Экстремальное управление проектами (XPM). Экстремальные системы управления

1. Я (Клиент), настоящим выражаю свое согласие на обработку моих персональных данных, полученных от меня в ходе отправления заявки на получение информационно-консультационных услуг/приема на обучение по образовательным программам.

2. Я подтверждаю, что указанный мною номер мобильного телефона, является моим личным номером телефона, выделенным мне оператором сотовой связи, и готов нести ответственность за негативные последствия, вызванные указанием мной номера мобильного телефона, принадлежащего другому лицу.

В Группу компаний входят:
1. ООО «МБШ», юридический адрес: 119334, г. Москва, Ленинский проспект, д. 38 А.
2. ООО «МБШ Консалтинг», юридический адрес: 119331, г. Москва, проспект Вернадского, д. 29, офис 520.
3. ЧУДПО «МОСКОВСКАЯ БИЗНЕС ШКОЛА — СЕМИНАРЫ», юридический адрес: 119334, Москва, Ленинский проспект, д. 38 А.

3. В рамках настоящего соглашения под «персональными данными» понимаются:
Персональные данные, которые Клиент предоставляет о себе осознанно и самостоятельно при оформлении Заявки на обучение/получение информационно консультационных услуг на страницах Сайта Группы компаний
(а именно: фамилия, имя, отчество (если есть), год рождения, уровень образования Клиента, выбранная программа обучения, город проживания, номер мобильного телефона, адрес электронной почты).

4. Клиент — физическое лицо (лицо, являющееся законным представителем физического лица, не достигшего 18 лет, в соответствии с законодательством РФ), заполнившее Заявку на обучение/на получение информационно-консультационных услуг на Сайта Группы компаний, выразившее таким образом своё намерение воспользоваться образовательными/информационно-консультационными услугами Группы компаний.

5. Группа компаний в общем случае не проверяет достоверность персональных данных, предоставляемых Клиентом, и не осуществляет контроль за его дееспособностью. Однако Группа компаний исходит из того, что Клиент предоставляет достоверную и достаточную персональную информацию по вопросам, предлагаемым в форме регистрации (форма Заявки), и поддерживает эту информацию в актуальном состоянии.

6. Группа компаний собирает и хранит только те персональные данные, которые необходимы для проведения приема на обучение/получения информационно-консультационных услуг у Группы компаний и организации оказания образовательных/информационно-консультационных услуг (исполнения соглашений и договоров с Клиентом).

7. Собираемая информация позволяет отправлять на адрес электронной почты и номер мобильного телефона, указанные Клиентом, информацию в виде электронных писем и СМС-сообщений по каналам связи (СМС-рассылка) в целях проведения приема для оказания Группой компаний услуг, организации образовательного процесса, отправки важных уведомлений, таких как изменение положений, условий и политики Группы компаний. Так же такая информация необходима для оперативного информирования Клиента обо всех изменениях условий оказания информационно-консультационных услуг и организации образовательного и процесса приема на обучение в Группу компаний, информирования Клиента о предстоящих акциях, ближайших событиях и других мероприятиях Группы компаний, путем направления ему рассылок и информационных сообщений, а также в целях идентификации стороны в рамках соглашений и договоров с Группой компаний, связи с Клиентом, в том числе направления уведомлений, запросов и информации, касающихся оказания услуг, а также обработки запросов и заявок от Клиента.

8. При работе с персональными данными Клиента Группа компаний руководствуется Федеральным законом РФ № 152-ФЗ от 27 июля 2006г. «О персональных данных».

9. Я проинформирован, что в любое время могу отказаться от получения на адрес электронной почты информации путем направления электронного письма на адрес: . Также отказаться от получения информации на адрес электронной почты возможно в любое время, кликнув по ссылке «Отписаться» внизу письма.

10. Я проинформирован, что в любое время могу отказаться от получения на указанный мной номер мобильного телефона СМС-рассылки, путем направления электронного письма на адрес:

11. Группа компаний принимает необходимые и достаточные организационные и технические меры для защиты персональных данных Клиента от неправомерного или случайного доступа, уничтожения, изменения, блокирования, копирования, распространения, а также от иных неправомерных действий с ней третьих лиц.

12. К настоящему соглашению и отношениям между Клиентом и Группой компаний, возникающим в связи с применением соглашения, подлежит применению право Российской Федерации.

13. Настоящим соглашением подтверждаю, что я старше 18 лет и принимаю условия, обозначенные текстом настоящего соглашения, а также даю свое полное добровольное согласие на обработку своих персональных данных.

14. Настоящее соглашение, регулирующее отношения Клиента и Группы компаний действует на протяжении всего периода предоставления Услуг и доступа Клиента к персонализированным сервисам Сайта Группы компаний.

ООО «МБШ» юридический адрес: 119334, г. Москва, Ленинский проспект, д. 38 А.
ООО «МБШ Консалтинг» юридический адрес: 119331, г. Москва, проспект Вернадского, д. 29, офис 520.
ЧУДПО «МОСКОВСКАЯ БИЗНЕС ШКОЛА — СЕМИНАРЫ», юридический адрес: 119334, Москва, Ленинский проспект, д. 38 А.

Адаптивные и экстремальные системы управления

Необходимость в адаптивных (приспособляемых) системах управления возникает в связи с усложнением задач управления при отсутствии практической возможности подробного изучения и описания процессов, протекающих в объектах управления при наличии изменяющихся внешних возмущений. Эффект адаптации достигается за счет того, что часть функций по получению, обработке и анализу процессов в объекте управления выполняется в процессе эксплуатации системы. Такое разделение функций способствует более полному использованию информации о протекающих процессах при формировании сигналов управления и позволяет существенно снизить влияния неопределенности на качество управления. Тем самым, адаптивное управление необходимо в тех случаях, когда влияние неопределенности или «неполноты» априорной информации о работе системы становится существенным для обеспечения заданного качества процессов управления. В настоящее время существует следующая классификация адаптивных систем: самонастраивающиеся системы, системы с адаптацией в особых фазовых состояниях и обучающиеся системы.

Класс самонастраивающихся (экстремальных) систем автоматического управления имеет широкое распространение в виду достаточно простой технической реализации. Этот класс систем связан с тем, что ряд объектов управления или технологических процессов обладают экстремальными зависимостями (минимум или максимум) рабочего параметра от управляющих воздействий. К ним относятся мощные электродвигатели постоянного тока, технологические процессы в химической промышленности, различные типы топок, реактивные двигатели самолетов и т. д. Рассмотрим процессы, протекающие в топке при сжигании топлива. При недостаточной подаче воздуха топливо в топке сгорает не полностью и количество выделяемого тепла уменьшается. При избыточной подаче воздуха часть тепла уносится вместе с воздухом. И только при определенном соотношении между количества воздуха и тепла достигается максимальная температура в топке. В турбореактивном двигателе самолета изменением расхода топлива можно добиться получения максимального давления воздуха за компрессором, а следовательно, и максимальной тяги двигателя. При малом и большом расходах топлива давление воздуха за компрессором и тяга падает. Кроме того необходимо отметить, то обстоятельство, что экстремальные точки объектов управления являются «плавающими» во времени и в пространстве.

В общем случае мы можем утверждать о том, что существует экстремум, а при каких значениях управляющего воздействия он достигается – априори неизвестно. В этих условиях система автоматического управления в процессе эксплуатации должна формировать управляющее воздействие, приводящее объект в экстремальное положение, и удерживать его в этом состоянии в условиях возмущений и «плавающего» характера экстремальных точек. Управляющее устройство при этом является экстремальным регулятором.

По способу получения информации о ткущем состоянии объекта экстремальные системы являются беспоисковыми и поисковыми. В беспоисковых системах наилучшее управление определяется в результате использования аналитических зависимостей между желаемым значением рабочего параметра и параметрами регулятора. В поисковых системах, которые являются медленнодействующими, нахождение экстремума может быть выполнено различными способами. Наибольшее распространение получил метод синхронного детектирования, который сводится к оценке производной dy/du, где y – регулируемый (рабочий) параметр объекта управления, u – управляющее воздействие. Структурная схема, иллюстрирующая способ синхронного детектирования представлена на рис. 6.1.

Рис. 6.1 Структура синхронного детектирования

На вход объекта управления, который обладает экстремальной зависимостью y(u), совместно с управляющим воздействием U подается незначительное возмущение в виде регулярного периодического сигнала f(t) = gsinwt, где g больше нуля и достаточно мало. На выходе объекта управления получим y = y(u + gsinwt). Полученное значение y умножается на сигнал f(t). В результате сигнал А примет значение

А =yf(t) = y(u+gsinwt)gsinwt.

Предполагая, что зависимость y(u) является достаточно гладкой функцией, ее можно разложить в степенной ряд и с достаточной степенью точности ограничится первыми членами разложения

Y(u+gsinwt)=y(u)+gsinwt(dy/du) + 0.5g 2 sin 2 wt(d 2 y/du 2) + ….. .

Т. к. значение g мало, то можно пренебречь членами высшего порядка и в результате получим

Y(u + gsinwt) » y(u) + gsinwt(dy/du).

Тогда, в результате перемножения сигнал А примет значение

А = y(u)sinwt + g 2 sin 2 wt(dy/du).

На выходе фильтра низких частот Ф получим сигнал В

.

Если постоянная времени фильтра Т достаточно велика, то получим

.

Следовательно, сигнал В на выходе фильтра пропорционален производной dy/du

Настройка (экстремальное управление)

Экстремальное управление получило такое название от специфической цели этого управления. Задача экстремального управления заключается в достижении экстремальной цели, т. е. в экстремизации (минимизации или максимизации) некоторого показателя объекта, значение которого зависит от управляемых и неуправляемых параметров объекта. К экстремальному управлению приводит очень распространенная операция настройки.

Всякая настройка заключается в построении такой системы действий, которые обеспечивают наилучший режим работы настраиваемого объекта. Для этого необходимо уметь различать состояния объекта и квалифицировать эти состояния так, чтобы знать, какое из двух состояний следует считать «лучше» другого. Это означает, что в процессе настройки должна быть определена мера качества настройки.

Например, при настройке технологического процесса показателем его качества может служить число бракованных деталей в партии; в этом случае задача настройки процесса заключается в том, чтобы минимизировать брак. Однако далеко не все экстремальные объекты допускают столь простое количественное представление показателя качества настройки. Так, например, при настройке радиоприемников или телевизоров такими мерами качества настройки могут служить качество звучания и качество

изображения принимаемой передачи. Здесь уже довольно сложно определить показатель качества настройки в количественной форме. Однако, как будет показано ниже, для решения задач экстремального управления часто важно знать не абсолютное значение показателя качества, а знак его приращения в процессе управления. Это означает, что для управления достаточно знать, увеличился или уменьшился показатель качества. В случае настройки радиоаппаратуры человек довольно хорошо решает эту задачу, если речь идет о качестве звучания или изображения.

Рис. 1.3.1.

Таким образом, в дальнейшем предполагается, что всегда существует такой алгоритм переработки информации настраиваемого объекта, который позволяет количественно определись качество настройки этого объекта (или знак изменения этого качества в процессе управления). Качество настройки измеряется числом Q , которое зависит от состояния управляемых параметров объекта:

. (1.3.1)

Целью настройки является экстремизация этого показателя, т. е. решение задачи

где буквой S обозначена область допустимого изменения управляемых параметров.

На рис. 1.3.1 показана блок-схема экстремального объекта. Он образуется из собственно объекта настройки с управляемыми входами и наблюдаемыми выходами, которые несут информацию о состоянии объекта, и преобразователя, который на основе полученных сведений образует скалярный показатель качества объекта.

Примером экстремального объекта может служить радиоприемник в процессе поиска станции. Если слышимость станции уменьшается (как говорят, станция «уплывает»), то для получения наилучшего звучания передачи, т. е. для настройки приемника, необходимо подстроить контур. Управление настройкой в данном случае заключается в определении направления вращения рукоятки настройки. Уровень слышимости станции здесь является показателем качества настройки. Он не несет необходимой

Рис. 1.3.2.

информации об управлении, т. е. не указывает, в каком направлении следует вращать рукоятку настройки. Поэтому для получения необходимой информации вводится поиск -- пробное движение рукоятки настройки в произвольном направлении, что дает дополнительную и необходимую информацию для настройки. После этого уже можно точно сказать, в каком направлении следует крутить рукоятку: если слышимость уменьшилась, нужно крутить в обратном направлении, если уже увеличилась, следует вращать ручку настройки туда же до максимума слышимости. Такой простейший алгоритм поиска, применяемый при настройки радиоприемника, который является типичным примером экстремального объекта.

Таким образом, объекты экстремального управления отличаются недостаточностью информации на выходе объекта, наличием своеобразного информационного «голода». Для получения необходимой информации в процессе управления экстремальными объектами необходимо ввести поиск в виде специально организованных пробных шагов. Процесс поиска отличает настройку и экстремальное управление от всех других видов управления.

В качестве более «серьезного» примера однопараметрического экстремального объекта рассмотрим задачу об оптимальном демпфировании следящей системы второго порядка (рис. 1,3.2). На вход этой следящей системы подается задающее возмущение у* (t), определяющее состояние выхода у (t). Относительно характера поведения у* (t) ничего не известно. Более того, статистические свойства возмущения у* (t) могут изменяться непредвиденным образом.

Рис. 1.3.3.

Задача настройки заключается в выборе такого демпфирования о которое делает эту следящую систему оптимальной в смысле минимума функционала:

Величина Q является оценкой дисперсии невязки о(t)=y(t)-y*(t) на базе Т . Очевидно, что при настройке следящей системы следует добиваться минимизации величины Q.

Здесь в качестве объекта настройки выступает указанная следящая система, выходной информацией для определения качества работы объекта являются его вход и выход, а преобразователь образует показатель качества по формуле (1.3.3). Полученный экстремальный объект имеет характеристику, показанную на рис. 1.3.3. Характер зависимости Q (о ) выражает тот очевидный факт, что малое демпфирование столь же плохо, как и слишком большое. Как видно, характеристика (1.3.3) имеет ярко выраженный экстремальный характер с минимумом, соответствующим оптимальному демпфированию о *. Кроме того, характеристика зависит от свойств возмущения у* (t). Следовательно, оптимальное состояние о*, минимизирующее Q (о ), также зависит от характера задающего возмущения y*(t) и изменяется вместе с ним. Это и заставляет обратиться к созданию специальных систем автоматической настройки, поддерживающих объект в настроенном (экстремальном) состоянии независимо от свойств возмущений. Эта автоматические приборы, решающие задачу настройки, носят название экстремальных регуляторов или оптимизаторов (т. е. приборов для оптимизации объекта).

Отличительной особенностью экстремальных объектов является немонотонность (экстремальность) характеристики, что приводит к невозможности воспользоваться методом регулирования в целях управления подобными объектами. Действительно, наблюдая выходное значение Q объекта в рассмотренном выше примере (см. рис. 1.3.3), нельзя построить управление, т. е. определить, в каком направлении следует изменить управляемый параметр о. Эта неопределенность связана, прежде всего, с возможностью двух ситуаций и, выход из которых к цели о* производится прямо противоположным образом (в первом случае следует увеличивать о, а во втором -- уменьшать). Прежде чем управлять таким объектом, необходимо получить дополнительную информацию -- в данном примере эта информация заключается в определении, на какой ветви характеристики находится объект. Для этого, например, достаточно определить значение показателя качества в соседней точке о + ? о, где? о -- достаточно малое отклонение.

Следует отметить, что автоматизация процесса настройки оправдана лишь в том случае, если экстремальная характеристика объекта изменяется во времени, т. е. при блуждании экстремального состояния. Если же характеристика объекта не изменяется, то процесс поиска экстремума имеет однократный характер и, следовательно, не нуждается в автоматизации (достаточно стабилизировать объект в однажды определенном экстремальном состоянии).

На рис. 1.3.4 для иллюстрации показана блок-схема экстремального управления демпфированием следящей системы, отслеживающей положение цели у (t), характер поведения которой изменяется.

Рис. 1.3.4.

Здесь экстремальный регулятор решает задачу настройки, т. е. поддерживает такое значение демпфирования о , которое минимизирует показатель качества следящей системы.

Назначением экстремальной системы является автоматическое отыскание регулирующих (управляющих) воздействий, соответствующих оптимальному (экстремальному) значению показателя качества при неконтролируемом изменении характеристик системы и внешних условий, влияющих на положение экстремальной точки показателя качества.

Рис. 12.2. Общая схема экстремальной системы О - объект; ЧЭ - чувствительный элемент; УФ - устройство формирования показателя качества; ИЭ - исполнительный элемент; УАП - устройство автоматического поиска экстремума; ЭР - экстремальный регулятор

В экстремальной системе соответствующая перестройка входных воздействий производится путем анализа результатов пробных движений (колебаний), в процессе которых изучается тенденция изменения показателя качества системы. Можно говорить, что в экстремальной системе существует своеобразная обратная связь по показателю качества. На рис. 12.2 представлена принципиальная схема экстремальной системы. Особенностью ее является наличие устройства автоматического поиска экстремума УАП, которое производит анализ показателя качества и через исполнительный элемент ИЭ подает на вход объекта управляющее воздействие такое, чтобы характеристика получила экстремальное значение

В экстремальной системе устройство поиска экстремума выполняет роль анализатора и синтезатора.

Экстремальный регулятор целесообразно использовать только тогда, когда функция характеризующая показатель качества, является «плавающей» (рис. 12.3), т. е. как сама величина так и

соответствующее ей значение существенно меняются неконтролируемым образом.

Обычно показатель качества зависит от нескольких регулирующих воздействий, т. е. В точке экстремума

где - базисные векторы.

Рис. 12.3. Экстремальные характеристики

Таким образом, экстремальная система должна обеспечить движение рабочей точки по поверхности в пространстве до точки, где Для осуществления такого движения необходимо, во-первых, определить градиент и, во-вторых, в соответствии со значением градиента организовать движение к точке экстремума.

Рис. 12.4. Синхронное детектирование

Первая задача - определение градиента - может решаться несколькими способами, наиболее распространенными из которых являются способы синхронного детектирования, непосредственного измерения производной и запоминания и удержания экстремума.

Способ синхронного детектирования основан на том (рис. 12.4), что для ориентации рабочей точки относительно экстремума

показателя качества к основным медленно меняющимся входным сигналам добавляются малые гармонические (обычно периодические) составляющие. Синхронные детекторы выполняют операцию умножения функции на соответствующие гармонические составляющие и операцию усреднения во времени этих произведений. В результате на выходах синхронных детекторов получаются величины, пропорциональные с точностью до малых высших порядков составляющим градиента в точке

Действительно, разложим функцию в окрестности точки в ряд Тейлора:

После умножения выражения (12.1) на и усреднения получим

Если учесть, что при медленном изменении справедливы соотношения:

то выражение (12.2) можно привести к виду

где погрешность, имеющая больший, чем первое слагаемое, порядок малости.

В результате на выходах синхронных детекторов получаются сигналы

Способ непосредственного измерения производной предполагает дифференцирование функции по времени. Для производной, имеем

Допустим, что имеется возможность задавать поочередно величины }