Ядерные ракетные двигатели. Ядерные ракетные двигатели и ядерные ракетные электродвигательные установки

Ракетные двигатели на жидком топливе дали человеку возможность выйти в космос — на околоземные орбиты. Однако подобные ракеты сжигают 99% топлива за первые несколько минут полёта. Остатка топлива может не хватить для путешествия на другие планеты, да и скорость будет настолько малой, что вояж займёт десятки или сотни лет. Решить проблему могут ядерные двигатели. Как? Будем разбираться вместе.

Принцип работы реактивного двигателя очень прост: он переводит топливо в кинетическую энергию струи (закон сохранения энергии), за счёт направления этой струи ракета движется в пространстве (закон сохранения импульса). Важно понимать, что мы не можем разогнать ракету или самолёт до скорости большей, чем скорость истечения топлива — раскалённого газа, выбрасываемого назад.

Космический аппарат New Horizons

Что же отличает эффективный двигатель от неудачного или устаревшего аналога? Прежде всего то, сколько топлива потребуется двигателю, чтобы разогнать ракету до нужной скорости. Этот важнейший параметр ракетного двигателя называется удельный импульс , который определяется как отношение общего импульса к расходу топлива: чем больше этот показатель, тем эффективнее ракетный двигатель. Если ракета практически целиком состоит из топлива (это означает, что в ней нет места для полезного груза, предельный случай), удельный импульс можно считать равным скорости истечения топлива (рабочего тела) из ракетного сопла. Запуск ракеты — крайне дорогостоящее мероприятие, учитывается каждый грамм не только полезного груза, но и топлива, которое тоже весит и занимает место. Поэтому инженеры подбирают всё более и более активное горючее, единица которой давала бы максимальную отдачу, увеличивая удельный импульс.

Подавляющее большинство ракет в истории и современности было оборудовано двигателями, использующими химическую реакцию горения (окисления) топлива.

Они позволили достичь Луны, Венеры, Марса и даже планет дальнего пояса — Юпитера, Сатурна и Нептуна. Правда, космические экспедиции заняли месяцы и годы (автоматические станции Pioneer, Voyager, New Horizons и др.). Необходимо отметить, что все подобные ракеты расходуют значительную часть топлива для отрыва от Земли, и далее продолжают полёт по инерции с редкими моментами включения двигателя.

Космический аппарат Pioneer

Подобные двигатели подходят для вывода ракет на околоземную орбиту, но, чтобы её разогнать хотя бы до четверти скорости света, понадобится невероятное количество топлива (расчёты показывают, что нужно 103200 грамм топлива, при том, что масса нашей Галактики не более 1056 грамма). Очевидно, что для достижения ближайших планет, а тем более звёзд, нам необходимы достаточно большие скорости, обеспечить которые жидкотопливные ракеты не в состоянии.

​Газофазный ядерный двигатель

Дальний космос — дело совсем другое. Взять хотя бы Марс, «обжитый» фантастами вдоль и поперёк: он хорошо изучен и научно перспективен, а самое главное — близок как никто другой. Дело — за «космическим автобусом», который сможет доставить туда экипаж за разумное время, то есть, как можно быстрее. Но с межпланетным транспортом есть проблемы. Его сложно разогнать до нужной скорости, сохранив при этом приемлемые размеры и потратив разумное количество топлива.


RS-25 (Rocket System 25) — жидкостный ракетный двигатель компании Рокетдайн, США. Применялся на планере космической транспортной системы «Space Shuttle», на каждом из которых было установлено три таких двигателя. Более известен как двигатель SSME (англ. Space Shuttle Main Engine — главный двигатель космического челнока). Основными компонентами топлива являются жидкий кислород (окислитель) и водород (горючее). RS-25 использует схему закрытого цикла (с дожиганием генераторного газа).

Решением может быть «мирный атом», толкающий космические корабли. О создании лёгкого и компактного устройства, способного вывести на орбиту хотя бы самого себя, инженеры задумались ещё в конце 50‑х годов прошлого века. Главное отличие ядерных двигателей от ракет с двигателями внутреннего сгорания в том, что кинетическая энергия получается не за счёт сгорания топлива, а за счёт тепловой энергии распада радио­активных элементов. Давайте сравним эти подходы.

Из жидкостных двигателей выходит раскалённый «коктейль» выхлопных газов (закон сохранения импульса), образующихся при реакции топлива и окислителя (закон сохранения энергии). В большинстве случаев это комбинация кислорода и водорода (результат горения водорода — обычная вода). H2O обладает гораздо большей молярной массой, чем водород или гелий, поэтому её труднее разогнать, удельный импульс для подобного двигателя 4 500 м/с.

Наземные испытания NASA новой системы запуска космических ракет, 2016 год (штат Юта, США). Эти двигатели будут установлены на космический корабль Orion, на котором планируется миссия на Марс.

В ядерных двигателях предлагается использовать только водород и разгонять (разогревать) его за счёт энергии ядерного распада. Тем самым идёт экономия на окислителе (кислороде), что уже замечательно, но не всё. Так как у водорода относительно малая удельная масса, нам проще его разогнать до более высоких скоростей. Конечно, можно использовать и другие тепловосприимчивые газы (гелий, аргон, аммиак и метан), но все они не менее чем в два раза проигрывают водороду в самом главном — достижимом удельном импульсе (более 8 км/c).

Так стоит ли его терять? Выигрыш настолько велик, что инженеров не останавливает ни сложность конструкции и управления реактором, ни его большой вес, ни даже радиационная опасность. Тем более никто и не собирается стартовать с поверхности Земли — сборка таких кораблей будет вестись на орбите.

​«Летающий» реактор

Как работает ядерный двигатель? Реак­тор в космическом двигателе намного меньше и компактнее своих наземных аналогов, но все основные компоненты и механизмы управления принципиально те же. Реактор выступает в роли нагревателя, в который подаётся жидкий водород. Температуры в активной зоне достигают (и могут превышать) 3000 градусов. Затем разогретый газ выпускают через сопло.

Однако такие реакторы испускают вредные радиационные излучения. Для защиты экипажа и многочисленного электронного оборудования от радиации нужны основательные меры. Поэтому проекты межпланетных кораблей с атомным движком часто напоминают зонтик: двигатель располагается в экранированном отдельном блоке, соединённом с основным модулем длинной фермой или трубой.

«Камерой сгорания» ядерного двигателя служит активная зона реактора, в которой подаваемый под большим давлением водород нагревается до 3000 и более градусов. Этот предел определяется только жаропрочностью материалов реактора и свойствами топлива, хотя повышение температуры увеличивает удельный импульс.

Тепловыделяющие элементы — это жаропрочные ребристые (для повышения площади теплоотдачи) цилиндры-«стаканы», заполненные урановыми таблетками. Они «омываются» потоком газа, играющего роль и рабочего тела, и охладителя реактора. Вся конструкция изолирована бериллиевыми экранами-отражателями, не выпускающими опасное радиационное излучение наружу. Для управления выделением тепла рядом с экранами расположены специальные поворотные барабаны

Существует ряд перспективных конструкций ядерных ракетных двигателей, реализация которых ждёт своего часа. Ведь в основном они будут применяться в межпланетных путешествиях, которые, судя по всему, уже не за горами.

Проекты ядерных двигателей

Эти проекты были заморожены по разным причинам — недостаток денег, сложность конструкции или даже необходимость сборки и установки в открытом космосе.

«ОРИОН» (США, 1950–1960)

Проект пилотируемого ядерно-импульсного космического корабля («взрыволёт») для исследования межпланетного и межзвёздного ­пространства.

Принцип работы. Из двигателя корабля, в направлении противоположном полёту, выбрасывается ядерный заряд небольшого эквивалента и подрывается на сравнительно малой дистанции от корабля (до 100 м). Ударная сила отражается от массивной отражающей плиты в хвосте корабля, «толкая» его вперёд.

«ПРОМЕТЕЙ» (США, 2002–2005)

Проект космического агентства NASA по разработке ядерного двигателя для космических аппаратов.

Принцип работы. Двигатель космического корабля должен был состоять из ионизированных частиц, создающих тягу, и компактного ядерного реактора, обеспечивающего установку энергией. Ионный двигатель создаёт тягу порядка 60 грамм, но сможет работать постоянно. В конечном счёте, корабль постепенно сможет набрать огромную скорость — 50 км/сек, затратив минимальное количество энергии.

«ПЛУТОН» (США, 1957–1964)

Проект по разработке ядерного прямоточного воздушно-реактивного двигателя.

Принцип работы. Воздух через переднюю часть транспортного средства попадает в ядерный реактор, в котором нагревается. Горячий воздух расширяется, приобретает большую скорость и высвобождается через сопло, обеспечивая необходимую тягу.

NERVA (США, 1952–1972)

(англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и NASA по созданию ядерного ракетного двигателя.

Принцип работы. Жидкий гидрогель подаётся в специальный отсек, в котором происходит его нагревание ядерным реактором. Горячий газ расширяется и высвобождается в сопле, создавая тягу.

Скептики утверждают, что создание ядерного двигателя - это не значительный прогресс в области науки и техники, а лишь «модернизация парового котла», где вместо угля и дров в качестве топлива выступает уран, а в качестве рабочего тела - водород. Настолько ли бесперспективен ЯРД (ядерный реактивный двигатель)? Попробуем разобраться.

Первые ракеты

Все заслуги человечества в освоении околоземного космического пространства можно смело отнести на счет химических реактивных двигателей. В основе работы таких силовых агрегатов - преобразование энергии химической реакции сжигания топлива в окислителе в кинетическую энергию реактивной струи, и, следовательно, ракеты. В качестве топлива используются керосин, жидкий водород, гептан (для жидкотопливных ракетных двигателей (ЖТРД)) и полимеризованная смесь перхлората аммония, алюминия и оксида железа (для твердотопливных (РДТТ)).

Общеизвестно, что первые ракеты, используемые для фейерверков, появились в Китае еще во втором столетии до нашей эры. В небо они поднимались благодаря энергии пороховых газов. Теоретические изыскания немецкого оружейника Конрада Хааса (1556), польского генерала Казимира Семеновича (1650), русского генерал-лейтенанта Александра Засядко внесли существенный вклад в развитие ракетной техники.

Патент на изобретение первой ракеты с ЖТРД получил американский ученый Роберт Годдард. Его аппарат при весе 5 кг и длине около 3 м, работавший на бензине и жидком кислороде, в 1926 году за 2,5 с. пролетел 56 метров.

В погоне за скоростью

Серьезные экспериментальные работы по созданию серийных химических реактивных двигателей стартовали в 30-х годах прошлого века. В Советском Союзе пионерами ракетного двигателестроения по праву считаются В. П. Глушко и Ф. А. Цандер. С их участием были разработаны силовые агрегаты РД-107 и РД-108, обеспечившие СССР первенство в освоении космического пространства и заложившие фундамент для будущего лидерства России в области пилотируемой космонавтики.

При модернизации ЖТРД стало ясно, что теоретическая максимальная скорость реактивной струи не сможет превысить 5 км/с. Для изучения околоземного пространства этого может быть и достаточно, но вот полеты к другим планетам, а тем более звездам останутся для человечества несбыточной мечтой. Как следствие, уже в середине прошлого века стали появляться проекты альтернативных (нехимических) ракетных двигателей. Наиболее популярными и перспективными выглядели установки, использующие энергию ядерных реакций. Первые экспериментальные образцы ядерных космических двигателей (ЯРД) в Советском Союзе и США прошли тестовые испытания еще в 1970 году. Однако после Чернобыльской катастрофы под нажимом общественности работы в этой области были приостановлены (в СССР в 1988 году, в США - с 1994).

В основе функционирования ядерных силовых установок лежат те же принципы, что и у термохимических. Различие заключается лишь в том, что нагрев рабочего тела осуществляется энергией распада или синтеза ядерного горючего. Энергетическая эффективность таких двигателей значительно превосходит химические. Так например, энергия, которую может выделить 1 кг самого лучшего топлива (смесь бериллия с кислородом) - 3×107 Дж, тогда как для изотопов полония Po210 эта величина составляет 5×1011 Дж.

Высвобождаемая энергия в ядерном двигателе может использоваться различными способами:

нагревая рабочее тело, испускаемое через сопла, как в традиционном ЖРД,после преобразования в электрическую, ионизируя и разгоняя частицы рабочего тела,создания импульса непосредственно продуктами деления или синтеза.В качестве рабочего тела может выступать даже обычная вода, но гораздо эффективнее будет применение спирта, аммиака или жидкого водорода. В зависимости от агрегатного состояния топлива для реактора ядерные двигатели ракет подразделяют на твердо-, жидко- и газофазные. Наиболее проработан ЯРД с твердофазным реактором деления, использующий в качестве топлива ТВЭЛы (тепловыделяющие элементы), применяемые на атомных электростанциях. Первый такой двигатель в рамках американского проекта Nerva прошел наземные тестовые испытания в 1966 году, проработав около двух часов.

Конструктивные особенности

В основе любого ядерного космического двигателя лежит реактор, состоящий из активной зоны и бериллиевого отражателя, размещенных в силовом корпусе. В активной зоне и происходит деление атомов горючего вещества, как правило, урана U238, обогащенного изотопами U235. Для придания процессу распада ядер определенных свойств, здесь же расположены и замедлители - тугоплавкие вольфрам или молибден. В случае если замедлитель включают в состав ТВЭЛов, реактор называют гомогенным, а если размещают отдельно - гетерогенным. В состав ядерного двигателя также входят блок подачи рабочего тела, органы управления, теневая радиационная защита, сопло. Конструктивные элементы и узлы реактора, испытывающие высокие термические нагрузки, охлаждаются рабочим телом, которое затем турбонасосным агрегатом нагнетается в тепловыделяющие сборки. Здесь происходит его нагрев почти до 3 000˚С. Истекая через сопло, рабочее тело создает реактивную тягу.

Типичными органами управления реактором служат регулирующие стержни и поворотные барабаны, выполненные из вещества, поглощающего нейтроны (бора или кадмия). Стержни размещают непосредственно в активной зоне или в специальных нишах отражателя, а поворотные барабаны - на периферии реактора. Перемещением стержней или поворотом барабанов изменяют количество делящихся ядер в единицу времени, регулируя уровень энерговыделения реактора, и, следовательно, его тепловую мощность.

Для снижения интенсивности нейтронного и гамма-излучения, опасного для всего живого, в силовом корпусе размещают элементы первичной реакторной защиты.

Повышение эффективности

Жидкофазный ядерный двигатель принципом работы и устройством аналогичен твердофазным, но жидкообразное состояние топлива позволяет увеличить температуру протекания реакции, а, следовательно, тягу силового агрегата. Так если для химических агрегатов (ЖТРД и РДТТ) максимальный удельный импульс (скорость истечения реактивной струи) - 5 420 м/с, для твердофазных ядерных и 10 000м/с - далеко не предел, то среднее значение этого показателя для газофазных ЯРД лежит в диапазоне 30 000 - 50 000 м/с.

Существуют проекты газофазного ядерного двигателя двух типов:

Открытого цикла, при котором ядерная реакция протекает внутри плазменного облака из рабочего тела, удерживаемого электромагнитным полем и поглощающего все образовавшееся тепло. Температура может достигать нескольких десятков тысяч градусов. В этом случае активную область окружает термостойкое вещество (например, кварц) - ядерная лампа, свободно пропускающая излучаемую энергию.В установках второго типа температура протекания реакции будет ограничена температурой плавления материала колбы. При этом энергетическая эффективность ядерного космического двигателя несколько снижается (удельный импульс до 15 000 м/с), но повышается экономичность и радиационная безопасность.

Практические достижения

Формально, изобретателем силовой установки на атомной энергии принято считать американского ученого и физика Ричарда Фейнмана. Старт масштабных работ по разработке и созданию ядерных двигателей для космических кораблей в рамках программы Rover был дан в научно-исследовательском центре Лос-Аламос (США) в 1955 году. Американские изобретатели отдали предпочтение установкам с гомогенным ядерным реактором. Первый экспериментальный образец «Киви-А» был собран на заводе при атомном центре в Альбукерке (Нью-Мексико, США) и испытан в 1959 году. Реактор располагался на стенде вертикально соплом вверх. В ходе испытаний нагретая струя отработанного водорода выбрасывалась непосредственно в атмосферу. И хотя ректор проработал на малой мощности всего лишь около 5 минут, успех вдохновил разработчиков.

В Советском Союзе мощный импульс подобным исследованиям придала состоявшаяся в 1959 году в Институте атомной энергии встреча «трех великих К» - создателя атомной бомбы И. В. Курчатова, главного теоретика отечественной космонавтики М. В. Келдыша и генерального конструктора советских ракет С. П. Королева. В отличие от американского образца советский двигатель РД-0410, разработанный в конструкторском бюро объединения «Химавтоматика» (Воронеж), имел гетерогенный реактор. Огневые испытания состоялись на полигоне вблизи г. Семипалатинска в 1978 году.

Стоит отметить, что теоретических проектов было создано довольно много, но до практической реализации дело так и не дошло. Причинами тому послужило наличие огромного количества проблем в материаловедении, нехватка человеческих и финансовых ресурсов.

Для заметки: важным практическим достижением стало проведение летных испытаний самолетов с ядерным двигателем. В СССР наиболее перспективным был экспериментальный стратегический бомбардировщик Ту-95ЛАЛ, в США - В-36.

Проект "Орион" или импульсные ЯРД

Для полетов в космосе ядерный двигатель импульсного действия впервые предложил использовать в 1945 году американский математик польского происхождения Станислав Улам. В последующее десятилетие идею развили и доработали Т. Тейлор и Ф. Дайсон. Суть сводится к тому, что энергия небольших ядерных зарядов, подрываемых на некотором расстоянии от толкающей платформы на днище ракеты, сообщает ей большое ускорение.

В ходе стартовавшего в 1958 году проекта «Орион» именно таким двигателем планировалось оснастить ракету, способную доставить людей на поверхность Марса или орбиту Юпитера. Экипаж, размещенный в носовом отсеке, был бы защищен от разрушительных воздействий гигантских ускорений демпфирующим устройством. Результатом детальной инженерной проработки стали маршевые испытания масштабного макета корабля для изучения устойчивости полета (вместо ядерных зарядов использовалась обычная взрывчатка). Из-за дороговизны проект был закрыт в 1965 году.

Схожие идеи создания «взрыволета» высказывал и советский академик А. Сахаров в июле 1961 года. Для вывода корабля на орбиту ученый предлагал использовать обычные ЖТРД.

Альтернативные проекты

Огромное количество проектов так и не вышли за рамки теоретических изысканий. Среди них было немало оригинальных и очень перспективных. Подтверждением служит идея силовой ядерной установки на делящихся фрагментах. Конструктивные особенности и устройство этого двигателя позволяют обходиться вообще без рабочего тела. Реактивная струя, обеспечивающая необходимые тяговые характеристики, формируется из отработанного ядерного материала. В основе реактора лежат вращающиеся диски с подкритической ядерной массой (коэффициент деления атомов меньше единицы). При вращении в секторе диска, находящегося в активной зоне, запускается цепная реакция и распадающиеся высокоэнергетические атомы направляются в сопло двигателя, образуя реактивную струю. Сохранившиеся целые атомы примут участие в реакции при следующих оборотах топливного диска.

Вполне работоспособны проекты ядерного двигателя для кораблей, выполняющих определенные задачи в околоземном пространстве, на базе РИТЭГов (радиоизотопных термоэлектрических генераторов), но для осуществления межпланетных, а тем более межзвездных перелетов такие установки малоперспективны.

Огромный потенциал у двигателей, работающих на ядерном синтезе. Уже на сегодняшнем этапе развития науки и техники вполне реализуема импульсная установка, в которой, подобно проекту «Орион», под днищем ракеты будут подрываться термоядерные заряды. Впрочем, и осуществление управляемого ядерного синтеза многие специалисты считают делом недалекого будущего.

Достоинства и недостатки ЯРД

К бесспорным преимуществам использования ядерных двигателей в качестве силовых агрегатов для космических летательных аппаратов следует отнести их высокую энергетическую эффективность, обеспечивающую высокий удельный импульс и хорошие тяговые показатели (до тысячи тонн в безвоздушном пространстве), внушительный энергозапас при автономной работе. Современный уровень научно-технического развития позволяет обеспечить сравнительную компактность такой установки.

Основной недостаток ЯРД, послуживший причиной сворачивания проектно-исследовательских работ - высокая радиационная опасность. Это особенно актуально при проведении наземных огневых тестов в результате которых возможно попадание в атмосферу вместе с рабочим телом и радиоактивных газов, соединений урана и его изотопов, и разрушающее воздействие проникающей радиации. По этим же причинам неприемлем старт космического корабля, оборудованного ядерным двигателем, непосредственно с поверхности Земли.

Настоящее и будущее

По заверениям академика РАН, генерального директора «Центра Келдыша» Анатолия Коротеева, принципиально новый тип ядерного двигателя в России будет создан уже в ближайшее время. Суть подхода заключается в том, энергия космического реактора будет направлена не на непосредственный нагрев рабочего тела и формирования реактивной струи, а для производства электричества. Роль движителя в установке отводится плазменному двигателю, удельная тяга которого в 20 раз превышает тягу существующих на сегодняшний день химических реактивных аппаратов. Головным предприятием проекта выступает подразделение госкорпорации «Росатом» АО «НИКИЭТ» (Москва).

Полномасштабные макетные тесты были успешно пройдены еще в 2015 году на базе НПО «Машиностроения» (Реутов). Датой начала летно-конструкторских испытаний ядерной энергоустановки назван ноябрь нынешнего года. Важнейшие элементы и системы должны будут пройти проверку, в том числе и на борту МКС.

Функционирование нового российского ядерного двигателя происходит по замкнутому циклу, что полностью исключает попадание радиоактивных веществ в окружающее пространство. Массовые и габаритные характеристики основных элементов энергетической установки обеспечивают ее использование с существующими отечественными ракето-носителями «Протон» и «Ангара».

Нашёл интересную статью. Вообще атомные космические корабли меня всегда интересовали. Это будущее космонавтики. Обширные работы по этой тематике велись и в СССР. В статье как раз про них.

В космос на атомной тяге. Мечты и реальность.

доктор физико-математических наук Ю. Я. Стависский

В 1950 году я защитил диплом инженера-физика в Московском механическом институте (ММИ) Министерства боеприпасов. Пятью годами раньше, в 1945-м, там был образован инженерно-физический факультет, готовивший специалистов для новой отрасли, в задачи которой входило в основном производство ядерного боеприпаса. Факультет не имел себе равных. Наряду с фундаментальной физикой в объёме университетских курсов (методы математической физики, теория относительности, квантовая механика, электродинамика, статистическая физика и другие) нам преподавали полный набор инженерных дисциплин: химию, металловедение, сопротивление материалов, теорию механизмов и машин и пр. Созданный выдающимся советским физиком Александром Ильичём Лейпунским инженерно-физический факультет ММИ вырос со временем в Московский инженерно-физический институт (МИФИ). Другой инженерно-физический факультет, также влившийся впоследствии в МИФИ, был сформирован в Московском энергетическом институте (МЭИ), но если в ММИ основной упор делался на фундаментальную физику, то в Энергетическом — на тепло- и электрофизику.

Квантовую механику мы изучали по книге Дмитрия Ивановича Блохинцева. Каково же было моё удивление, когда при распределении меня направили к нему на работу. Я, заядлый экспериментатор (в детстве разобрал все часы в доме), и вдруг попадаю к известному теоретику. Меня охватила лёгкая паника, но по прибытии на место — „Объект В“ МВД СССР в Обнинске — сразу понял, что волновался напрасно.

К этому времени основная тематика „Объекта В“, во главе которого до июня 1950 года фактически стоял А.И. Лейпунский, уже сформировалась. Здесь создавали реакторы с расширенным воспроизводством ядерного горючего — „быстрые бридеры“. На посту директора Блохинцев инициировал развитие нового направления — создание двигателей на атомной тяге для космических полётов. Овладение космосом было давней мечтой Дмитрия Ивановича, ещё в юности он переписывался и встречался с К.Э. Циолковским. Я думаю, что понимание гигантских возможностей ядерной энергии, по теплотворной способности в миллионы раз превышающей лучшие химические топлива, и определило жизненный путь Д.И. Блохинцева.
„Лицом к лицу лица не увидать“… В те годы мы многого не понимали. Только сейчас, когда наконец-то появилась возможность сопоставить дела и судьбы выдающихся учёных Физико-энергетического института (ФЭИ) — бывшего „Объекта В“, переименованного 31 декабря 1966 года — складывается верное, как мне кажется, понимание идей, двигавших ими в то время. При всём многообразии дел, которыми приходилось заниматься институту, можно выделить приоритетные научные направления, оказавшиеся в сфере интересов его ведущих физиков.

Главный интерес АИЛа (так в институте за глаза называли Александра Ильича Лейпунского) — развитие глобальной энергетики на основе быстрых реакторов-бридеров (ядерных реакторов, не имеющих ограничений в ресурсах ядерного горючего). Трудно переоценить значение этой поистине „космической“ проблемы, которой он посвятил последние четверть века своей жизни. Немало сил Лейпунский потратил и на оборону страны, в частности на создание атомных двигателей для подводных лодок и тяжелых самолётов.

Интересы Д.И. Блохинцева (за ним закрепилось прозвище „Д. И.“) были направлены на решение проблемы использования ядерной энергии для космических полётов. К сожалению, в конце 1950-х годов он был вынужден оставить эту работу и возглавить создание международного научного центра — Объединённого института ядерных исследований в Дубне. Там он занимался импульсными быстрыми реакторами — ИБР. Это стало последним большим делом его жизни.

Одна цель — одна команда

Д.И. Блохинцев, преподававший в конце 1940-х в МГУ, приметил там, а затем пригласил на работу в Обнинск молодого физика Игоря Бондаренко, который буквально бредил космическими кораблями на атомной тяге. Первым его научным руководителем был А.И. Лейпунский, и Игорь, естественно, занимался его тематикой — быстрыми бридерами.

При Д.И. Блохинцеве вокруг Бондаренко сформировалась группа учёных, которые объединились, чтобы решить проблемы использования атомной энергии в космосе. Кроме Игоря Ильича Бондаренко в группу входили: Виктор Яковлевич Пупко, Эдвин Александрович Стумбур и автор этих строк. Главным идеологом был Игорь. Эдвин проводил экспериментальные исследования наземных моделей ядерных реакторов космических установок. Я занимался в основном ракетными двигателями „малой тяги“ (тяга в них создаётся своеобразным ускорителем — „ионным движителем“, который питается энергией от космической атомной электростанции). Мы исследовали процессы,
протекающие в ионных движителях, на наземных стендах.

На Викторе Пупко (в будущем
он стал начальником отделения космической техники ФЭИ) лежала большая организационная работа. Игорь Ильич Бондаренко был выдающимся физиком. Он тонко чувствовал эксперимент, ставил простые, изящные и весьма эффективные опыты. Я думаю, как ни один экспериментатор, да, пожалуй, и немногие теоретики, „чувствовал“ фундаментальную физику. Всегда отзывчивый, открытый и доброжелательный, Игорь был поистине душой института. До сих пор ФЭИ живёт его идеями. Бондаренко прожил неоправданно короткую жизнь. В 1964-м, в возрасте 38 лет, он трагически погиб из-за врачебной ошибки. Как будто Бог, увидев, как много человек сделал, решил, что это уже чересчур и скомандовал: „Хватит“.

Нельзя не вспомнить ещё одну уникальную личность — Владимира Александровича Малыха, технолога „от Бога“, современного лесковского Левшу. Если „продукцией“ упомянутых выше учёных были в основном идеи и расчётные оценки их реальности, то работы Малыха всегда имели выход „в металле“. Его технологический сектор, насчитывавший во времена расцвета ФЭИ более двух тысяч сотрудников, мог сделать, без преувеличения, всё. Причём ключевую роль всегда играл он сам.

В.А. Малых начинал лаборантом в НИИ ядерной физики МГУ, имея за душой три курса физфака, — доучиться не дала война. В конце 1940-х годов ему удалось создать технологию изготовления технической керамики на основе окиси бериллия — материала уникального, диэлектрика с высокой теплопроводностью. До Малыха многие безуспешно бились над этой проблемой. А топливный элемент на основе серийной нержавеющей стали и природного урана, разработанный им для первой атомной электростанции, — чудо по тем да и по нынешнем временам. Или созданный Малыхом термоэмиссионный топливный элемент реактора-электрогенератора для питания космических аппаратов — „гирлянда“. До сих пор в этой области не появилось ничего лучшего. Творения Малыха были не демонстрационными игрушками, а элементами ядерной техники. Они работали месяцы и годы. Владимир Александрович стал доктором технических наук, лауреатом Ленинской премии, Героем Социалистического Труда. В 1964 году он трагически погиб от последствий военной контузии.

Шаг за шагом

С.П. Королёв и Д.И. Блохинцев с давних пор вынашивали мечту о полёте человека в космос. Между ними установились тесные рабочие связи. Но в начале 1950-х годов, в разгар „холодной войны“, средств не жалели только на военные цели. Ракетная техника рассматривалась лишь как носитель ядерных зарядов, а о спутниках и не помышляли. Между тем Бондаренко, зная о последних достижениях ракетчиков, настойчиво выступал за создание искусственного спутника Земли. Впоследствии об этом никто и не вспомнил.

Любопытна история создания ракеты, поднявшей в космос первого космонавта планеты — Юрия Гагарина. Связана она с именем Андрея Дмитриевича Сахарова. В конце 1940-х годов он разработал комбинированный делительно-термоядерный заряд — „слойку“, видимо, независимо от „отца водородной бомбы“ Эдварда Теллера, который предложил аналогичное изделие под названием „будильник“. Однако вскоре Теллер понял, что ядерный заряд такой схемы будет иметь „ограниченную“ мощность, не более ~ 500 килотонн толового эквивалента. Для „абсолютного“ оружия этого мало, поэтому „будильник“ был заброшен. В Союзе же в 1953 году взорвали сахаровскую слойку РДС-6с.

После успешных испытаний и избрания Сахарова в академики тогдашний глава Минсредмаша В.А. Малышев пригласил его к себе и поставил задачу определить параметры бомбы следующего поколения. Андрей Дмитриевич оценил (без детальной проработки) вес нового, значительно более мощного заряда. Докладная Сахарова легла в основу постановления ЦК КПСС и Совета Министров СССР, которое обязало С.П. Королёва разработать под этот заряд баллистическую ракету-носитель. Именно такая ракета Р-7 под названием „Восток“ и вывела на орбиту искусственный спутник Земли в 1957-м и космический корабль с Юрием Гагариным в 1961-м. Использовать её как носитель тяжёлого ядерного заряда тогда уже не планировали, поскольку развитие термоядерного оружия пошло иным путём.

На начальном этапе космической ядерной программы ФЭИ совместно с КБ В.Н. Челомея разрабатывал крылатую атомную ракету. Это направление развивалось недолго и завершилось расчётами и испытанием элементов двигателя, созданного в отделении В.А. Малыха. По сути, речь шла о низколетящем беспилотном самолете с прямоточным ядерным двигателем и ядерной боеголовкой (своего рода ядерный аналог „жужжащего клопа“ — немецкой V-1). Система стартовала с помощью обычных ракетных ускорителей. После выхода на заданную скорость тяга создавалась атмосферным воздухом, нагреваемым за счёт цепной реакции деления окиси бериллия, пропитанной обогащённым ураном.

Вообще говоря, возможность выполнения ракетой той или иной задачи космонавтики определяется скоростью, которую она приобретает после использования всего запаса рабочего тела (топлива и окислителя). Её вычисляют по формуле Циолковского: V = c×lnMн/ Мк, где с — скорость истечения рабочего тела, а Мн и Мк — начальная и конечная масса ракеты. В обычных химических ракетах скорость истечения определяется температурой в камере сгорания, видом топлива и окислителя и молекулярным весом продуктов сгорания. Например, американцы для высадки астронавтов на Луну использовали в спускаемом аппарате в качестве топлива водород. Продукт его сгорания — вода, чей молекулярный вес сравнительно низок, и скорость истечения в 1,3 раза выше, чем при сжигании керосина. Этого достаточно, чтобы спускаемый аппарат с космонавтами достиг поверхности Луны и затем вернул их на орбиту её искусственного спутника. У Королёва работы с водородным топливом были приостановлены из-за аварии с человеческими жертвами. Создать лунный спускаемый аппарат для человека мы не успели.

Один из путей существенного повышения скорости истечения — создание ядерных термических ракет. У нас это были баллистические атомные ракеты (БАР) с радиусом действия несколько тысяч километров (совместный проект ОКБ-1 и ФЭИ), у американцев — аналогичные системы типа „Киви“. Двигатели испытывались на полигонах под Семипалатинском и в Неваде. Принцип их действия следующий: водород нагревается в ядерном реакторе до высоких температур, переходит в атомарное состояние и уже в таком виде истекает из ракеты. Скорость истечения при этом повышается более чем вчетверо по сравнению с химической водородной ракетой. Вопрос состоял в том, чтобы выяснить, до какой температуры можно нагреть водород в реакторе с твёрдыми топливными элементами. Расчёты давали около 3000°К.

В НИИ-1, научным руководителем которого был Мстислав Всеволодович Келдыш (тогда президент Академии наук СССР), отдел В.М. Иевлева с участием ФЭИ занимался совсем уж фантастической схемой — газофазным реактором, в котором цепная реакция протекает в газовой смеси урана и водорода. Из такого реактора водород истекает ещё раз в десять быстрее, чем из твёрдотопливного, уран же сепарируется и остаётся в активной зоне. Одна из идей предполагала использование центробежной сепарации, когда горячая газовая смесь урана и водорода „закручивается“ поступающим холодным водородом, в результате чего уран и водород разделяются, как в центрифуге. Иевлев пытался, по сути дела, прямо воспроизвести процессы в камере сгорания химической ракеты, используя в качестве источника энергии не теплоту сгорания топлива, а цепную реакцию деления. Это открывало путь к полному использованию энергоёмкости атомных ядер. Но вопрос о возможности истечения из реактора чистого водорода (без урана) так и остался нерешённым, не говоря уже о технических проблемах, связанных с удержанием высокотемпературных газовых смесей при давлениях в сотни атмосфер.

Работы ФЭИ по баллистическим атомным ракетам завершились в 1969-1970 годах „огневыми испытаниями“ на семипалатинском полигоне прототипа ядерного ракетного двигателя с твёрдыми топливными элементами. Его создавал ФЭИ в кооперации с воронежским КБ А.Д. Конопатова, московским НИИ-1 и рядом других технологических групп. Основу двигателя с тягой 3,6 т составлял ядерный реактор ИР-100 с топливными элементами из твёрдого раствора карбида урана и карбида циркония. Температура водорода достигала 3000°К при мощности реактора ~ 170 МВт.

Атомные ракеты малой тяги

До сих пор речь шла о ракетах с тягой, превышающей их вес, которые могли бы стартовать с поверхности Земли. В таких системах увеличение скорости истечения позволяет снизить запас рабочего тела, повысить полезную нагрузку и отказаться от многоступенчатости. Однако есть пути достижения практически неограниченных скоростей истечения, например ускорение вещества электромагнитными полями. Я занимался этим направлением в тесном контакте с Игорем Бондаренко почти 15 лет.

Ускорение ракеты с электрореактивным двигателем (ЭРД) определяется отношением удельной мощности установленной на них космической атомной электростанции (КАЭС) к скорости истечения. В обозримом будущем удельные мощности КАЭС, судя по всему, не превысят 1 кВт/кг. При этом возможно создание ракет с малой тягой, в десятки и сотни раз меньшей веса ракеты, и с очень малым расходом рабочего тела. Такая ракета может стартовать только с орбиты искусственного спутника Земли и, медленно ускоряясь, достигать больших скоростей.

Для полётов в пределах Солнечной системы нужны ракеты со скоростью истечения 50-500 км/с, а для полётов к звёздам — выходящие за пределы нашего воображения „фотонные ракеты“ со скоростью истечения, равной скорости света. Чтобы осуществить сколько-нибудь разумный по времени дальний космический полёт, необходимы невообразимые удельные мощности энергетических установок. Пока нельзя даже представить, на каких физических процессах они могут быть основаны.

Проведенные расчёты показали, что во время Великого противостояния, когда Земля и Марс находятся ближе всего друг к другу, можно за один год осуществить полёт ядерного космического корабля с экипажем к Марсу и возвратить его на орбиту искусственного спутника Земли. Полный вес такого корабля — около 5 т (включая запас рабочего тела — цезия, равный 1,6 т). Он определяется в основном массой КАЭС мощностью 5 МВт, а реактивная тяга — двухмегаваттным пучком ионов цезия с энергией 7 килоэлектронвольт *. Корабль стартует с орбиты искусственного спутника Земли, выходит на орбиту спутника Марса, а спускаться на его поверхность придётся уже на аппарате с водородным химическим двигателем, подобным американскому лунному.

Этому направлению, основанному на технических решениях, возможных уже сегодня, был посвящён большой цикл работ ФЭИ.

Ионные движители

В те годы обсуждались пути создания различных электрореактивных движителей для космических аппаратов, таких, как „плазменные пушки“, электростатические ускорители „пыли“ или капель жидкости. Однако ни одна из идей не имела под собой чёткой физической основы. Находкой оказалась поверхностная ионизация цезия.

Ещё в 20-е годы прошлого века американский физик Ирвинг Лэнгмюр открыл поверхностную ионизацию щелочных металлов. При испарении атома цезия с поверхности металла (в нашем случае — вольфрама), у которого работа выхода электронов больше потенциала ионизации цезия, он практически в 100% случаев теряет слабо связанный электрон и оказывается однократно заряженным ионом. Таким образом, поверхностная ионизация цезия на вольфраме и есть тот физический процесс, который позволяет создать ионный движитель с почти 100-процентным использованием рабочего тела и с энергетическим КПД, близким к единице.

Большую роль в создании моделей ионного движителя такой схемы сыграл наш коллега Сталь Яковлевич Лебедев. Своим железным упорством и настойчивостью он преодолевал все преграды. В результате удалось воспроизвести в металле плоскую трёхэлектродную схему ионного движителя. Первый электрод — пластина вольфрама размером примерно 10×10 см с потенциалом +7 кВ, второй — сетка из вольфрама с потенциалом -3 кВ, третий — сетка из торированного вольфрама с нулевым потенциалом. „Молекулярная пушка“ давала пучок паров цезия, который сквозь все сетки попадал на поверхность вольфрамовой пластины. Уравновешенная и откалиброванная металлическая пластина, так называемые весы, служила для измерения „силы“, т. е. тяги ионного пучка.

Ускоряющее напряжение до первой сетки разгоняет ионы цезия до 10 000 эВ, тормозящее напряжение до второй замедляет их до 7000 эВ. Это та энергия, с которой ионы должны покидать движитель, что соответствует скорости истечения 100 км/с. Но пучок ионов, ограниченный объёмным зарядом, не может „выйти в открытый космос“. Объёмный заряд ионов необходимо скомпенсировать электронами, чтобы образовалась квазинейтральная плазма, которая беспрепятственно распространяется в пространстве и создаёт реактивную тягу. Источником электронов для компенсации объёмного заряда ионного пучка служит нагреваемая током третья сетка (катод). Вторая, „запирающая“ сетка не даёт электронам попасть с катода на вольфрамовую пластину.

Первый опыт с моделью ионного движителя положил начало более чем десятилетним работам. Одна из последних моделей — с пористым вольфрамовым эмиттером, созданная в 1965 году, давала „тягу“ около 20 г при токе ионного пучка 20 А, имела коэффициент использования энергии около 90% и вещества — 95%.

Прямое преобразование ядерного тепла в электричество

Пути прямого преобразования энергии ядерного деления в электрическую пока не найдены. Мы ещё не можем обойтись без промежуточного звена — тепловой машины. Поскольку её КПД всегда меньше единицы, „отработанное“ тепло нужно куда-то девать. На земле, в воде и в воздухе с этим проблем нет. В космосе же существует только один путь — тепловое излучение. Таким образом, КАЭС не может обойтись без „холодильника-излучателя“. Плотность же излучения пропорциональна четвёртой степени абсолютной температуры, поэтому температура холодильника-излучателя должна быть как можно более высокой. Тогда удастся сократить площадь излучающей поверхности и соответственно массу энергетической установки. У нас появилась идея использовать „прямое“ преобразование ядерного тепла в электричество, без турбины и генератора, что казалось более надёжным при длительной работе в области высоких температур.

Из литературы мы знали о работах А.Ф. Иоффе — основателя советской школы технической физики, пионера в исследовании полупроводников в СССР. Мало кто теперь помнит о разработанных им источниках тока, применявшихся в годы Великой Отечественной войны. Тогда не один партизанский отряд имел связь с Большой землёй благодаря „керосиновым“ ТЭГам — термоэлектрогенераторам Иоффе. „Венец“ из ТЭГов (он представлял собой набор полупроводниковых элементов) надевался на керосиновую лампу, а его провода подсоединялись к радиоаппаратуре. „Горячие“ концы элементов нагревались пламенем керосиновой лампы, „холодные“ — остывали на воздухе. Поток тепла, проходя через полупроводник, порождал электродвижущую силу, которой хватало для сеанса связи, а в промежутках между ними ТЭГ заряжал аккумулятор. Когда через десять лет после Победы мы побывали на московском заводе ТЭГов, оказалось, что они ещё находят сбыт. У многих деревенских жителей были тогда экономичные радиоприемники „Родина“ на лампах прямого накала, работающие от батареи. Вместо них зачастую использовали ТЭГи.

Беда керосинового ТЭГа — его низкий КПД (всего около 3,5%) и невысокая предельная температура (350°К). Но простота и надёжность этих приборов привлекали разработчиков. Так, полупроводниковые преобразователи, разработанные группой И.Г. Гвердцители в Сухумском физико-техническом институте, нашли применение в космических установках типа „Бук“.

В свое время А.Ф. Иоффе предложил ещё один термоэмиссионный преобразователь — диод в вакууме. Принцип его действия следующий: нагретый катод испускает электроны, часть их, преодолевающая потенциал анода, совершает работу. От этого прибора ожидали значительно большего КПД (20-25%) при рабочей температуре выше 1000°К. Кроме того, в отличие от полупроводника вакуумный диод не боится нейтронного излучения, и его можно совместить с ядерным реактором. Однако оказалось, что осуществить идею „вакуумного“ преобразователя Иоффе невозможно. Как и в ионном движителе, в вакуумном преобразователе нужно избавиться от объёмного заряда, но на этот раз не ионов, а электронов. А.Ф. Иоффе предполагал использовать в вакуумном преобразователе микронные зазоры между катодом и анодом, что в условиях высоких температур и термических деформаций практически невозможно. Вот тут-то и пригодился цезий: один ион цезия, полученный за счёт поверхностной ионизации на катоде, компенсирует объёмный заряд около 500 электронов! По сути дела, цезиевый преобразователь — это „обращённый“ ионный движитель. Физические процессы в них близки.

«Гирлянды» В.А. Малыха

Одним из результатов работ ФЭИ над термоэмиссионными преобразователями были создание В.А. Малыхом и серийный выпуск в его отделении тепловыделяющих элементов из последовательно соединённых термоэмиссионных преобразователей — „гирлянд“ для реактора „Топаз“. Они давали до 30 В — раз в сто больше, чем одноэлементные преобразователи, созданные „конкурирующими организациями“ — ленинградской группой М.Б. Барабаша и позднее — Институтом атомной энергии. Это позволяло „снимать“ с реактора в десятки и сотни раз большую мощность. Однако надёжность системы, напичканной тысячами термоэмиссионных элементов, вызывала опасения. В то же время паро- и газотурбинные установки работали без сбоев, поэтому мы обратили внимание и на „машинное“ преобразование ядерного тепла в электричество.

Вся трудность заключалась в ресурсе, ведь в дальних космических полётах турбогенераторы должны работать год, два, а то и несколько лет. Чтобы уменьшить износ, „обороты“ (скорость вращения турбины) нужно сделать по возможности более низкими. С другой стороны, турбина работает эффективно, если скорость молекул газа или пара близка к скорости её лопаток. Поэтому сначала мы рассматривали применение самого тяжёлого — ртутного пара. Но нас испугала интенсивная радиационно-стимулированная коррозия железа и нержавеющей стали, которая возникала в охлаждаемом ртутью ядерном реакторе. За две недели коррозия „съела“ тепловыделяющие элементы опытного быстрого реактора „Клементина“ в Аргонской лаборатории (США, 1949 год) и реактора БР-2 в ФЭИ (СССР, Обнинск, 1956 год).

Заманчивым оказался калиевый пар. Реактор с кипящим в нём калием лёг в основу разрабатываемой нами энергетической установки космического корабля малой тяги — калиевый пар вращал турбогенератор. Такой „машинный“ способ преобразования тепла в электричество позволял рассчитывать на КПД до 40%, в то время как реальные термоэмиссионные установки давали кпд всего около 7%. Однако КАЭС с „машинным“ преобразованием ядерного тепла в электричество не получили развития. Дело завершилось выпуском подробного отчёта, по сути — „физической записки“ к техническому проекту космического корабля малой тяги для полёта с экипажем к Марсу. Сам проект так и не был разработан.

В дальнейшем, я думаю, просто пропал интерес к космическим полётам с использованием ядерных ракетных двигателей. После смерти Сергея Павловича Королёва поддержка работ ФЭИ по ионным движителям и „машинным“ ядерно-энергетическим установкам заметно ослабла. ОКБ-1 возглавил Валентин Петрович Глушко, у которого не было интереса к смелым перспективным проектам. Созданное им ОКБ „Энергия“ строило мощные химические ракеты и возвращаемый на Землю космический корабль „Буран“.

«Бук» и «Топаз» на спутниках серии «Космос»

Работы по созданию КАЭС с прямым преобразованием тепла в электричество, теперь уже в качестве источников питания для мощных радиотехнических спутников (космических радиолокационных станций и телетрансляторов), продолжались до начала перестройки. С 1970 по 1988 год в космос запустили около 30 радиолокационных спутников с ядерно-энергетическими установками „Бук“ с полупроводниковыми реакторами-преобразователями и два — с термоэмиссионными установками „Топаз“. „Бук“, по сути дела, представлял собой ТЭГ — полупроводниковый преобразователь Иоффе, только вместо керосиновой лампы в нём использовался ядерный реактор. Это был быстрый реактор мощностью до 100 кВт. Полная загрузка высокообогащённого урана составляла около 30 кг. Тепло из активной зоны передавалось жидким металлом — эвтектическим сплавом натрия с калием полупроводниковым батареям. Электрическая мощность достигала 5 кВт.

Установку „Бук“ под научным руководством ФЭИ разрабатывали специалисты ОКБ-670 М.М. Бондарюка, позднее — НПО „Красная звезда“ (главный конструктор — Г.М. Грязнов). Создать ракету-носитель для вывода спутника на орбиту поручили днепропетровскому КБ „Южмаш“ (главный конструктор — М.К. Янгель).

Время работы „Бука“ — 1-3 месяца. Если установка отказывала, спутник переводили на орбиту длительного существования высотой 1000 км. За почти 20 лет запусков было три случая падения спутника на Землю: два — в океан и один — на сушу, в Канаде, в окрестности Большого Невольничьего озера. Туда упал „Космос-954“, запущенный 24 января 1978 года. Он проработал 3,5 месяца. Урановые элементы спутника полностью сгорели в атмосфере. На земле нашли лишь остатки бериллиевого отражателя и полупроводниковых батарей. (Все эти данные приведены в совместном отчёте атомных комиссий США и Канады об операции „Утренний свет“.)

В термоэмиссионной ядерно-энергетической установке „Топаз“ использовался тепловой реактор мощностью до 150 кВт. Полная загрузка урана составляла около 12 кг — значительно меньше, чем у „Бука“. Основой реактора были тепловыделяющие элементы — „гирлянды“, разработанные и изготовленные группой Малыха. Они представляли собой цепочку термоэлементов: катод — „напёрсток“ из вольфрама или молибдена, заполненный окисью урана, анод — тонкостенная трубка из ниобия, охлаждаемая жидким натрий-калием. Температура катода достигала 1650°C. Электрическая мощность установки доходила до 10 кВт.

Первый лётный образец — спутник „Космос-1818“ с установкой „Топаз“ вышел на орбиту 2 февраля 1987 года и безотказно проработал полгода, до исчерпания запасов цезия. Второй спутник — „Космос-1876“ был запущен через год. Он отработал на орбите почти в два раза дольше. Главным разработчиком „Топаза“ было ОКБ ММЗ „Союз“, возглавляемое С.К. Туманским (бывшее КБ конструктора авиамоторов А.А. Микулина).

Это было в конце 1950-х годов, когда мы занимались ионным движителем, а он — двигателем третьей ступени, предназначавшимся для ракеты, которой предстояло облететь Луну и совершить посадку на неё. Воспоминания о мельниковской лаборатории свежи и поныне. Она располагалась в Подлипках (ныне г. Королёв), на площадке № 3 ОКБ-1. Огромный цех площадью около 3000 м2, уставленный десятками письменных столов со шлейфными осциллографами, производящими запись на 100-миллиметровой рулонной бумаге (это была ещё прошлая эпоха, сегодня хватило бы одного персонального компьютера). У передней стены цеха — стенд, где монтируется камера сгорания двигателя „лунной“ ракеты. К осциллографам идут тысячи проводов от датчиков скорости газов, давления, температуры и других параметров. День начинается в 9.00 с зажигания двигателя. Он работает несколько минут, затем сразу после остановки бригада механиков первой смены разбирает его, тщательно осматривает и измеряет камеру сгорания. Одновременно анализируются ленты осциллографов и вырабатываются рекомендации по изменениям конструкции. Вторая смена — конструкторы и рабочие мастерских вносят рекомендованные изменения. В третью смену на стенде монтируются новая камера сгорания и система диагностики. Через сутки, ровно в 9.00, — следующий сеанс. И так без выходных недели, месяцы. Более 300 вариантов двигателя за год!

Так создавались двигатели химических ракет, которым предстояло работать всего 20-30 минут. Что же говорить об испытаниях и доработках ядерно-энергетических установок — расчёт был на то, что они должны работать не один год. Это требовало поистине гигантских усилий.

В России провели испытания системы охлаждения ядерной энергодвигательной установки (ЯЭДУ) - одного из ключевых элементов космического аппарата будущего, на котором можно будет совершать межпланетные полеты. Зачем в космосе нужен ядерный двигатель, как он работает и почему «Роскосмос» считает эту разработку главным российским космическим козырем, рассказывают «Известия».

История атома

Если положить руку на сердце, то со времен Королева ракеты-носители, используемые для полетов в космос, кардинальных изменений не претерпели. Общий принцип работы - химический, основанный на сгорании топлива с окислителем, остается прежним. Меняются двигатели, система управления, виды топлива. Основа путешествий в космосе остается неизменной - реактивная тяга толкает ракету или космический аппарат вперед.

Очень часто можно услышать, что нужен серьезный прорыв, разработка, способная заменить реактивный двигатель, чтобы повысить эффективность и сделать полеты к Луне и Марсу более реалистичными. Дело в том, что в настоящее время едва ли не большая часть массы межпланетных космических аппаратов, - это топливо и окислитель. А что если отказаться от химического двигателя вообще и начать использовать энергию ядерного двигателя?

Идея создания ядерной двигательной установки не нова. В СССР развернутое постановление правительства по проблеме создания ЯРД было подписано еще в далеком 1958 году. Уже тогда были проведены исследования, показавшие, что, используя ядерный ракетный двигатель достаточной мощности, можно добраться до Плутона (еще не утратившего свой планетный статус) и обратно за шесть месяцев (два туда и четыре обратно), потратив на путешествие 75 т топлива.

Занимались в СССР разработкой ядерного ракетного двигателя, однако приближаться к реальному прототипу ученые стали только сейчас. Дело не в деньгах, тема оказалась настолько сложной, что ни одна из стран не смогла до сих пор создать работающий прототип, а в большинстве случаев всё заканчивалось планами и чертежами. В США проводились испытания двигательной установки для полета на Марс в январе 1965 года. Но дальше тестов KIWI проект NERVA по покорению Марса на ядерном двигателе не сдвинулся, да и был он значительно проще, чем нынешняя российская разработка. Китай поставил в свои планы космического развития создание ядерного двигателя поближе к 2045 году, что тоже очень и очень не скоро.

В России же новый виток работы над проектом ядерной электродвигательной установки (ЯЭДУ) мегаваттного класса для космических транспортных систем начался в 2010 году. Проект создается силами «Роскосмоса» и «Росатома» совместно, и его можно назвать одним из самых серьезных и амбициозных космических проектов последнего времени. Головным исполнителем по ЯЭДУ является Исследовательский центр им. М.В. Келдыша.

Ядерное движение

На протяжении всего времени разработки в прессу просачиваются новости о готовности то одной, то другой части будущего ядерного двигателя. При этом в целом, кроме специалистов, мало кто представляет себе, как и за счет чего он будет работать. Собственно, суть космического ядерного двигателя примерно такая же, как и на Земле. Энергия ядерной реакции используется для нагрева и работы турбогенератора-компрессора. Если говорить проще, то ядерная реакция используется для получения электричества, практически точно так же, как и на обычной атомной электростанции. А уже при помощи электричества работают электроракетные двигатели. В данной установке это ионные двигатели высокой мощности.

В ионных двигателях тяга создается путем создания реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле. Ионные двигатели есть и сейчас, они испытываются в космосе. Пока у них только одна проблема - практически все они имеют очень небольшую тягу, хоть и расходуют очень мало топлива. Для космических путешествий такие двигатели - прекрасный вариант, особенно если решить проблему получения электричества в космосе, что и сделает ядерная установка. К тому же работать ионные двигатели могут достаточно долго, максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трех лет.

Если посмотреть на схему, можно заметить, что ядерная энергия начинает свою полезную работу совсем не сразу. Сначала нагревается теплообменник, затем вырабатывается электричество, оно уже используется для создания тяги ионного двигателя. Увы, более простым и эффективным образом использовать ядерные установки для движения человечество пока не научилось.

В СССР запускались спутники с ядерной установкой в составе комплекса целеуказания «Легенда» для морской ракетоносной авиации, но это были совсем маленькие реакторы, а их работы хватало только на выработку электричества для повешенных на спутник приборов. Советские космические аппараты имели мощность установки в три киловатта, сейчас же российские специалисты работают над созданием установки с мощностью более мегаватта.

Проблемы космического масштаба

Естественно, что проблем у ядерной установки в космосе гораздо больше, чем на Земле, и самая главная из них - это охлаждение. В обычных условиях для этого используется вода, очень эффективно поглощающая тепло двигателя. В космосе же сделать это нельзя, и ядерным двигателям требуется эффективная система охлаждения - причем тепло от них нужно отводить во внешнее космическое пространство, то есть делать это можно только в виде излучения. Обычно для этого в космических кораблях используются панельные радиаторы - из металла, с циркулирующей по ним жидкостью теплоносителем. Увы, такие радиаторы, как правило, имеют большой вес и габариты, кроме того, они никак не защищены от попадания метеоритов.

В августе 2015 года на авиасалоне МАКС была показана модель капельного охлаждения ядерных энергодвигательных систем. В ней жидкость, рассеянная в виде капель, пролетает в открытом космическом пространстве, охлаждается, а затем снова собирается в установку. Только представьте себе огромный космический корабль, в центре которого гигантская душевая установка, из которой вырываются наружу миллиарды микроскопических капель воды, летят в космосе, а затем засасываются в огромный раструб космического пылесоса.

Совсем недавно стало известно, что капельная система охлаждения ядерной двигательной установки была испытана в земных условиях. При этом система охлаждения - это важнейший этап в создании установки.

Теперь дело за тем, чтобы испытать ее работоспособность в условиях невесомости и уже только после этого систему охлаждения можно будет пробовать создать в размерах, требуемых для установки. Каждое такое успешное испытание по чуть-чуть приближает российских специалистов к созданию ядерной установки. Ученые спешат изо всех сил, ведь считается, что вывод ядерного двигателя в космос сможет России помочь вернуть лидерские позиции в космосе.

Ядерная космическая эра

Допустим, это получится, и уже через несколько лет в космосе начнет свою работу ядерный двигатель. Чем это поможет, как это можно будет использовать? Для начала стоит уточнить, что в том виде, в котором ядерная двигательная установка существует сегодня, она может работать только в космическом пространстве. Взлетать с Земли и садиться в таком виде она не может никак, тут пока без традиционных химических ракет не обойтись.

А зачем в космосе? Ну слетает человечество до Марса и Луны быстро, и всё? Не совсем так. В настоящее время все проекты орбитальных заводов и фабрик, работающих на орбите Земли, стопорятся из-за отсутствия сырья для работы. Нет смысла строить что-либо в космосе до тех пор, пока не найден способ выводить на орбиту большое количество требуемого сырья, например металлической руды.

Но зачем поднимать их с Земли, если можно, наоборот, привезти из космоса. В том же поясе астероидов в Солнечной системе есть просто огромные запасы различных металлов, в том числе и драгоценных. И вот в таком случае создание ядерного буксира станет просто палочкой-выручалочкой.

Привезти на орбиту огромный платино- или золотосодержащий астероид и начать его разделывать прямо в космосе. По расчетам специалистов такая добыча с учетом объема может оказаться одной из наиболее выгодных.

А есть ли менее фантастическое применение ядерному буксиру? Например, с его помощью можно развозить по нужным орбитам спутники или привозить в нужную точку пространства космические аппараты, например на лунную орбиту. В настоящее время для этого используются разгонные блоки, например российский «Фрегат». Они дорогие, сложные и одноразовые. Ядерный буксир сможет подхватывать их на низкой околоземной орбите и доставлять куда необходимо.

Аналогично и с межпланетными путешествиями. Без быстрого способа доставлять грузы и людей на орбиту Марса шансов начать колонизацию просто нет. Ракеты-носители нынешнего поколения будут делать это очень дорого и долго. До сих пор длительность полета остается одной из самых серьезных проблем при полете к другим планетам. Выдержать месяцы полета на Марс и обратно в закрытой капсуле космического корабля - задача не из простых. Ядерный буксир сможет помочь и тут, существенно сократив это время.

Необходимо и достаточно

В настоящее время всё это выглядит фантастикой, но до тестирования прототипа, как утверждают ученые, остаются считаные годы. Главное, что требуется, это не только завершить разработку, но и сохранить в стране необходимый уровень космонавтики. Даже при падении финансирования должны продолжать взлетать ракеты, строиться космические аппараты, работать ценнейшие специалисты.

Иначе один атомный двигатель без соответствующей инфраструктуры делу не поможет, для максимальной эффективности разработку будет очень важно не просто продать, но использовать самостоятельно, показав все возможности нового космического транспортного средства.

Пока же всем жителям страны, не завязанным на работе, остается только посматривать на небо и надеяться, что у российской космонавтики всё получится. И ядерный буксир, и сохранение нынешних возможностей. В другие исходы и верить не хочется.

Сергеев Алексей, 9 «А» класс МОУ «СОШ №84»

Научный консультант: , заместитель директора некоммерческого партнерства по научной и инновационной деятельности «Томский Атомный Центр»

Руководитель: , учитель физики МОУ «СОШ №84» ЗАТО Северск

Введение

Двигательные установки на борту космического аппарата предназначены для создания силы тяги или момента импульса. По типу используемой тяги двигательной установки разделяются на химические (ХРД) и нехимические (НХРД). ХРД делятся на жидкостные (ЖРД), твердотопливные (РДТТ) и комбинированные (КРД). В свою очередь нехимические двигательные установки делятся на ядерные (ЯРД) и электрическими (ЭРД). Великий ученый Константин Эдуардович Циолковский еще век назад создал первую модель двигательной установки, которая работала на твердом и жидком топливе. После, во второй половине 20 века были осуществлены тысячи полетов с использованием в основном ЖРД и РДТТ.

Однако в настоящее время для полетов на другие планеты, не говоря уж о звездах, применение ЖРД и РДТТ становится все более невыгодным, хотя и было разработано множество РД. Скорее всего, возможности ЖРД и РДТТ себя полностью исчерпали. Причина здесь заключается в том, что удельный импульс всех химических РД невысок и не превышает 5000 м/с, что требует для развития достаточно больших скоростей длительной работы ДУ и соответственно больших запасов топлива или, как принято в космонавтике, необходимы большие значения числа Циолковского, т. е. отношения массы заправленной ракеты к массе пустой. Так РН Энергия, выводящая на низкую орбиту 100 т полезной нагрузки, имеет стартовую массу около 3 000 т, что дает для числа Циолковского значение в пределах 30.

Для полета к примеру на Марс число Циолковского должно быть еще выше, достигая значений от 30 до 50. Нетрудно оценить, что при полезном грузе около 1 000 т, а именно в таких пределах колеблется минимальная масса требуемая для обеспечения всем необходимым экипаж, стартующий к Марсу с учетом запаса топлива для обратного полета к Земле, начальная масса КА должна быть не менее 30 000 т., что явно находится за пределами уровня развития современной космонавтики, основанной на применении ЖРД и РДТТ.

Таким образом, для достижения пилотируемыми экипажами даже ближайших планет необходимо развивать РН на двигателях, работающих на принципах, отличных от химических ДУ. Наиболее перспективными в этом плане являются электрические реактивные двигатели (ЭРД), термохимические ракетные двигатели и ядерные реактивные (ЯРД).

1.Основные понятия

Ракетный двигатель – это реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Наиболее широко применяются химические ракетные двигатели. Разрабатываются и испытываются другие виды ракетных двигателей – электрические, ядерные и другие. На космических станциях и аппаратах широко применяют и простейшие ракетные двигатели, работающие на сжатых газах. Обычно в качестве рабочего тела в них используют азот . /1/

Классификация двигательных установок

2. Назначение ракетных двигателей

По назначению ракетные двигатели подразделяют на несколько основных видов: разгонные (стартовые), тормозные, маршевые, управляющие и другие. Ракетные двигатели в основном применяются на ракетах (отсюда взято название). Кроме этого ракетные двигатели иногда применяют в авиации. Ракетные двигатели являются основными двигателями в космонавтике.

Военные (боевые) ракеты обычно имеют твердотопливные двигатели. Это связанно с тем, что такой двигатель заправляется на заводе и не требует обслуживания весь срок хранения и службы самой ракеты. Часто твердотопливные двигатели применяют как разгонные для космических ракет. Особенно широко, в этом качестве, их применяют в США, Франции, Японии и Китае.

Жидкостные ракетные двигатели имеют более высокие тяговые характеристики, чем твердотопливные. Поэтому их применяют для вывода космических ракет на орбиту вокруг Земли и на межпланетные перелёты. Основными жидкими топливами для ракет являются керосин, гептан (диметилгидразин) и жидкий водород . Для таких видов топлива обязательно необходим окислитель (кислород). В качестве окислителя в таких двигателях применяют азотную кислоту и сжиженный кислород. Азотная кислота уступает сжиженному кислороду по окислительным свойствам, но не требует поддержания особого температурного режима при хранении, заправки и использовании ракет

Двигатели для космических полетов отличаются от земных тем, что они при возможно меньшей массе и объеме должны вырабатывать как можно большую мощность. Кроме того, к ним предъявляются такие требования, как исключительно высокая эффективность и надежность, значительное время работы. По виду используемой энергии двигательные установки космических аппаратов подразделяются на четыре типа: термохимические, ядерные, электрические, солнечно – парусные. Каждый из перечисленных типов имеет свои преимущества и недостатки и может применяться в определенных условиях.

В настоящее время космические корабли, орбитальные станции и беспилотные спутники Земли выводятся в космос ракетами, оснащенными мощными термохимическими двигателями. Существуют также миниатюрные двигатели малой силы тяги. Это уменьшенная копия мощных двигателей. Некоторые из них могут уместиться на ладони. Сила тяги таких двигателей очень мала, но её бывает достаточно, чтобы управлять положением корабля в пространстве

3.Термохимические ракетные двигатели.

Известно, что в двигателе внутреннего сгорания, топке парового котла – всюду, где происходит сгорание, самое активное участие принимает атмосферный кислород. В космическом пространстве воздуха нет, а для работы ракетных двигателей в космическом пространстве необходимо иметь два компонента – горючее и окислитель.

В жидкостных термохимических ракетных двигателях в качестве горючего используется спирт, керосин, бензин, анилин, гидразин, диметилгидразин, жидкий водород. В качестве окислителя применяют жидкий кислород, перекись водорода, азотная кислота. Возможно, в будущем будет применяться в качестве окислителя жидкий фтор, когда будут изобретены способы хранения и использования такого активного химического вещества

Горючее и окислитель для жидкостных реактивных двигателей хранятся раздельно, в специальных баках и с помощью насосов подаются в камеру сгорания. При их соединении в камере сгорания развивается температура до 3000 – 4500 °С.

Продукты сгорания, расширяясь, приобретают скорость от 2500 до 4500 м/с. Отталкиваясь от корпуса двигателя, они создают реактивную тягу. При этом, чем больше масса и скорость истечения газов, тем больше силы тяги двигателя.

Удельную тягу двигателей принято оценивать величиной тяги создаваемой единицей массы топлива сгораемой за одну секунду. Эту величину называют удельным импульсом ракетного двигателя и измеряют в секундах (кг тяги / кг сгоревшего топлива в секунду). Лучшие твердотопливные ракетные двигатели имеют удельный импульс до 190 с., то есть 1 кг топлива сгорающий за одну секунду создает тягу 190 кг. Водородно-кислородный ракетный двигатель имеет удельный импульс 350 с. Теоретически водородно-фторовый двигатель может развить удельный импульс более 400с.

Обычно применяемая схема жидкостного ракетного двигателя работает следующим образом. Сжатый газ создает необходимый напор в баках с криогенным горючим, для предотвращения возникновения газовых пузырей в трубопроводах. Насосы подают топливо в ракетные двигатели. Топливо впрыскивается в камеру сгорания через большое количество форсунок. Также через форсунки в камеру сгорания впрыскивают и окислитель.

В любой машине при сгорании топлива образуются большие тепловые потоки, нагревающие стенки двигателя. Если не охлаждать стенки камеры, то она быстро прогорит, из какого бы материала она ни была сделана. Жидкостный реактивный двигатель, как правило, охлаждают одним из компонентов топлива. Для этого камеру делают двух стеночной. В зазоре между стенками протекает холодный компонент топлива.

Алюминий" href="/text/category/alyuminij/" rel="bookmark">алюминий и др. В особенности как добавку к обычному топливу, например водородно-кислородному. Подобные «тройные композиции» способны обеспечить наибольшую из возможных для химических топлив скорость истечения – до 5 км/с. Но это уже практически предел ресурсов химии. Большего она практически сделать не может. Хотя в предлагаемом описании пока преобладают жидкостные ракетные двигатели, нужно сказать, что первым в истории человечества был создан термохимический ракетный двигатель на твердом топливе – РДТТ. Топливо – например специальный порох – находится непосредственно в камере сгорания. Камера сгорания с реактивным соплом, заполненная твердым топливом – вот и вся конструкция. Режим сгорания твердого топлива зависит от предназначения РДТТ (стартовый, маршевый или комбинированный). Для твердотопливных ракет применяемых в военном деле характерно наличие стартового и маршевого двигателей. Стартовый РДТТ развивает большую тягу на очень короткое время, что необходимо для схода ракеты с пусковой установки и её первоначального разгона. Маршевый РДТТ предназначен для поддержания постоянной скорости полета ракеты на основном (маршевом) участке траектории полета. Различия между ними заключаются в основном в конструкции камеры сгорания и профиле поверхности горения топливного заряда, которые определяют скорость горения топлива от которой зависит время работы и тяга двигателя. В отличие от таких ракет космические ракеты-носители для запуска спутников Земли, орбитальных станций и космических кораблей, а также межпланетных станций работают только в стартовом режиме со старта ракеты до вывода объекта на орбиту вокруг Земли или на межпланетную траекторию. В целом твердотопливные ракетные двигатели не имеют много преимуществ перед двигателями на жидком топливе: они просты в изготовлении, длительное время могут храниться, всегда готовы к действию, относительно взрывобезопасны. Но по удельной тяге твердотопливные двигатели на 10-30% уступают жидкостным.

4.Электрические ракетные двигатели

Почти все рассмотренные выше ракетные двигатели, развивают огромную силу тяги и предназначены для вывода космических аппаратов на орбиту вокруг Земли и разгона их до космических скоростей для межпланетных полетов. Совсем другое дело – двигательные установки для уже выведенных на орбиту или на межпланетную траекторию космических аппаратов. Здесь, как правило, нужны двигатели малой мощности (несколько киловатт или даже ватт) способные работать сотни и тысячи часов и многократно включаться и выключаться. Они позволяют поддерживать полет на орбите или по заданной траектории, компенсируя сопротивление полету создаваемое верхними слоями атмосферы и солнечным ветром. В электрических ракетных двигателях разгон рабочего тела до определенной скорости производится нагреванием его электрической энергией. Электроэнергия поступает от солнечных батарей или атомной электростанции . Способы нагревания рабочего тела различны, но реально применяется в основном электродуговой. Он показал себя очень надежным и выдерживает большое количество включений. В качестве рабочего тела в электродуговых двигателя применяют водород. С помощью электрической дуги водород нагревается до очень высокой температуры и он превращается в плазму - электрически нейтральную смесь положительных ионов и электронов. Скорость истечения плазмы из двигателя достигает 20 км/с. Когда ученые решат проблему магнитной изоляции плазмы от стенок камеры двигателя, тогда можно будет значительно повысить температуру плазмы и довести скорость истечения до 100 км/с. Первый электрический ракетный двигатель был разработан в Советском Союзе в гг. под руководством (впоследствии он стал создателем двигателей для советских космических ракет и академиком) в знаменитой газодинамической лаборатории (ГДЛ)./10/

5.Другие виды двигателей

Существуют и более экзотические проекты ядерных ракетных двигателей, в которых делящееся вещество находится в жидком, газообразном или даже плазменном состоянии, однако реализация подобных конструкций на современном уровне техники и технологий нереальна. Существуют, пока на стадии теоретической или лабораторной следующие проекты ракетных двигателей

Импульсные ядерные ракетные двигатели использующие энергию взрывов небольших ядерных зарядов;

Термоядерные ракетные двигатели, в которых в качестве топлива может использоваться изотоп водорода. Энергопроизводительность водорода в такой реакции составляет 6,8*1011 КДж/кг, то есть примерно на два порядка выше производительности ядерных реакций деления;

Солнечно-парусные двигатели – в которых используется давление солнечного света (солнечный ветер), существование которого опытным путем доказал русский физик еще в 1899 году. Расчетным путем ученые установили, что аппарат массой в 1 т, снабженный парусом диаметром 500 м, может долететь от Земли до Марса примерно за 300 суток. Однако эффективность солнечного паруса быстро уменьшается с удалением от Солнца.

6.Ядерные ракетные двигатели

Один из основных недостатков ракетных двигателей, работающих на жидком топливе, связан с ограниченной скоростью истечения газов. В ядерных ракетных двигателях представляется возможным использовать колоссальную энергию, выводящуюся при разложении ядерного «горючего», для нагревания рабочего вещества. Принцип действия ядерных ракетных двигателей почти не отличается от принципа действия термохимических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «посторонней» энергии, выделяющейся при внутриядерной реакции. Рабочее тело пропускается через ядерный реактор , в котором происходит реакция деления атомных ядер (например, урана), и при этом нагревается. У ядерных ракетных двигателей отпадает необходимость в окислителе и поэтому может быть использована только одна жидкость. В качестве рабочего тела целесообразно применять вещества, позволяющие двигателю развивать большую силу тяги. Этому условию наиболее полно удовлетворяет водород, затем следует аммиак , гидразин и вода. Процессы, при которых выделяется ядерная энергия, подразделяют на радиоактивные превращения, реакции деления тяжелых ядер, реакцию синтеза легких ядер. Радиоизотопные превращения реализуются в так называемых изотопных источниках энергии. Удельная массовая энергия (энергия, которую может выделить вещество массой 1кг) искусственных радиоактивных изотопов значительно выше, чем химических топлив. Так, для 210Ро она равна 5*10 8КДж/кг, в то время как для наиболее энергопроизводительного химического топлива (бериллий с кислородом) это значение не превышает 3*10 4 КДж/кг. К сожалению, подобные двигатели применять на космических ракетах-носителях пока не рационально. Причина этого – высокая стоимость изотопного вещества и трудности эксплуатации. Ведь изотоп выделяет энергию постоянно, даже при его транспортировке в специальном контейнере и при стоянке ракеты на старте. В ядерных реакторах используется более энергопроизводительное топливо. Так, удельная массовая энергия 235U (делящегося изотопа урана) равна 6,75*10 9 КДж/кг, то есть примерно на порядок выше, чем у изотопа 210Ро. Эти двигатели можно «включать» и «выключать», ядерное горючее (233U, 235U, 238U, 239Pu) значительно дешевле изотопного. У таких двигателей в качестве рабочего тела может применяться не только вода, но и более эффективные рабочие вещества – спирт, аммиак, жидкий водород. Удельная тяга двигателя с жидким водородом равна 900 с. В простейшей схеме ядерного ракетного двигателя с реактором, работающим на твердом ядерном горючем рабочее тело размещено в баке. Насос подает его в камеру двигателя. Распыляясь с помощью форсунок, рабочее тело вступает в контакт с тепловыделяющим ядерным горючим, нагревается, расширяется и с большой скоростью выбрасывается через сопло наружу. Ядерное горючее по запасу энергии превосходит любой другой вид топлива. Тогда возникает закономерный вопрос – почему же установки на этом горючем имеют все-таки сравнительно небольшую удельную тягу и большую массу? Дело в том, что удельная тяга твердофазного ядерного ракетного двигателя ограничена температурой делящегося вещества, а энергетическая установка при работе испускает сильное ионизирующее излучение, оказывающее вредное действие на живые организмы. Биологическая защита от таких излучений имеет большой вес не применима на космических летательных аппаратах. Практические разработки ядерных ракетных двигателей, использующих твердое ядерное горючее, были начаты в середине 50-х годов 20-го столетия в Советском Союзе и США, почти одновременно со строительством первых ядерных электростанций. Работы проводились в обстановке повышенной секретности, но известно, что реального применения в космонавтике такие ракетные двигатели до сих пор не получили. Все пока ограничилось использованием изотопных источников электроэнергии относительно небольшой мощности на беспилотных искусственных спутниках Земли, межпланетных космических аппаратах и всемирно известном советском «луноходе».

7.Ядерные реактивные двигатели, принцип работы, способы получения импульса в ЯРД.

ЯРД получили свое название благодаря тому, что создают тягу за счет использования ядерной энергии, т. е. энергии, которая выделяется в результате ядерных реакций. В общем смысле под этими реакциями подразумеваются любые изменения энергетического состояния атомных ядер, а также превращения одних ядер в другие, связанные с перестройкой структуры ядер или изменением количества содержащихся в них элементарных частиц - нуклонов. Причем ядерные реакции, как известно, могут происходить либо спонтанно (т. е. самопроизвольно), либо вызываться искусственно, например, при бомбардировке одних ядер другими (или элементарными частицами). Ядерные реакции деления и синтеза по величине энергии превосходят химические реакции соответственно в миллионы и десятки миллионов раз. Это объясняется тем обстоятельством, что энергия химической связи атомов в молекулах во много раз меньше энергии ядерной связи нуклонов в ядре. Ядерную энергию в ракетных двигателях можно использовать двумя способами:

1. Высвобождаемая энергия используется для нагрева рабочего тела, которое затем расширяется в сопле, так же как в обычном ЖРД.

2. Ядерная энергия преобразуется в электрическую и затем используется для ионизации и разгона частиц рабочего тела.

3. Наконец импульс создается самими продуктами деления, образованными в процессе например, тугоплавкие металлы - вольфрам, молибден) используются для придания делящимся веществам специальных свойств.

Тепловыделяющие элементы твердофазного реактора пронизаны каналами, по которым протекает, постепенно нагреваясь, рабочее тело ЯРД. Каналы имеют диаметр порядка 1-3 мм, а их суммарная площадь составляет 20-30% поперечного сечения активной зоны. Активная зона подвешивается при помощи специальной решетки внутри силового корпуса, с тем чтобы она могла расширяться при нагреве реактора (иначе она разрушилась бы из-за термических напряжений).

Активная зона испытывает высокие механические нагрузки, связанные с действием значительных гидравлических перепадов давления (до нескольких десятков атмосфер) от протекающего рабочего тела, термических напряжений и вибраций. Увеличение размеров активной зоны при нагреве реактора достигает нескольких сантиметров. Активная зона и отражатель размещаются внутри прочного силового корпуса, воспринимающего давление рабочего тела и тягу, создаваемую реактивным соплом. Корпус закрывается прочной крышкой. На ней размещаются пневматические, пружинные или электрические механизмы привода регулирующих органов, узлы крепления ЯРД к космическому аппарату, фланцы для соединения ЯРД с питающими трубопроводами рабочего тела. На крышке может располагаться и турбонасосный агрегат.

8 - Сопло,

9 - Расширяющийся сопловой насадок,

10 - Отбор рабочего вещества на турбину,

11 - Силовой корпус,

12 - Управляющий барабан,

13 - Выхлоп турбины (используется для управления ориентацией и увеличения тяги),

14 - Кольцо приводов управляющих барабанов)

В начале 1957 года было определено окончательное направление работ Лос-Аламосской лаборатории, и принято решение по строительству графитового ядерного реактора с диспергированным в графите урановым горючим. Созданный в этом направлении реактор «Киви-А» был испытан в 1959 году 1-го июля.

Американский твёрдофазный ядерный реактивный двигатель ХЕ Prime на испытательном стенде (1968.г)

Помимо строительства реактора Лос-Аламосская лаборатория вела полным ходом работы по строительству специального испытательного полигона в Неваде, а также выполняла ряд специальных заказов ВВС США в смежных областях (разработка отдельных узлов ТЯРД). По поручению Лос-Аламосской лаборатории все специальные заказы на изготовления отдельных узлов осуществляли фирмы: «Аэроджет дженерал», отделение «Рокетдайн» фирмы «Норс-америкен авиэйшн». Летом 1958 года весь контроль за выполнением программы «Ровер» перешёл от ВВС США к вновь организованному Национальному управлению по аэронавтике и космосу (НАСА). В результате специального соглашения между КАЭ и НАСА в середине лета 1960 года было образовано Управление космическими ядерными двигателями под руководством Г. Фингера, которое и возглавило программу «Ровер» в дальнейшем.

Полученные результаты шести «горячих испытаний» ядерных реактивных двигателей оказались весьма обнадёживающими, и в начале 1961 года был подготовлен доклад об испытаниях реактора (RJFT) в полёте. Затем в середине 1961 года стартовал проект «Нерва» (применение ядерного двигателя для космических ракет). В качестве генерального подрядчика была выбрана фирма «Аэроджет дженерал», а в качестве субподрядчика отвечающего за строительство реактора фирма «Вестингауз».

10.2 Работы по ТЯРД в России

Американец" href="/text/category/amerikanetc/" rel="bookmark">американцев российские ученые использовали наболее экономичные и эффективные испытания отдельных тепловыделяющих элементов в исследовательских реакторах. Весь комплекс произведённых работ в 70-80-е годы позволило в КБ «Салют», КБ химавтоматики, ИАЭ, НИКИЭТ и НПО «Луч» (ПНИТИ) разрабатывать различные проекты космических ЯРД и гибридных ядерных энергодвигательных установок. В КБ химавтоматики при научном руководстве НИИТП (за элементы реактора отвечали ФЭИ, ИАЭ, НИКИЭТ, НИИТВЭЛ, НПО "Луч", МАИ) создавались ЯРД РД 0411 и ядерный двигатель минимальной размерности РД 0410 тягой 40 и 3,6 т соответственно.

В результате были изготовлены реактор, «холодный» двигатель и стендовый прототип для проведения испытаний на газообразном водороде. В отличие от американского, с удельным импульсом не больше 8250 м/с, советский ТЯРД за счет применения более жаростойких и совершенных по конструкции тепловыделяющих элементов и высокой температуры в активной зоне имел этот показатель равным 9100 м/с и выше. Стендовая база для испытаний ТЯРД объединенной экспедиции НПО «Луч» размещалась в 50 км юго-западнее г. Семипалатинск-21 . Она начала работать в 1962 году. В гг. на полигоне испытывались натурные тепловыделяющие элементы прототипов ЯРД. При этом отработанный газ поступал в систему закрытого выброса. Стендовый комплекс для полноразмерных испытаний ядерных двигателей «Байкал-1» находится в 65 км к югу от г. Семипалатинск-21. С 1970 по 1988 год проведено около 30 «горячих пусков» реакторов. При этом мощность не превышала 230 МВт при расходе водорода до 16,5 кг/сек и его температуре на выходе из реактора 3100 К. Все запуски прошли успешно, безаварийно, и по плану.

Советский ТЯРД РД-0410 - единственный работающий и надёжный промышленный ядерный ракетный двигатель в мире

В настоящее время подобные работы на полигоне прекращены, хотя оборудование поддерживается в относительно работоспособном состоянии. Стендовая база НПО «Луч» - единственный в мире экспериментальный комплекс, где можно без значительных финансовых и временных затрат проводить испытания элементов реакторов ЯРД. Не исключено, что возобновление в США работ по ТЯРД для полетов к Луне и Марсу в рамках программы «Космическая исследовательская инициатива» с планируемым участием в них специалистов России и Казахстана приведет к возобновлению деятельности семипалатинской базы и осуществлению «марсианской» экспедиции в 2020-е годы.

Основные характеристики

· Удельный импульс на водороде: 910 - 980 сек (теор. до 1000 сек ).

· Скорость истечения рабочего тела (водород): 9100 - 9800 м/сек.

· Достижимая тяга: до сотен и тысяч тонн.

· Максимальные рабочие температуры: 3000°С - 3700°С (кратковременное включение).

· Ресурс работы: до нескольких тысяч часов (периодическое включение). /5/

11.Устройство

Устройство советского твёрдофазного ядерного ракетного двигателя РД-0410

1 - магистраль от бака рабочего тела

2 - турбонасосный агрегат

3 - привод регулирующего барабана

4 - радиационная защита

5 - регулирующий барабан

6 - замедлитель

7 - тепловыделяющая сборки

8 - корпус реактора

9 - огневое днище

10 - магистраль охлаждения сопла

11- сопловая камера

12 - сопло

12.Принцип работы

ТЯРД по своему принципу работы представляет собой высокотемпературный реактор-теплообменник, в который вводится рабочее тело (жидкий водород) под давлением, и по мере его разогрева до высоких температур (свыше 3000°С) выбрасывается через охлаждаемое сопло. Регенерация тепла в сопле очень выгодна, так как позволяет значительно быстрее разогревать водород и утилизируя значительное количество тепловой энергии повысить удельный импульс до 1000 сек (9100- 9800 м/с).

Реактор ядерного ракетного двигателя

MsoNormalTable">

Рабочее тело

Плотность, г/см3

Удельная тяга (при указанных температурах в камере нагрева, °К), сек

0,071 (жидк)

0,682 (жидк)

1,000 (жидк)

нет. данн

нет. данн

нет. данн

(Примечание: Давление в камере нагрева 45,7 атм, расширение до давления 1 атм при неизменном химическом составе рабочего тела) /6/

15.Преимущества

Основным приемуществом ТЯРД перед химическими ракетными двигателями является получение более высокого удельного импульса, значительный энергозапас, компактность системы и возможность получения очень большой тяги (десятки, сотни и тысячи тонн в вакууме . В целом удельный импульс достигаемый в вакууме больше чем у отработанного двухкомпонентного химического ракетного топлива (керосин-кислород, водород-кислород) в 3-4 раза, а при работе на наивысшей теплонапряжённости в 4-5 раз. В настоящее время в США и России существует значительный опыт разработки и постройки таких двигателей, и в случае необходимости (специальные программы освоения космоса) такие двигатели могут быть произведены за короткое время и будут иметь разумную стоимость. В случае использования ТЯРД для разгона космических аппаратов в космосе, и при условии дополнительного использования пертурбационных манёврах с использованием поля тяготения крупных планет (Юпитер, Уран, Сатурн, Нептун) достижимые границы изучения Солнечной системы существенно расширяются, а время потребное для достижения дальних планет значительно сокращается. Кроме того ТЯРД могут быть успешно применены для аппаратов работающих на низких орбитах планет-гигантов с использованием их разряжённой атмосферы в качестве рабочего тела, или для работы в их атмосфере. /8/

16.Недостатки

Основным недостатком ТЯРД является наличие мощного потока проникающей радиации (гамма-излучение, нейтроны), а также вынос высокорадиоактивных соединений урана, тугоплавких соединений с наведённой радиацией, и радиоактивных газов с рабочим телом. В этой связи ТЯРД неприемлем для наземных пусков во избежание ухудшения экологической обстановки на месте пуска и в атмосфере. /14/

17.Улучшение характеристик ТЯРД. Гибридные ТЯРД

Как и у всякого ракетного или вообще любого двигателя, у твёрдофазного ядерного реактивного двигателя имеются существенные ограничения достижимых важнейших характеристик. Эти ограничения представляют собой невозможность устройству (ТЯРД) работать в области температур превышающих диапазон предельных рабочих температур конструкционных материалов двигателя. Для расширения возможностей и значительного увеличения главных рабочих параметров ТЯРД могут быть применены различные гибридные схемы в которых ТЯРД играет роль источника тепла и энергии и используются дополнительные физические способы ускорения рабочих тел. Наиболее надёжной, практически осуществимой, и имеющей высокие характеристики по удельному импульсу и тяге является гибридная схема с дополнительным МГД-контуром (магнитогидродинамическим контуром) разгона ионизированного рабочего тела (водород и специальные присадки). /13/

18.Радиационная опасность от ЯРД.

Работающий ЯРД является мощным источником радиации - гамма- и нейтронного излучения. Без принятия специальных мер, радиация может вызвать в космическом аппарате недопустимый нагрев рабочего тела и конструкции, охрупчивание металлических конструкционных материалов, разрушение пластмассовых и старение резиновых деталей, нарушение изоляции электрических кабелей, вывод из строя электронной аппаратуры. Радиация может вызвать наведенную (искусственную) радиоактивность материалов - активизацию их.

В настоящее время проблема радиационной защиты космических аппаратов с ЯРД считается в принципе решенной. Решены также и принципиальные вопросы, связанные с обслуживанием ЯРД на испытательных стендах и пусковых площадках. Хотя работающий ЯРД представляет опасность для обслуживающего персонала" уже через сутки после окончания работы ЯРД можно без всяких средств индивидуальной защиты находиться в течение нескольких десятков минут на расстоянии 50 м от ЯРД и даже подходить к нему. Простейшие средства защиты позволяют обслуживающему персоналу входить в рабочую зону ЯРД уже вскоре после испытаний.

Уровень заражения пусковых комплексов и окружающей среды, по-видимому, не будет препятствием использованию ЯРД на нижних ступенях космических ракет. Проблема радиационной опасности для окружающей среды и обслуживающего персонала в значительной степени смягчается тем обстоятельством, что водород, используемый в качестве рабочего тела, практически не активируется при прохождении через реактор. Поэтому реактивная струя ЯРД не более опасна, чем струя ЖРД./4/

Заключение

При рассмотрении перспектив развития и использования ЯРД в космонавтике следует исходить из достигнутых и ожидаемых характеристик различных типов ЯРД, из того, что может дать космонавтике их, применение и, наконец, из наличия тесной связи проблемы ЯРД с проблемой энергообеспечения в космосе и с вопросами развития энергетики вообще.

Как уже говорилось выше, из всех возможных типов ЯРД наиболее разработаны тепловой радиоизотопный двигатель и двигатель с твердофазным реактором деления. Но если характеристики радиоизотопных ЯРД не позволяют надеяться на их широкое применение в космонавтике (по крайней мере в ближайшем будущем), то создание твердофазных ЯРД открывает перед космонавтикой большие перспективы.

Предложен, например, аппарат с начальной массой 40000 т (т. е. примерно в 10 раз большей, чем у самых крупных современных ракет-носителей), причем 1/10 этой массы приходится на полезный груз, а 2/3 - на ядерных зарядов. Если каждые 3 с взрывать по одному заряду, то их запаса хватит на 10 дней непрерывной работы ЯРД. За это время аппарат разгонится до скорости 10000 км/с и в дальнейшем, через 130 лет, может достигнуть звезды Альфа Центавра.

Ядерные энергоустановки обладают уникальными характеристиками, к которым относятся практически неограниченная энергоемкость, независимость функционирования от окружающей среды, неподверженность внешним воздействиям (космической радиации, метеоритному повреждению, высоким и низким температурам и т. д.). Однако максимальная мощность ядерных радиоизотопных установок ограничена величиной порядка нескольких сот ватт. Это ограничение не существует для ядерных реакторных энергоустановок, что и предопределяет выгодность их использования при продолжительных полетах тяжелых космических аппаратов в околоземном пространстве, при полетах к дальним планетам Солнечной системы и в других случаях.

Преимущества твердофазных и других ЯРД с реакторами деления наиболее полно раскрываются при исследовании таких сложных космических программ, как пилотируемые полеты к планетам Солнечной системы (например, при экспедиции на Марс). В том случае увеличение удельного импульса РД позволяет решать качественно новые задачи. Все эти проблемы значительно облегчаются при использовании твердофазного ЯРД с удельным импульсом вдвое большим, чем у современных ЖРД. В этом случае становится также возможным заметно сократить сроки полетов.

Вероятнее всего, что уже в ближайшем будущем твердофазные ЯРД станут одними из самых распространенный РД. Твердофазный ЯРД можно будет использовать как аппараты для дальних полетов, например, на такие планеты как Нептун, Плутон и даже вылетать за пределы Солнечной Системы. Однако для полетов к звездам ЯРД, основанный на принципах деления не пригоден. В этом случае перспективными являются ЯРД или точнее термоядерные реактивные двигатели (ТРД), работающие на принципе реакций синтеза и фотонные реактивные двигатели (ФРД), источникам импульса в которых является реакция аннигиляции вещества и антивещества. Впрочем, скорее всего человечество для путешествия в межзвездном пространстве будет использовать иной, отличный от реактивного, способ передвижения.

В заключение приведу перефразировку известной фразы Эйнштейна - для путешествия к звездам человечество должно придумать нечто такое, которое было бы сравнимо по сложности и восприятию с ядерным реактором для неандертальца!

ЛИТЕРАТУРА

Источники:

1. "Ракеты и люди. Книга 4 Лунная гонка"-М: Знание, 1999.
2. http://www. lpre. de/energomash/index. htm
3. Первушин "Битва за звёзды. Космическое противостояние"-М: знание,1998.
4. Л. Гильберг "Покорение неба"- М: Знание, 1994.
5. http://epizodsspace. *****/bibl/molodtsov
6. "Двигатель", " Ядерные двигатели для космических аппаратов", №5 1999 г.

7. "Двигатель", "Газофазные ядерные двигатели для космических аппаратов",

№ 6, 1999 г
7. http://www. *****/content/numbers/263/03.shtml
8. http://www. lpre. de/energomash/index. htm
9. http://www. *****/content/numbers/219/37.shtml
10., Чекалин транспорт будущего.

М.: Знание, 1983.

11. , Чекалин освоения космоса.- М.:

Знание, 1988.

12.Губанов Б. «Энергия - Буран» - шаг в будущее // Наука и жизнь.-

13.Гэтланд К. Космическая техника.- М.: Мир, 1986.

14., Сергеюк и коммерция.- М.: АПН, 1989.

15 .СССР в космосе. 2005 год.-М.: АПН, 1989.

16. На пути в дальний космос // Энергия. - 1985. - № 6.

ПРИЛОЖЕНИЕ

Основные характеристики твёрдофазных ядерных реактивных двигателей

Страна-изготовитель

Двигатель

Тяга (Thrust) в вакууме, кН

Удельный импульс, сек

Работа проекта, год

NERVA/Lox Mixed Cycle