Модели множественной регрессии вводятся для. Модель множественной линейной регрессии

Скользящая средняя позволяет прекрасно сглаживать данные. Но ее главный недостаток заключатся в том, что каждое значение в исходных данных для нее имеет одинаковый вес. Например, для средней скользящей использующей период шести недель каждому значению для каждой недели уделяется 1/6 веса. В случае некоторых собранных статистических данных более актуальным значениям присваивается больший вес. Поэтому экспоненциальное сглаживание применятся для того, чтобы придать самым актуальным данным большего веса. Таким образом решается данная статистическая проблема.

Формула расчета метода экспоненциального сглаживания в Excel

Ниже на рисунке изображен отчет спроса на определенный продукт за 26 недель. Столбец «Спрос» содержит информацию о количестве проданного товара. В столбце «Прогноз» – формула:

В столбце «Скользящая средняя» определяется прогнозируемый спрос, рассчитанный с помощью обычного вычисления скользящей средней с периодом 6 недель:

В последнем столбце «Прогноз», с описанной выше формулой применяется метод экспоненциального сглаживания данных в которых значения последних недель имеет больший вес чем предыдущих.

Коэффициент «Альфа:» вводится в ячейке G1, он значит вес присвоения наиболее актуальным данным. В данном примере он имеет значение 30%. Остальные 70% веса распределяется на остальные данные. То есть второе значение с точки зрения актуальности (с право на лево) имеет вес равный 30% от оставшихся 70% веса – это 21%, третье значение имеет вес равен 30% от остальной части 70% веса – 14,7% и так далее.



График экспоненциального сглаживания

Ниже на рисунке изображен график спроса, среднее скользящие и прогноз методом экспоненциального сглаживания, который построен на основе исходных значений:


Обратите внимание, что прогноз с экспоненциальным сглаживанием более активно реагирует на изменения спроса чем скользящая средняя линия.

Данные для очередных предыдущих недель умножаются на коэффициент альфа, а результат добавляется к оставшейся части процентов веса умноженный на предыдущее прогнозируемое значение.

9 5. Метод экспоненциального сглаживания. Выбор постоянной сглаживания

При использовании метода наименьших квадратов для определения прогнозной тенденции (тренда) заранее предполагают, что все ретроспективные данные (наблюдения) обладают одинаковой информативностью. Очевидно, логичнее было бы учесть процесс дисконтирования исходной информации, то есть неравноценность этих данных для разработки прогноза. Это достигается в методе экспоненциального сглаживания путем придания последним наблюдения динамического ряда (то есть значениям, непосредственно предшествующим периоду упреждения прогноза) более значимых «весов» по сравнению с начальными наблюдениями. К достоинствам метода экспоненциального сглаживания следует также отнести простоту вычислительных операций и гибкость описания различных динамик процесса. Наибольшее применения метод нашел для реализации среднесрочных прогнозов .

5.1. Сущность метода экспоненциального сглаживания

Сущность метода состоит в том, что динамический ряд сглаживается с помощью взвешенной «скользящей средней», в которой веса подчиняются экспоненциальному закону. Другими словами, чем дальше от конца временного ряда отстоит точка, для которой вычисляется взвешенная скользящая средняя, тем меньше «участия она принимает» в разработке прогноза.

Пусть исходный динамический ряд состоит из уровней (составляющих ряда) y t , t = 1 , 2 ,...,n . Для каждыхm последовательных уровней этого ряда

(m

динамическому ряду с шагом, равным единице. Если m – нечетное число, а предпочтительно брать нечетное число уровней, поскольку в этом случае расчетное значение уровня окажется в центре интервала сглаживания и им легко заменить фактическое значение, то для определения скользящей средней можно записать следующую формулу:

t+ ξ

t+ ξ

∑ y i

∑ y i

i= t− ξ

i= t− ξ

2ξ + 1

где y t – значение скользящей средней для моментаt (t = 1 , 2 ,...,n );y i – фактическое значение уровня в моментi ;

i – порядковый номер уровня в интервале сглаживания.

Величина ξ определяется из продолжительности интервала сглаживания.

Поскольку

m =2 ξ +1

при нечетном m , то

ξ = m 2 − 1 .

Расчет скользящей средней при большом числе уровней можно упростить, определяя последовательные значения скользящей средней рекурсивно:

y t= y t− 1 +

yt + ξ

− y t − (ξ + 1 )

2ξ + 1

Но исходя из того, что последним наблюдениям необходимо придать больший «вес», скользящее среднее нуждается в ином толковании. Оно заключается в том, что полученная с помощью усреднения величина заменяет не центральный член интервала усреднения, а его последний член. Соответственно этому последнее выражение можно переписать в виде

M i = Mi + 1

y i− y i− m

Здесь скользящая средняя, относимая к концу интервала, обозначена новым символом M i . По существу,M i равноy t , сдвинутому наξ шагов вправо, то естьM i = y t + ξ , гдеi = t + ξ .

Учитывая, что M i − 1 является оценкой величиныy i − m , выражение (5.1)

можно переписать в виде

y i+ 1

M i − 1 ,

M i , определяемой выражением (5.1).

где M i является оценкой

Если вычисления (5.2) повторять по мере поступления новой информации

и переписать в ином виде, то получим сглаженную функцию наблюдений:

Q i= α y i+ (1 − α ) Q i− 1 ,

или в эквивалентной форме

Q t= α y t+ (1 − α ) Q t− 1

Вычисления, проводимые по выражению (5.3) с каждым новым наблюдением, называются экспоненциальным сглаживанием. В последнем выражении для отличия экспоненциального сглаживания от скользящего среднего введено обозначение Q вместоM . Величинаα , являющаяся

аналогом m 1 , называется постоянной сглаживания. Значенияα лежат в

интервале [ 0 , 1 ] . Еслиα представить в виде ряда

α + α(1 − α) + α(1 − α) 2 + α(1 − α) 3 + ... + α(1 − α) n ,

то нетрудно заметить, что «веса» убывают по экспоненциальному закону во времени. Например, для α = 0 , 2 получим

0,2 + 0,16 + 0,128 + 0,102 + 0,082 + …

Сумма ряда стремится к единице, а члены суммы убывают со временем.

Величина Q t в выражении (5.3) представляет собой экспоненциальную среднюю первого порядка, то есть среднюю, полученную непосредственно при

сглаживании данных наблюдения (первичное сглаживание). Иногда при разработке статистических моделей полезно прибегнуть к расчету экспоненциальных средних более высоких порядков, то есть средних, получаемых путем многократного экспоненциального сглаживания.

Общая запись в рекуррентной форме экспоненциальной средней порядка k имеет вид

Q t (k)= α Q t (k− 1 )+ (1 − α ) Q t (− k1 ).

Величина k изменяется в пределах1, 2, …, p ,p+1 , гдеp – порядок прогнозного полинома (линейного, квадратичного и так далее).

На основе этой формулы для экспоненциальной средней первого, второго и третьего порядков получены выражения

Q t (1 )= α y t + (1 − α ) Q t (− 1 1 );

Q t (2 )= α Q t (1 )+ (1 − α ) Q t (− 2 1 ); Q t (3 )= α Q t (2 )+ (1 − α ) Q t (− 3 1 ).

5.2. Определение параметров прогнозной модели методом экспоненциального сглаживания

Очевидно, что для разработки прогнозных значений на основе динамического ряда методом экспоненциального сглаживания необходимо вычислить коэффициенты уравнения тренда через экспоненциальные средние. Оценки коэффициентов определяются по фундаментальной теореме БраунаМейера, связывающей коэффициенты прогнозирующего полинома с экспоненциальными средними соответствующих порядков:

(− 1 )

aˆ p

α (1 − α )∞

−α )

j (p − 1 + j ) !

∑ j

p= 0

p! (k− 1 ) !j = 0

где aˆ p – оценки коэффициентов полинома степенир .

Коэффициенты находятся решением системы (p + 1 ) уравнений сp + 1

неизвестными.

Так, для линейной модели

aˆ 0 = 2 Q t (1 ) − Q t (2 ) ; aˆ 1 = 1 − α α (Q t (1 )− Q t (2 )) ;

для квадратичной модели

aˆ 0 = 3 (Q t (1 )− Q t (2 )) + Q t (3 );

aˆ 1 =1 − α α [ (6 −5 α ) Q t (1 ) −2 (5 −4 α ) Q t (2 ) +(4 −3 α ) Q t (3 ) ] ;

aˆ 2 = (1 − α α ) 2 [ Q t (1 )− 2 Q t (2 )+ Q t (3 )] .

Прогноз реализуется по выбранному многочлену соответственно для линейной модели

ˆyt + τ = aˆ0 + aˆ1 τ ;

для квадратичной модели

ˆyt + τ = aˆ0 + aˆ1 τ + aˆ 2 2 τ 2 ,

где τ – шаг прогнозирования.

Необходимо отметить, что экспоненциальные средние Q t (k ) можно вычислить только при известном (выбранном) параметре, зная начальные условияQ 0 (k ) .

Оценки начальных условий, в частности, для линейной модели

Q (1 )= a

1 − α

Q(2 ) = a− 2 (1 − α ) a

для квадратичной модели

Q (1 )= a

1 − α

+ (1 − α )(2 − α ) a

2(1− α )

(1− α )(3− 2α )

Q 0(2 ) = a 0−

2α 2

Q (3 )= a

3(1− α )

(1 − α )(4 − 3 α ) a

где коэффициенты a 0 иa 1 вычисляются методом наименьших квадратов.

Величина параметра сглаживания α приближенно вычисляется по формуле

α ≈ m 2 + 1 ,

где m – число наблюдений (значений) в интервале сглаживания. Последовательность вычисления прогнозных значений представлена на

Расчет коэффициентов ряда методом наименьших квадратов

Определение интервала сглаживания

Вычисление постоянной сглаживания

Вычисление начальных условий

Вычисление экспоненциальных средних

Вычисление оценок a 0 , a 1 и т.д.

Расчет прогнозных значений ряда

Рис. 5.1. Последовательность вычисления прогнозных значений

В качестве примера рассмотрим процедуру получения прогнозного значения безотказной работы изделия, выражаемой наработкой на отказ.

Исходные данные сведены в табл. 5.1.

Выбираем линейную модель прогнозирования в виде y t = a 0 + a 1 τ

Решение осуществим со следующими значениями начальных величин:

a 0 , 0 = 64, 2; a 1 , 0 = 31, 5; α = 0, 305.

Таблица 5.1. Исходные данные

Номер наблюдения, t

Длина шага, прогнозирования, τ

Наработка на отказ, y (час)

При этих значениях вычисленные «сглаженные» коэффициенты для

величины y 2 будут равны

= α Q (1 )− Q (2 )= 97 , 9 ;

[ Q (1 )− Q (2 )

31, 9 ,

1− α

при начальных условиях

1 − α

A 0 , 0 −

a 1, 0

= −7 , 6

1 − α

= −79 , 4

и экспоненциальных средних

Q (1 )= α y + (1 − α ) Q (1 )

25, 2;

Q (2 )

= α Q (1 )

+ (1 −α ) Q (2 ) = −47 , 5 .

«Сглаженная» величина y 2 при этом вычисляется по формуле

Q i (1 )

Q i (2 )

a 0 ,i

a 1 ,i

ˆyt

Таким образом (табл. 5.2), линейная прогнозная модель имеет вид

ˆy t + τ = 224, 5+ 32τ .

Вычислим прогнозные значения для периодов упреждения в 2 года (τ = 1 ), 4 года (τ = 2 ) и так далее наработки на отказ изделия (табл. 5.3).

Таблица 5.3. Прогнозные значенияˆy t

Уравнение

t + 2

t + 4

t + 6

t + 8

t + 20

регрессии

(τ = 1 )

(τ = 2 )

(τ = 3 )

(τ = 5 )

τ =

ˆy t = 224, 5+ 32τ

Следует отметить, что суммарный «вес» последних m значений временного ряда можно вычислить по формуле

c = 1 − (m (− 1 ) m ) . m+ 1

Так, для двух последних наблюдений ряда (m = 2 ) величинаc = 1 − (2 2 − + 1 1 ) 2 = 0 , 667 .

5.3. Выбор начальных условий и определение постоянной сглаживания

Как следует из выражения

Q t= α y t+ (1 − α ) Q t− 1 ,

при проведении экспоненциального сглаживания необходимо знать начальное (предыдущее) значение сглаживаемой функции. В некоторых случаях за начальное значение можно взять первое наблюдение, чаще начальные условия определяются согласно выражениям (5.4) и (5.5). При этом величины a 0 , 0 ,a 1 , 0

и a 2 , 0 определяются методом наименьших квадратов.

Если мы не очень доверяем выбранному начальному значению, то, взяв большое значение постоянной сглаживания α черезk наблюдений, мы доведем

«вес» начального значения до величины (1 − α ) k << α , и оно будет практически забыто. Наоборот, если мы уверены в правильности выбранного начального значения и неизменности модели в течение определенного отрезка времени в будущем,α может быть выбрано малым (близким к 0).

Таким образом, выбор постоянной сглаживания (или числа наблюдений в движущейся средней) предполагает принятие компромиссного решения. Обычно, как показывает практика, величина постоянной сглаживания лежит в пределах от 0,01 до 0,3.

Известно несколько переходов, позволяющих найти приближенную оценку α . Первый вытекает из условия равенства скользящей и экспоненциальной средней

α = m 2 + 1 ,

где m – число наблюдений в интервале сглаживания. Остальные подходы связываются с точностью прогноза.

Так, возможно определение α исходя из соотношения Мейера:

α ≈ S y ,

где S y – среднеквадратическая ошибка модели;

S 1 – среднеквадратическая ошибка исходного ряда.

Однако использование последнего соотношения затруднено тем, что достоверно определить S y иS 1 из исходной информации весьма сложно.

Часто параметр сглаживания, а заодно и коэффициенты a 0 , 0 иa 0 , 1

подбирают оптимальными в зависимости от критерия

S 2 = α ∑ ∞ (1 − α ) j [ yij − ˆyij ] 2 → min

j= 0

путем решения алгебраической системы уравнений, которую получают, приравнивая к нулю производные

∂ S2

∂ S2

∂ S2

∂ a 0, 0

∂ a 1, 0

∂ a 2, 0

Так, для линейной модели прогнозирования исходный критерий равен

S 2 = α ∑ ∞ (1 − α ) j [ yij − a0 , 0 − a1 , 0 τ ] 2 → min.

j= 0

Решение этой системы с помощью ЭВМ не представляет никаких сложностей.

Для обоснованного выбора α также можно использовать процедуру обобщенного сглаживания, которая позволяет получить следующие соотношения, связывающие дисперсию прогноза и параметр сглаживания для линейной модели:

S п 2 ≈[ 1 + α β ] 2 [ 1 +4 β +5 β 2 +2 α (1 +3 β ) τ +2 α 2 τ 3 ] S y 2

для квадратичной модели

S п 2≈ [ 2 α + 3 α 3+ 3 α 2τ ] S y 2,

где β = 1 α ;S y – СКО аппроксимации исходного динамического ряда.

Простая и логически ясная модель временного ряда имеет следующий вид:

где b - константа, а ε - случайная ошибка. Константа b относительно стабильна на каждом временном интервале, но может также медленно изменяться со временем. Один из интуитивно ясных способов выделения значения b из данных состоит в том, чтобы использовать сглаживание скользящим средним, в котором последним наблюдениям приписываются большие веса, чем предпоследним, предпоследним большие веса, чем пред- предпоследним, и т.д. Простое экспоненциальное сглаживание именно так и построено. Здесь более старым наблюдениям приписываются экспоненциально убывающие веса, при этом, в отличие от скользящего среднего, учитываются все предшествующие наблюдения ряда, а не только те, которые попали в определенное окно. Точная формула простого экспоненциального сглаживания имеет вид:

Когда эта формула применяется рекурсивно, каждое новое сглаженное значение (которое является также прогнозом) вычисляется как взвешенное среднее текущего наблюдения и сглаженного ряда. Очевидно, результат сглаживания зависит от параметра α . Если α равен 1, то предыдущие наблюдения полностью игнорируются. Если а равен 0, то игнорируются текущие наблюдения. Значения α между 0 и 1 дают промежуточные результаты. Эмпирические исследования показали, что простое экспоненциальное сглаживание весьма часто дает достаточно точный прогноз.

На практике обычно рекомендуется брать α меньше 0,30. Однако выбор а больше 0,30 иногда дает более точный прогноз. Это значит, что лучше все же оценивать оптимальное значение α по реальным данным, чем использовать общие рекомендации.

На практике оптимальный параметр сглаживания часто ищется с использованием процедуры поиска на сетке. Возможный диапазон значений параметра разбивается сеткой с определенным шагом. Например, рассматривается сетка значений от α =0,1 до α = 0,9 с шагом 0,1. Затем выбирается такое значение α , для которого сумма квадратов (или средних квадратов) остатков (наблюдаемые значения минус прогнозы на шаг вперед) является минимальной.

Microsoft Excel располагает функцией Экспоненциальное сглаживание (Exponential Smoothing), которая обычно используется для сглаживания уровней эмпирического временного ряда на основе метода простого экспоненциального сглаживания. Для вызова этой функции необходимо на панели меню выбрать команду Tools - Data Analysis. На экране раскроется окно Data Analysis, в котором следует выбрать значение Экспоненциальное сглаживание. В результате появится диалоговое окно Экспоненциальное сглаживание , представленное на рис. 11.5.


В диалоговом окне Exponential Smoothing задаются практически те же параметры, го и в рассмотренном выше диалоговом окне Moving Average.

1. Input Range (Входные данные) - в это поле вводится диапазон ячеек, содержащих значения исследуемого параметра.

2. Labels (Метки) - данный флажок опции устанавливается в том случае, если первая строка (столбец) во входном диапазоне содержит заголовок. Если заголовок отсутствует, флажок следует сбросить. В этом случае для данных выходного диапазона будут автоматически созданы стандартные названия.

3. Damping factor (Фактор затухания) - в это поле вводится значение выбранного коэффициента экспоненциального сглаживания α . По умолчанию принимается значение α = 0,3.

4. Output options (Параметры вывода) - в этой группе, помимо указания диапазона ячеек для выходных данных в поле Output Range (Выходной диапазон), можно также потребовать автоматически построить график, для чего необходимо установить флажок опции Chart Output (Вывод графика), и рассчитать стандартные погрешности, для чего нужно установить флажок опции Standart Errors (Стандартные погрешности).

Воспользуемся функцией Экспоненциальное сглаживание для повторного решения рассмотренной выше задачи, но уже с помощью метода простого экспоненциального сглаживания. Выбранные значения параметров сглаживания представлены на рис. 11.5. На рис. 11.6 показаны рассчитанные показатели, а на рис. 11.7 - построенные графики.

Цель : необходимо научиться определять параметры уравнения множественной линейной регрессии, используя ме­тод наименьших квадратов (МНК), рассчитывать коэффициент множественной корреляции.

Ключевые слова : линейная модель множественной регрессии, матрица парных коэффициентов корреляции, коэффициент множественной детерминации, индекс корреляции.

План лекции:

1. Классическая нормальная линейная модель множественной регрессии.

2. Оценка параметров линейной модели множественной регрессии.

3. Множественная и частная корреляция.

1.Классическая нормальная линейная модель множественной регрессии.

Экономические явления, как правило, определяются большим числом одновременно действующих факторов. В качестве примера такой связи можно рассматривать зависимость доходности финансовых активов от следующих факторов: темпов прироста ВВП, уровня процентных ставок, уровня инфляции и уровня цен на нефть.

В связи с этим возникает задача исследования зависимости одной зависимой переменной у от нескольких объясняющих факторных переменных х 1 , х 2 ,…, х n , оказывающих на нее влияние. Эта задача решается с помощью множественного регрессионного анализа .

Как и в парной зависимости, используются разные виды уравнений множественной регрессии: линейные и нелинейные.

Ввиду четкой интерпретации параметров наиболее широко используются линейная и степенная функции.

В линейной множественной регрессии параметры при количественной объясняющей переменной интерпретируется как среднее изменение результирующей переменной при единичном изменении самой объясняющей переменной и неизменных значениях остальных независимых переменных.

Пример. Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:

где у – расходы семьи за месяц на продукты питания, тыс.тг.

х 1 – среднемесячный доход на одного члена семьи, тыс.тг.

х 2 – размер семьи, человек.

Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс.тг. расходы на питание возрастут в среднем на 350 тг. при том же размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же доходах предполагает дополнительный рост расходов на питание на 730 тг.

В степенной функции коэффициенты b j являются коэффициентами эластичности. Они показывают, на сколько процентов в среднем изменяется результат с изменением соответствующего фактора на 1% при неизменности действия других факторов.

Пример. Предположим, что при исследовании спроса на мясо получено уравнение

,

где у – количество спроса на мясо,


х 1 – цена,

х 2 – доход.

Следовательно, рост цен на 1% при том же доходе вызывает снижение спроса в среднем на 2,63%. Увеличение дохода на 1% обуславливает при неизменных ценах рост спроса на 1,11%.

где b 0 , b 1 ,…,b k – параметры модели, а ε – случайный член, называется классической нормальной линейной регрессионной моделью , если выполняются следующие условия (называемые условиями Гаусса-Маркова):

1. Математическое ожидание случайного члена в любом наблюдении должно быть равно нулю, т.е. .

2. Дисперсия случайного члена должна быть постоянной для всех наблюдений, т.е. .

3. Случайные члены должны быть статистически независимы (некоррелированы) между собой, .

4. - есть нормально распределенная случайная величина.

2.Оценка параметров линейной модели множественной регрессии.

Параметры уравнения множественной регрессии оцениваются методом наименьших квадратов. При его применении строится система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии.

Так, для уравнения система нормальных уравнений составит:

Ее решение может быть осуществлено методом Крамера:

,

где ∆ - определитель системы,

Частные определители.

,

а получаются путем замены соответствующего столбца определителя системы столбцом свободных членов.

Рассмотрим линейную модель зависимости результативного признака у от двух факторных признаков и . Эта модель имеет вид:

Для нахождения параметров и решается система нормальных уравнений:

3.Множественная и частная корреляция.

Многофакторная система требует множество показателей тесноты связей, имеющих разный смысл и применение. Основой измерения связей факторными признаками является матрица парных коэффициентов корреляции, которые определяются по формуле:

На основе парных коэффициентов корреляции вычисляется наиболее общий показатель тесноты связи всех входящих в уравнение регрессии факторов с результирующим признаком – коэффициент множественной детерминации как частное от деления определителя матрицы на опрделитель матрицы ∆: , где

;

.

Этим способом можно определить коэффициент детерминации, не вычисляя расчетных значений результативного признака для всех единиц совокупности, если совокупность состоит из сотен и тысяч единиц.

Классический метод наименьших квадратов (МНК) для модели множественной регрессии. Свойства оценок МНК для модели множественной регрессии и показатели качества подбора регрессии: коэффициент множественной корреляции, коэффициенты частной корреляции, коэффициент множественной детерминации

Мультиколлинœеарность факторов. Признаки мультиколлинœеарности и способы ее устранения. Гомоскедастичность и гетероскедастичность остатков. Графический метод обнаружения гетероскедастичности. Причины и последствия гетероскедастичности.

МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ

На любой экономический показатель чаще всœего оказывает влияние не один, а несколько факторов. В этом случае вместо парной регрессии рассматривается множественная регрессия

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и в ряде других вопросов экономики. Сегодня множественная регрессия – один из наиболее распространенных методов в эконометрике. Основной целью множественной регрессии является построение модели с большим числом факторов, а также определœение влияния каждого фактора в отдельности и совокупного их воздействия на моделируемый показатель.

Множественный регрессионный анализ является развитием парного регрессионного анализа в случаях, когда зависимая переменная связана более чем с одной независимой переменной. Большая часть анализа является непосредственным расширением парной регрессионной модели, но здесь также появляются и некоторые новые проблемы, из которых следует выделить две. Первая проблема касается исследования влияния конкретной независимой переменной на зависимую переменную, а также разграничения её воздействия и воздействий других независимых переменных. Второй важной проблемой является спецификация модели, которая состоит в том, что крайне важно ответить на вопрос, какие факторы следует включить в регрессию (1), а какие – исключить из неё.

Самой употребляемой и наиболее простой из моделœей множественной регрессии является линœейная модель множественной регрессии:

Параметр α принято называть свободным членом и определяет значение y в случае, когда всœе объясняющие переменные равны нулю. При этом, как и в случае парной регрессии, факторы по своему экономическому содержанию часто не могут принимать нулевых значений, и значение свободного члена не имеет экономического смысла. При этом, в отличие от парной регрессии, значение каждого регрессионного коэффициента равно среднему изменению y при увеличении x j на одну единицу лишь при условии, что всœе остальные факторы остались неизменными. Величина ε представляет собой случайную ошибку регрессионной зависимости.

Получение оценок параметров уравнения регрессии (2) – одна из важнейших задач множественного регрессионного анализа. Самым распространенным методом решения этой задачи является метод наименьших квадратов (МНК). Его суть состоит в минимизации суммы квадратов отклонений наблюдаемых значений зависимой переменной y от её значений , получаемых по уравнению регрессии.

Пусть имеется n наблюдений объясняющих переменных и соответствующих им значений результативного признака:

Для однозначного определœения значений параметров уравнения (4) объём выборки n должен быть не меньше количества параметров, ᴛ.ᴇ. . В противном случае значения параметров не бывают определœены однозначно. В случае если n=p +1, оценки параметров рассчитываются единственным образом без МНК простой подстановкой значений (5) в выражение (4). Получается система (p +1) уравнений с таким же количеством неизвестных, которая решается любым способом, применяемым к системам линœейных алгебраических уравнений (СЛАУ). При этом с точки зрения статистического подхода такое решение задачи является ненадежным, поскольку измеренные значения переменных (5) содержат различные виды погрешностей. По этой причине для получения надежных оценок параметров уравнения (4) объём выборки должен значительно превышать количество определяемых по нему параметров. Практически, как было сказано ранее, объём выборки должен превышать количество параметров при x j в уравнении (4) в 6-7 раз.

Линейная модель множественной регрессии - понятие и виды. Классификация и особенности категории "Линейная модель множественной регрессии" 2017, 2018.