмотря на свою молодость, желает служить отечеству, что молодость не может быть препятствием для преданности и что он готов… Петя, в то время как он собирался, приготовил много прекрасных слов, которые он скажет камергеру.
Петя рассчитывал на успех своего представления государю именно потому, что он ребенок (Петя думал даже, как все удивятся его молодости), а вместе с тем в устройстве своих воротничков, в прическе и в степенной медлительной походке он хотел представить из себя старого человека. Но чем дальше он шел, чем больше он развлекался все прибывающим и прибывающим у Кремля народом, тем больше он забывал соблюдение степенности и медлительности, свойственных взрослым людям. Подходя к Кремлю, он уже стал заботиться о том, чтобы его не затолкали, и решительно, с угрожающим видом выставил по бокам локти. Но в Троицких воротах, несмотря на всю его решительность, люди, которые, вероятно, не знали, с какой патриотической целью он шел в Кремль, так прижали его к стене, что он должен был покориться и остановиться, пока в ворота с гудящим под сводами звуком проезжали экипажи. Около Пети стояла баба с лакеем, два купца и отставной солдат. Постояв несколько времени в воротах, Петя, не дождавшись того, чтобы все экипажи проехали, прежде других хотел тронуться дальше и начал решительно работать локтями; но баба, стоявшая против него, на которую он первую направил свои локти, сердито крикнула на него:
– Что, барчук, толкаешься, видишь – все стоят. Что ж лезть то!
– Так и все полезут, – сказал лакей и, тоже начав работать локтями, затискал Петю в вонючий угол ворот.
Петя отер руками пот, покрывавший его лицо, и поправил размочившиеся от пота воротнички, которые он так хорошо, как у больших, устроил дома.
Петя чувствовал, что он имеет непрезентабельный вид, и боялся, что ежели таким он представится камергерам, то его не допустят до государя. Но оправиться и перейти в другое место не было никакой возможности от тесноты. Один из проезжавших генералов был знакомый Ростовых. Петя хотел просить его помощи, но счел, что это было бы противно мужеству. Когда все экипажи проехали, толпа хлынула и вынесла и Петю на площадь, которая была вся занята народом. Не только по площади, но на откосах, на крышах, везде был народ. Только что Петя очутился на площади, он явственно услыхал наполнявшие весь Кремль звуки колоколов и радостного народного говора.
Одно время на площади было просторнее, но вдруг все головы открылись, все бросилось еще куда то вперед. Петю сдавили так, что он не мог дышать, и все закричало: «Ура! урра! ура!Петя поднимался на цыпочки, толкался, щипался, но ничего не мог видеть, кроме народа вокруг себя.
На всех лицах было одно общее выражение умиления и восторга. Одна купчиха, стоявшая подле Пети, рыдала, и слезы текли у нее из глаз.
– Отец, ангел, батюшка! – приговаривала она, отирая пальцем слезы.

Рассмотрим задачу последовательной обработки на двух машинах N различных деталей, если известно время A i и B i обработки i -й детали на соответствующих машинах. Очевидно, что первая машина будет загружена полностью, но вторая может периодически оказываться в состоянии простоя. Попытаемся найти порядок обработки, минимизирующий время простоя второй машины и тем самым сокращающий общее время обработки деталей.
Если обозначить через X i - время простоя в ожидании i -й детали, то:
A 1
X 1 + X 2 = max(A 1 + A 2 - B 1 , A 1)
X 1 + X 2 + X 3 = max(A 1 + A 2 +A 3 - B 1 - B 2 , A 1 + A 2 - B 1 , A 1)
∑X i = max(∑A i - ∑B i)
Если обозначить через F(t, A k , B k /k=1..N) - суммарное время обработки N деталей при условии, что вторая машина включается с задержкой t и используется оптимальный порядок обработки, то c учетом принципа оптимальности (независимо от выбора начальной детали порядок выбора последующих должен быть оптимальным) имеем:
F(t, A k , B k /k = 1..N) = min(A i + F(B i + max(t-A i ,0),A k ,B k =1..N,k≠i))
Если после i -й детали при оптимальном порядке обрабатывается j -я, то:
F(t, A k , B k /k=1..N) = A i + A j + F(t ij , A k , B k /k=1..N; k≠i,j)
где
t ij = B i + max = B i + B j - A i - A j + max
Если max(A i + A j - B i ,A i) < max(A j + A i - B j , A j), то сначала разумнее обрабатывать j -ю деталь.
Можно показать, что указанное условие необходимости перестановки эквивалентно условию:
min(A j , B i) < min(A i , B j)
Соответственно ищем среди всех значений A i и B i наименьшее. Если найденное значение совпадает с некоторым A i , то i -ю деталь ставим на обработку первой; если оно совпадает с некоторым Bi , то последней. Эту процедуру повторяем для всех остальных деталей.

Пример 1. Пусть информация о времени обработки задана таблицей:

Шаг № 2.
Минимальное из значений равно 3 и соответствует B 2: 2-ая деталь обрабатывается последней.

Шаг № 4.
Минимальное из значений равно 5 и соответствует B 4: 4-ая деталь обрабатывается последней.

Шаг № 6.
Минимальное из значений равно 7 и соответствует B 6: 6-ая деталь обрабатывается последней.

В итоге упорядоченная информация принимает вид:

Время простоя второй машины при первичном порядке равно:
max(2 , 2 + 8 - 3 , 2 + 8 + 4 - 3 - 3 , 2 + 8 + 4 + 9 - 3 - 3 - 6 , 2 + 8 + 4 + 9 + 6 - 3 - 3 - 6 - 5 , 2 + 8 + 4 + 9 + 6 + 9 - 3 - 3 - 6 - 5 - 8) = max(2, 7, 8, 11, 12, 13) = 13
Время простоя при оптимальной перестановке равно:
max(2 , 2 + 4 - 3 , 2 + 4 + 6 - 3 - 6 , 2 + 4 + 6 + 9 - 3 - 6 - 8 , 2 + 4 + 6 + 9 + 9 - 3 - 6 - 8 - 7 , 2 + 4 + 6 + 9 + 9 + 8 - 3 - 6 - 8 - 7 - 5) = max(2, 3, 3, 4, 6, 9) = 9

Пример 2. Пусть информация о времени обработки задана таблицей:

Шаг № 2.
Минимальное из значений равно 3 и соответствует B 1: 1-ая деталь обрабатывается последней.

Шаг № 4.
Минимальное из значений равно 4 и соответствует B 6: 6-ая деталь обрабатывается последней.

Задачи выбора последовательности обработки деталей на двух станках, если детали должны пройти обработку на одном станке, а затем на втором, причем на станке не может обрабатываться больше одной детали, рассмотрел в 1954 г. С. Джонсон. Метод ее решения называют алгоритмом Джонсона.  

В этой главе мы рассказали о принципах работы систем календарного планирования производства . Сложность календарного планирования связана с большим количеством вариантов графиков работы . Решению этой проблемы способствуют разделение планирования и загруЗки оборудования , планирование наиболее трудоемких партий в первую очередь, применение приоритетов и использование алгоритма Джонсона. Ни один метод не дает оптимального решения,  

Для пояснения алгоритма Джонсона представим матрицу Т как двухстолбцовую  

В одном из вариантов алгоритма Джонсона процессы, состоящие из нескольких стадий, рассматриваются, как состоящие из двух операций, при этом метод дает если не оптимальные, то хорошие результаты. При этом искусственно создается несколько точек по две стадии и на каждой из них применяется описанный выше алгоритм. Далее подсчитыва-ется общая длительность всех графиков и выбирается наименьшее значение. Искусственное разбиение на две стадии производится за счет рассмотрения двух соседних операций, так для процесса из шести стадий будут строиться следующие графики  

Метод Петроват-Соколицына. Исходная матрица та же, что и в методе Джонсона, но снято ограничение на число операций (столбцов). Алгоритм предполагает расчет двух промежуточных сумм и их разности. Затем определяется несколько последовательностей запуска партий в обработку по следующим правилам  

Подробная характеристика первых трех вариантов решения задачи дана в главе 11. Напомним, что первый вариант имеет строгое и эффективное решение , называемое по имени его создателя алгоритмом (методом) Джонсона. Второй вариант можно при определенных условиях также свести к решению методом Джонсона, но результат при этом будет не обязательно оптимальным. Строгое решение этой задачи дал Р. Беллман, однако оно трудоемко. Третийвариант самый сложный. Эффективная эвристическая процедура его разрешения известна под названием DS-алгоритм. Этот алгоритм распространяет метод Джонсона на общий случай постановки задачи и обеспечивает околооптимальное решение. Существуют и другие подходы, которые используют теорию очередей и компьютерное моделирование , чтобы решить эту проблему. Но все они трудоемки и сложны и в то же время не гарантируют нахождения оптимальной последовательности.  

Второй пример календарной задачи на оптимизацию заключается в построении графика , наилучшим образом согласующего сроки выпуска продукции на нескольких последовательных стадиях произ-ва (переделах) при различной длительности обработки изделия на каждой из них. Напр., в типографии надо согласовать работу наборного, печатного и переплетного цехов при условии различной трудо-станкоемкости по отдельным цехам разных видов изделий (бланочной продукции, книжной продукции простого или сложного набора, в переплете или без него и т. п.). Задача может решаться при различных критериях оптимизации и различных ограничениях. Так, можно решать задачу на минимальную длительность производств, цикла и, следовательно, минимальную величину среднего остатка изделий в незавершенном произ-ве (заделе) ограничения при этом должны определяться по наличной пропускной способности различных цехов (переделов). Возможна и другая постановка той же задачи, при к-рой критерием оптимизации является наибольшее использование наличной производств, мощности при ограничениях, наложенных на сроки выпуска отдельных видов продукции. Алгоритм для точного решения этой задачи (т. н. задачи Джонсон а) разработан для случаев, когда изделие проходит всего 2 операции, и для приближенного решения при трех операциях. При большем числе операций эти алгоритмы непригодны, что практически их обесценивает, т. к. потребность в решении задачи оптимизации календарного графика возникает гл. обр. в планировании многооперационных процессов (напр., в машиностроении). Е. Боуменом (США) в 1959 и А. Лурье (СССР) в 1960 предложены математически строгие алгоритмы, основанные на общих идеях линейного программирования и позволяющие в принципе решать задачу при любом числе операций. Однако в настоящее время (1965) практически применить эти алгоритмы нельзя они слишком громоздки в расчетном отношении даже для самых мощных из существующих электронных вычислительных машин . Поэтому указанные алгоритмы имеют лишь перспективное значение либо их удастся упростить, либо прогресс вычислительной техники позволит реализовать их на новых машинах.  

В задаче Джонсона общее время производственного цикла зависит от порядка запуска деталей в обработку. Пусть имеется n деталей, каждая из которых должна последовательно пройти обработку сначала на первом, затем на втором станке. Предполагается заданным время t ij обработки i -й детали на j -м станке (i=1,2,...,n; j=1,2). Требуется определить такой порядок запуска деталей, при котором общая длительность их обработки на обоих станках будет минимальной.

Назначение сервиса . С помощью онлайн калькулятора можно решить задачу Джонсона для частного варианта ее постановки, когда число станков n=2 . При этом рассчитывается длительность совокупного производственного цикла для найденной оптимальной очередности запуска деталей в обработку. Результаты вычислений оформляются в отчете формата Word (Пример оформления).

ИНСТРУКЦИЯ . Для решения задачи необходимо задать количество деталей (строк).

Количество строк

Вставьте данные из Excel (A - первый столбец,B - второй столбец), нажмите Далее.

Правило Джонсона

Вначале детали, подлежащие обработке, условно делят на две группы. В первую группу относят детали, для которых время обработки на первом станке не превышает времени обработки на втором станке. Остальные детали образуют вторую группу. Вначале следует обрабатывать детали первой группы в порядке возрастания длительности их обработки на первом станке. Затем должны обрабатываться детали второй группы в порядке убывания времени их обработки на втором станке.

Алгоритм Джонсона

  1. В обработку сначала запускают детали, требующие минимальное время обработки на первом станке в порядке возрастания этого времени.
  2. В обработку запускаются сначала детали, требующие максимальное время обработки на последнем станке в порядке убывания этого времени.
  3. В обработку запускаются сначала детали, у которых “узкое место” находится дальше от начала процесса обработки (“узким местом” для данной детали называется станок, на котором обработка этой деталей занимает наибольшее время).
  4. Обрабатываются вначале детали, у которых суммарное время обработки на всех станках максимальное в порядке убывания этого времени.