Характеристика и применение титана и сплавов на его основе. Химические свойства титана

Наиболее значимыми для народного хозяйства были и остаются сплавы и металлы, объединяющие легкость и прочность. Титан относится именно к этой категории материалов и, кроме того, обладает превосходной коррозийной стойкостью.

Титан – переходный металл 4 группы 4 периода. Молекулярная масса его составляет всего 22, что указывает на легкость материала. При этом вещество отличается исключительной прочностью: среди всех конструкционных материалов именно у титана самая высокая удельная прочность. Цвет серебристо-белый.

Что такое титан, расскажет видео ниже:

Понятие и особенности

Титан довольно распространен – по содержанию в земной коре занимает 10 место. Однако выделить действительно чистый металл удалось лишь в 1875 году. До этого вещество либо получали с примесями, либо называли металлическим титаном его соединения. Эта путаница привела к тому, что соединения металла стали использоваться значительно раньше, чем сам металл.

Обусловлено это особенностью материала: самые ничтожные примеси заметно влияют на свойства вещества, порой полностью лишая присущих ему качеств.

Так, самая небольшая доля других металлов лишает титан жаропрочности, что является одним из его ценных качеств. А небольшая добавка неметалла превращает прочный материал в хрупкий и непригодный к применению.

Эта особенность сразу же разделила получаемый металл на 2 группы: технический и чистый.

  • Первый применяют в тех случаях, когда более всего нужна прочность, легкость и коррозийная стойкость, так как последнее качество титан не теряет никогда.
  • Материал большой чистоты используется там, где нужен материал, работающий при очень больших нагрузках и больших температурам, но при этом отличающийся легкостью. Это, конечно, авиа- и ракетостроение.

Вторая особая черта вещества – анизотропность. Некоторые его физические качества изменяются в зависимости от приложения сил, что необходимо учитывать при применении.

При нормальных условиях металл инертен, не корродирует ни в морской воде, ни в морском или городском воздухе. Более того, это самое биологически инертное вещество из известных, благодаря чему в медицине широко применяются титановые протезы и имплантаты.

В то же время при повышении температуры он начинает реагировать с кислородом, азотом и даже водородом, а в жидком виде впитывает газы. Эта неприятная особенность крайне затрудняет и получение самого металла, и изготовление сплавов на его основе.

Последнее возможно только при использовании вакуумной аппаратуры. Сложнейший процесс производства превратил довольно распространенный элемент в весьма дорогостоящий.

Связь с другими металлами

Титан занимает промежуточное положение между двумя другими известнейшими конструкционными материалами – алюминием и железом, вернее говоря, сплавами железа. По многим параметрам металл превосходит «конкурентов»:

  • механическая прочность титана в 2 раза выше, чем у железа, и в 6 раз, чем у алюминия. При этом прочность при снижении температуры возрастает;
  • коррозийная стойкость намного выше, чем у железа и даже алюминия;
  • при нормальной температуре титан инертен. Однако при повышении до 250 С, начинает поглощать водород, что сказывается на свойствах. По химической активности он уступает магнию, но, увы, превосходит железо и алюминий;
  • металл намного слабее проводит электричество: его удельное электросопротивление выше, чем у железа 5 раз, выше, чем у алюминия в 20 раз, и выше, чем у магния в 10 раз;
  • теплопроводность также намного ниже: меньше, чем 1 железа в 3 раза, и меньше, чем у алюминия в 12 раз. Однако это свойство обуславливает очень низкий коэффициент температурного расширения.

Плюсы и минусы

На деле недостатков у титана множество. Но сочетание прочности и легкости настолько востребовано, что ни сложный способ изготовления, ни необходимость исключительной чистоты не останавливают потребителей металла.

К несомненным плюсам вещества относятся:

  • низкая плотность, что означает очень небольшой вес;
  • исключительная механическая прочность как самого металла титан, так и его сплавов. При повышении температуры титановые сплавы превосходят все сплавы алюминия и магния;
  • соотношение прочности и плотности – удельная прочность, достигает 30–35, что почти в 2 раза выше, чем у лучших конструкционных сталей;
  • на воздухе титан подлежит покрытию тонким слоем оксида, который и обеспечивает превосходную коррозийную стойкость.

Недостатков у металла тоже хватает:

  • стойкость к коррозии и инертность относится только к продукции с неактивной поверхностью. Титановая пыль или стружка, например, самовоспламеняются и сгорают с температурой в 400 С;
  • очень сложный способ получения металла титан обеспечивает очень высокую стоимость. Материал намного дороже железа, или ;
  • способность впитывать атмосферные газы при повышении температуры требует применения при плавке и получении сплавов вакуумной аппаратуры, что тоже заметно увеличивает стоимость;
  • титан отличается плохими антифрикционными свойствами – на трение он не работает;
  • металл и его сплавы склонны к водородной коррозии, предотвратить которую сложно;
  • титан плохо поддается обработке резанием. Сварка его тоже затруднена из-за фазового перехода во время нагревания.

Лист титана (фото)

Свойства и характеристики

Сильно зависят от чистоты. Справочные данные описывают, конечно, чистый металл, но характеристики технического титана могут заметно отличаться.

  • Плотность металла уменьшается при нагревании от 4,41 до 4,25 г/куб см. Фазовый переход изменяет плотность лишь на 0,15%.
  • Температура плавления металла – 1668 С. температуру кипения – 3227 С. Титан является тугоплавким веществом.
  • В среднем предел прочности на растяжение составляет 300–450 МПа, однако это показатель можно увеличить до 2000 МПА, прибегнув к закалке и старению, а также введению дополнительных элементов.
  • По шкале НВ твердость составляет 103 и это не предел.
  • Теплоемкость титана невелика – 0,523 кдж/(кг·К).
  • Удельное электросопротивление — 42,1·10 -6 ом·см.
  • Титан является парамагнитом. При снижении температуры его магнитная восприимчивость уменьшается.
  • Металлу в целом свойственны пластичность и ковкость. Однако на эти свойства сильно влияют кислород и азот в сплаве. Оба элемента придают материалу хрупкость.

Вещество устойчиво ко многим кислотам, включая азотную, серную в низкой концентрации и практически все органические за исключением муравьиной. Это качество обеспечивает титану востребованность в химической, нефтехимической, бумажной промышленности и так далее.

Структура и состав

Титан – хоть и переходный металл, да и удельное электросопротивление имеет низкое, все же, является металлом и проводит электрический ток, а это означает упорядоченную структуру. При нагревании до определенной температуры структура изменяется:

  • до 883 С устойчивой является α-фаза с плотностью в 4,55 г/куб. см. Она отличается плотной гексагональной решеткой. Кислород растворяется в этой фазе с образованием растворов внедрения и стабилизирует α-модификацию – отодвигает температурный предел;
  • выше 883 С стабильна β-фаза с объемно-центрированной кубической решеткой. Плотность его несколько меньше – 4,22 г/куб. см. Эту структуру стабилизирует водород – при его растворении в титане также образуются растворы внедрения и гидриды.

Эта особенность очень затрудняет работу металлурга. Растворимость водорода при охлаждении титана резко уменьшается, и в сплаве выпадает гидрид водорода – γ-фаза.

Он становится причиной появления холодных трещин при сварке, поэтому производителям приходится применять дополнительные усилия после плавки металла, чтобы очистить его от водорода.

О том, где можно найти и как сделать титан, расскажем ниже.

Данное видео посвящено описанию титана как металла:

Производство и добыча

Титан весьма распространен, так что с рудами, содержащими металл, причем в довольно больших количествах, затруднений не возникает. Исходным сырьем выступает рутил, анатаз и брукит – диоксиды титана в разной модификации, ильменит, пирофанит – соединения с железом, и так далее.

А вот сложна и требует дорогостоящей аппаратуры. Способы получения несколько отличаются, поскольку состав руды различен. Например, схема получения металла из ильменитовых руд выглядит так:

  • получение титанового шлака – породу загружают в электродуговую печь вместе с восстановителем – антрацитом, древесным углем и прогревают до 1650 С. При этом отделяют железо, которое идет на получение чугуна и диоксида титана в шлаке;
  • шлак хлорируют в шахтных или солевых хлораторах. Суть процесса сводится к тому, чтобы перевести твердый диоксид в газообразный тетрахлорид титана;
  • в печах сопротивления в специальных колбах металл восстанавливают натрием или магнием из хлорида. В итоге получают простую массу – титановую губку. Это технический титан вполне пригодный для изготовления химической аппаратуры, например;
  • если же требуется более чистый металл, прибегают к рафинированию – при этом металл реагирует с йодом с тем, чтобы получить газообразный йодид, а последний под действием температуры – 1300–1400 С, и электрического тока, разлагается, высвобождая чистый титан. Электрический ток подается через натянутую в реторте титановую проволоку, на которую и осаждается чистое вещество.

Чтобы получить титан в слитках, титановую губку переплавляют в вакуумной печи, чтобы предотвратить растворение водорода и азота.

Цена титана за 1 кг очень высока: в зависимости от степени чистоты металл стоит от 25 до 40 $ за 1 кг. С другой стороны, корпус кислотоупорного аппарата из нержавеющей стали обойдется в 150 р. и прослужит не более 6 месяцев. Титановый будет стоить около 600 р, но эксплуатируется в течение 10 лет. Много производств титана есть в России.

Области применения

Влияние степени очистки на физико-механические качества заставляет рассматривать именно с этой точки зрения. Так, технический, то есть, не самый чистый металл обладает превосходной коррозийной стойкостью, легкостью и прочностью, что и обуславливает его применение:

  • химическая промышленность – теплообменники, трубы, корпуса, детали насосов, арматура и так далее. Материал незаменим на участках, где требуется стойкость к кислотам и прочность;
  • транспортная промышленность – вещество используется для изготовления средств передвижения от железнодорожных составов до велосипедов. В первом случае, металл обеспечивает меньшую массу составов, что делает тягу более эффективной, в последнем – придает легкость и прочность, не зря ведь титановая велосипедная рама считается лучшей;
  • военно-морское дело – из титана изготавливают теплообменники, выхлопные глушители для подводных лодок, клапан, пропеллеры и так далее;
  • в строительстве широко применяют -титан – прекрасный материал для отделки фасадов и кровель. Вместе с прочностью сплав обеспечивает еще одно важное для архитектуры достоинство – возможность придавать изделиям самую причудливую конфигурацию, способность к формообразованию у сплава неограниченная.

Чистый металл, кроме того, является очень стойким к высоким температурам и сохраняет при этом прочность. Применение очевидно:

  • ракето- и авиастроение – из него изготавливают обшивку. Детали двигателей, элементы крепления, части шасси и так далее;
  • медицина – биологическая инертность и легкость делает титан куда более перспективным материалом при протезировании, вплоть до сердечных клапанов;
  • криогенная техника – титан является одним из немногих веществ, которые при снижении температуры становятся лишь прочнее и не утрачивает пластичности.

Титан – конструкционный материал самой высокой прочности при такой легкости и пластичности. Эти уникальные качества обеспечивают ему все более важную роль в народном хозяйстве.

О том, где взять титан для ножа, расскажет видео ниже:

Тита́н (лат. Titanium; обозначается символом Ti) - элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов , с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) - лёгкий металл серебристо-белого цвета.

История

Открытие TiO 2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1789), выделил новую «землю» (окись) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля - окислы одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз - идентичные окислы титана.
Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI 4 .

Происхождение названия

Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот, в соответствии со своими взглядами на химическую номенклатуру в противоход французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.
Однако согласно другой версии, публиковавшейся в журнале «Техника-Молодежи» в конце 1980-х, новооткрытый металл обязан своим именем не могучим титанам из древнегреческих мифов, а Титании - королеве фей в германской мифологии (жена Оберона в шекспировском «Сне в летнюю ночь»). Такое название связано с необычайной «лёгкостью» (малой плотностью) металла.

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.
Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки - порошок диоксида титана TiO 2 . Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl 4:
TiO 2 + 2C + 2Cl 2 =TiCl 2 + 2CO

Образующиеся пары TiCl 4 при 850 °C восстанавливают магнием:
TiCl 4 + 2Mg = 2MgCl 2 + Ti

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl 4 . Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Физические свойства

Титан - легкий серебристо-белый металл. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмноцентрированной упаковкой, температура полиморфного превращения α↔β 883 °C.
Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.
При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO 2 , благодаря этому коррозионностоек в большинстве сред (кроме щелочной).
Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C. Титановая стружка пожароопасна.

Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.

По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.

Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж.

Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.

Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO 2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB 2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.

Титан был первоначально назван «грегоритом» британским химиком преподобным Уильямом Грегором, который открыл его в 1791 году. Затем титан был независимо открыт немецким химиком М. Х. Клапротом в 1793 году. Он назвал его титаном в честь титанов из греческой мифологии - «воплощение естественной силы». Только в 1797 году Клапрот обнаружил, что его титан был элементом, ранее открытым Грегором.

Характеристики и свойства

Титан - это химический элемент с символом Ti и атомным номером 22. Это блестящий металл с серебристым цветом, низкой плотностью и высокой прочностью. Он устойчив к коррозии в морской воде и хлоре.

Элемент встречается в ряде месторождений полезных ископаемых, главным образом рутила и ильменита, которые широко распространены в земной коре и литосфере.

Титан используется для производства прочных лёгких сплавов. Двумя наиболее полезными свойствами металла являются коррозионная стойкость и отношение твёрдости к плотности, самое высокое из любого металлического элемента. В своём нелегированном состоянии этот металл столь же прочен, как некоторые стали, но менее плотный.

Физические свойства металла

Это прочный металл с низкой плотностью, довольно пластичный (особенно в бескислородной среде), блестящий и металлоидно-белый. Относительно высокая температура плавления более 1650 °C (или 3000 °F) делает его полезным в качестве тугоплавкого металла. Он парамагнитный и имеет довольно низкую электрическую и теплопроводность.

По шкале Мооса твёрдость титана равняется 6. По этому показателю он немного уступает закалённой стали и вольфраму.

Коммерчески чистые (99,2%) титаны имеют предельную прочность на разрыв около 434 МПа, что соответствует обычным низкосортным стальным сплавам, но при этом титан гораздо легче.

Химические свойства титана

Как алюминий и магний, титан и его сплавы сразу же окисляются при воздействии воздуха. Он медленно реагирует с водой и воздухом при температуре окружающей среды, потому что образует пассивное оксидное покрытие , которое защищает объёмный металл от дальнейшего окисления.

Атмосферная пассивация даёт титану отличную стойкость к коррозии почти эквивалентную платине. Титан способен противостоять атаке разбавленных серных и соляных кислот, растворов хлорида и большинства органических кислот.

Титан является одним из немногих элементов, которые сгорают в чистом азоте, реагируя при 800° C (1470° F) с образованием нитрида титана. Из-за своей высокой реакционной способности с кислородом, азотом и некоторыми другими газами титановые нити применяются в титановых сублимационных насосах в качестве поглотителей для этих газов. Такие насосы недороги и надёжно производят чрезвычайно низкое давление в системах сверхвысокого вакуума.

Обычными титаносодержащими минералами являются анатаз, брукит, ильменит, перовскит, рутил и титанит (сфен). Из этих минералов только рутил и ильменит имеют экономическое значение, но даже их трудно найти в высоких концентрациях.

Титан содержится в метеоритах и он был обнаружен на Солнце и звёздах M-типа с температурой поверхности 3200° C (5790° F).

Известные в настоящее время способы извлечения титана из различных руд являются трудоёмкими и дорогостоящими.

Производство и изготовление

В настоящее время разработаны и используются около 50 сортов титана и титановых сплавов. На сегодняшний день признаётся 31 класс титанового металла и сплавов, из которых классы 1−4 являются коммерчески чистыми (нелегированными). Они отличаются прочностью на разрыв в зависимости от содержания кислорода, причём класс 1 является наиболее пластичным (самая низкая прочность на разрыв с содержанием кислорода 0,18%), а класс 4 - наименее пластичный (максимальная прочность на разрыв с содержанием кислорода 0,40%).

Оставшиеся классы представляют собой сплавы, каждый из которых обладает конкретными свойствами:

  • пластичность;
  • прочность;
  • твёрдость;
  • электросопротивление;
  • удельная коррозионная стойкость и их комбинации.

В дополнение к данным спецификациям титановые сплавы также изготавливаются для соответствия требованиям аэрокосмической и военной техники (SAE-AMS, MIL-T), стандартам ISO и спецификациям по конкретным странам, а также требованиям конечных пользователей для аэрокосмических, военных, медицинских и промышленных применений.

Коммерчески чистый плоский продукт (лист, плита) может быть легко сформирован, но обработка должна учитывать тот факт, что металл имеет «память» и тенденцию к возврату назад. Особенно это касается некоторых высокопрочных сплавов.

Титан часто используется для изготовления сплавов:

  • с алюминием;
  • с ванадием;
  • с медью (для затвердевания);
  • с железом;
  • с марганцем;
  • с молибденом и другими металлами.

Области применения

Титановые сплавы в форме листа, плиты, стержней, проволоки, отливки находят применение на промышленных, аэрокосмических, рекреационных и развивающихся рынках. Порошковый титан используется в пиротехнике как источник ярких горящих частиц.

Поскольку сплавы титана имеют высокое отношение прочности на разрыв к плотности, высокую коррозионную стойкость, устойчивость к усталости, высокую стойкость против трещин и способность выдерживать умеренно высокие температуры, они используются в самолётах, при бронировании, в морских кораблях, космических кораблях и ракетах.

Для этих применений титан легирован алюминием, цирконием, никелем, ванадием и другими элементами для производства различных компонентов, включая критические конструктивные элементы, огневые стены, шасси, выхлопные трубы (вертолёты) и гидравлические системы. Фактически около двух третей произведённого титанового металла используется в авиационных двигателях и рамах.

Поскольку сплавы титана устойчивы к коррозии морской водой, они используются для изготовления гребных валов, оснастки теплообменников и т. д. Эти сплавы используются в корпусах и компонентах устройств наблюдения и мониторинга океана для науки и военных.

Удельные сплавы применяются в скважинных и нефтяных скважинах и никелевой гидрометаллургии для их высокой прочности. Целлюлозно-бумажная промышленность использует титан в технологическом оборудовании, подверженном воздействию агрессивных сред, таких как гипохлорит натрия или влажный хлорный газ (в отбеливании). Другие применения включают ультразвуковую сварку, волновую пайку.

Кроме того, эти сплавы используются в автомобилях, особенно в автомобильных и мотоциклетных гонках, где крайне важны низкий вес, высокая прочность и жёсткость.

Титан используется во многих спортивных товарах: теннисные ракетки, клюшки для гольфа, валы из лакросса; крикет, хоккей, лакросс и футбольные шлемы, а также велосипедные рамы и компоненты.

Благодаря своей долговечности титан стал более популярным для дизайнерских ювелирных изделий (в частности, титановых колец). Его инертность делает его хорошим выбором для людей с аллергией или тех, кто будет носить украшения в таких средах, как плавательные бассейны. Титан также легирован золотом для производства сплава, который может быть продан как 24-каратное золото, потому что 1% легированного Ti недостаточно, чтобы потребовать меньшую отметку. Полученный сплав представляет собой примерно твёрдость 14-каратного золота и более прочен, чем чистое 24-каратное золото.

Меры предосторожности

Титан является нетоксичным даже в больших дозах . В виде порошка или в виде металлической стружки, он представляет собой серьёзную опасность пожара и, при нагревании на воздухе, опасность взрыва.

Свойства и применение титановых сплавов

Ниже представлен обзор наиболее часто встречающихся титановых сплавов, которые делятся на классы, их свойства, преимущества и промышленные применения.

7 класс

Класс 7 механически и физически эквивалентен классу 2 чистого титана, за исключением добавления промежуточного элемента палладия, что делает его сплавом. Он обладает превосходной свариваемостью и эластичностью, наиболее коррозионной стойкостью из всех сплавов этого типа.

Класс 7 используется в химических процессах и компонентах производственного оборудования.

11 класс

Класс 11 очень похож на класс 1, за исключением добавления палладия для повышения коррозионной стойкости, что делает его сплавом.

Другие полезные свойства включают оптимальную пластичность, прочность, ударную вязкость и отличную свариваемость. Этот сплав можно использовать особенно в тех случаях, когда коррозия вызывает проблемы:

  • химическая обработка;
  • производство хлоратов;
  • опреснение;
  • морские применения.

Ti 6Al-4V, класс 5

Сплав Ti 6Al-4V, или титан 5 класса, наиболее часто используется. На его долю приходится 50% общего потребления титана во всём мире.

Удобство использования заключается в его многочисленных преимуществах. Ti 6Al-4V может подвергаться термообработке для повышения его прочности. Этот сплав обладает высокой прочностью при малой массе.

Это лучший сплав для использования в нескольких отраслях промышленности , таких как аэрокосмическая, медицинская, морская и химическая перерабатывающая промышленность. Его можно использовать при создании:

  • авиационных турбин;
  • компонентов двигателя;
  • конструктивных элементов самолёта;
  • аэрокосмических крепёжных изделий;
  • высокопроизводительных автоматических деталей;
  • спортивного оборудования.

Ti 6AL-4V ELI, класс 23

Класс 23 - хирургический титан. Сплав Ti 6AL-4V ELI, или класс 23, является версией более высокой чистоты Ti 6Al-4V. Он может быть изготовлен из рулонов, нитей, проводов или плоских проводов. Это лучший выбор для любой ситуации, когда требуется сочетание высокой прочности, малой массы, хорошей коррозионной стойкости и высокой вязкости. Он обладает превосходной устойчивостью к повреждениям.

Он может использоваться в биомедицинских применениях, таких как имплантируемые компоненты из-за его биосовместимости, хорошей усталостной прочности. Его также можно использовать в хирургических процедурах для изготовления таких конструкций:

  • ортопедические штифты и винты;
  • зажимы для лигатуры;
  • хирургические скобы;
  • пружины;
  • ортодонтические приборы;
  • криогенные сосуды;
  • устройства фиксации кости.

12 класс

Титан класса 12 обладает отличной высококачественной свариваемостью. Это высокопрочный сплав, который обеспечивает хорошую прочность при высоких температурах. Титан класса 12 обладает характеристиками, подобными нержавеющим сталям серии 300.

Его способность формироваться различными способами делает его полезным во многих приложениях. Высокая коррозионная стойкость этого сплава также делает его неоценимым для производственного оборудования. Класс 12 можно использовать в следующих отраслях:

  • теплообменники;
  • гидрометаллургические применения;
  • химическое производство с повышенной температурой;
  • морские и воздушные компоненты.

Ti 5Al-2,5Sn

Ti 5Al-2,5Sn - это сплав, который может обеспечить хорошую свариваемость с устойчивостью. Он также обладает высокой температурной стабильностью и высокой прочностью.

Ti 5Al-2,5Sn в основном используется в авиационной сфере, а также в криогенных установках.

/моль)

История

Открытие диоксида титана (TiO 2) сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот . У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, ), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 году немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля - оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз: французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз - идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году швед Й. Я. Берцелиус . Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI 4 .

Титан не находил промышленного применения, пока люксембуржец Г. Кролл (англ.) русск. в 1940 году не запатентовал простой магниетермический метод восстановления металлического титана из тетрахлорида ; этот метод (процесс Кролла (англ.) русск. ) до настоящего времени остаётся одним из основных в промышленном получении титана.

Происхождение названия

Металл получил своё название в честь титанов , персонажей древнегреческой мифологии, детей Геи . Название элементу дал Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру в противовес французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном .

Нахождение в природе

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре - 0,57 % по массе, в морской воде - 0,001 мг/л . В ультраосновных породах 300 г/т , в основных - 9 кг/т , в кислых 2,3 кг/т , в глинах и сланцах 4,5 кг/т . В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al 2 O 3 . Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов . До 30 % TiO 2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO 2 , ильменит FeTiO 3 , титаномагнетит FeTiO 3 + Fe 3 O 4 , перовскит CaTiO 3 , титанит (сфен) CaTiSiO 5 . Различают коренные руды титана - ильменит-титаномагнетитовые и россыпные - рутил-ильменит-цирконовые .

Месторождения

Крупные коренные месторождения титана находятся на территории ЮАР, России, Украины, Канады, США, Китая, Норвегии, Швеции, Египта, Австралии, Индии, Южной Кореи, Казахстана; россыпные месторождения имеются в Бразилии, Индии, США, Сьерра-Леоне, Австралии . В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58,5 %) и Украина (40,2 %) . Крупнейшее месторождение в России - Ярегское .

Запасы и добыча

По данным на 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO 2 . Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603-673 млн т., а рутиловых - 49,7-52,7 млн т . Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 % .

Крупнейший в мире производитель титана - российская компания «ВСМПО-АВИСМА » .

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак , получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки - порошок диоксида титана TiO 2 . Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором , получая пары тетрахлорида титана TiCl 4:

T i O 2 + 2 C + 2 C l 2 → T i C l 4 + 2 C O {\displaystyle {\mathsf {TiO_{2}+2C+2Cl_{2}\rightarrow TiCl_{4}+2CO}}}

Образующиеся пары TiCl 4 при 850 °C восстанавливают магнием :

T i C l 4 + 2 M g → 2 M g C l 2 + T i {\displaystyle {\mathsf {TiCl_{4}+2Mg\rightarrow 2MgCl_{2}+Ti}}}

Кроме этого, в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена из Кембриджского университета , где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести (оксида кальция). В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000-1100 °C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций :

2 C a O → 2 C a + O 2 {\displaystyle {\mathsf {2CaO\rightarrow 2Ca+O_{2}}}}

Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает титан из его оксида:

O 2 + C → C O 2 {\displaystyle {\mathsf {O_{2}+C\rightarrow CO_{2}}}} T i O 2 + 2 C a → T i + 2 C a O {\displaystyle {\mathsf {TiO_{2}+2Ca\rightarrow Ti+2CaO}}}

Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций, и процесс повторяется вплоть до полного преобразования катода в титановую губку либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, диоксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора .

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом , выделяя Ti из TiCl 4 . Для получения титановых слитков применяют дуговую, электронно-лучевую или плазменную переработку.

Физические свойства

Титан - лёгкий серебристо-белый металл . При нормальном давлении существует в двух кристаллических модификациях: низкотемпературный α -Ti с гексагональной плотноупакованной решёткой (гексагональная сингония , пространственная группа C 6mmc , параметры ячейки a = 0,2953 нм , c = 0,4729 нм , Z = 2 ) и высокотемпературный β -Ti с кубической объёмно-центрированной упаковкой (кубическая сингония , пространственная группа Im 3m , параметры ячейки a = 0,3269 нм , Z = 2 ), температура перехода α↔β 883 °C, теплота перехода ΔH =3,8 кДж/моль (87,4 кДж/кг ). Большинство металлов при растворении в титане стабилизируют β -фазу и снижают температуру перехода α↔β . При давлении выше 9 ГПа и температуре выше 900 °C титан переходит в гексагональную фазу (ω -Ti) . Плотность α -Ti и β -Ti соответственно равна 4,505 г/см³ (при 20 °C) и 4,32 г/см³ (при 900 °C) . Атомная плотность α-титана 5,67⋅10 22 ат/см³ .

Температура плавления титана при нормальном давлении равна 1670 ± 2 °C, или 1943 ± 2 К (принята в качестве одной из вторичных калибровочных точек температурной шкалы ITS-90 (англ.) русск. ) . Температура кипения 3287 °C . При достаточно низкой температуре (-80°C) , титан становится довольно хрупким. Молярная теплоёмкость при нормальных условиях C p = 25,060 кДж/(моль·K) , что соответствует удельной теплоёмкости 0,523 кДж/(кг·K) . Теплота плавления 15 кДж/моль , теплота испарения 410 кДж/моль . Характеристическая дебаевская температура 430 К . Теплопроводность 21,9 Вт/(м·К) при 20 °C . Температурный коэффициент линейного расширения 9,2·10 −6 К −1 в интервале от −120 до +860 °C . Молярная энтропия α -титана S 0 = 30,7 кДж/(моль·К) . Для титана в газовой фазе энтальпия формирования ΔH 0
f
= 473,0 кДж/моль
, энергия Гиббса ΔG 0
f
= 428,4 кДж/моль
, молярная энтропия S 0 = 180,3 кДж/(моль·К) , теплоёмкость при постоянном давлении C p = 24,4 кДж/(моль·K)

Пластичен, сваривается в инертной атмосфере. Прочностные характеристики мало зависят от температуры, однако сильно зависят от чистоты и предварительной обработки . Для технического титана твёрдость по Виккерсу составляет 790-800 МПа , модуль нормальной упругости 103 ГПа , модуль сдвига 39,2 ГПа . У высокочистого предварительно отожжённого в вакууме титана предел текучести 140-170 МПа, относительное удлинение 55-70%, твёрдость по Бринеллю 716 МПа .

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок .

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO 2 , благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Химические свойства

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой он взаимодействует благодаря образованию комплексного аниона 2− . Титан наиболее подвержен коррозии в органических средах, так как в присутствии воды на поверхности титанового изделия образуется плотная пассивная пленка из оксидов и гидрида титана. Наиболее заметное повышение коррозионной стойкости титана заметно при повышении содержания воды в агрессивной среде с 0,5 до 8,0 %, что подтверждается электрохимическими исследованиями электродных потенциалов титана в растворах кислот и щелочей в смешанных водно-органических средах .

При нагревании на воздухе до 1200 °C Ti загорается ярким белым пламенем с образованием оксидных фаз переменного состава TiO x . Из растворов солей титана осаждается гидроксид TiO(OH) 2 ·xH 2 O, осторожным прокаливанием которого получают оксид TiO 2 . Гидроксид TiO(OH) 2 ·xH 2 O и диоксид TiO 2 амфотерны .

При взаимодействии титана с углеродом образуется карбид титана Ti x C x (x = Ti 20 C 9 - TiC.

  • Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении.
  • Металл применяется в химической промышленности (реакторы , трубопроводы , насосы , трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, спортивных товарах, ювелирных изделиях, мобильных телефонах, лёгких сплавах и т. д.
  • Титан является физиологически инертным , благодаря чему применяется в медицине (протезы, остеопротезы, зубные имплантаты), в стоматологических и эндодонтических инструментах, украшениях для пирсинга .
  • Титановое литьё выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литьё по выплавляемым моделям. Из-за технологических трудностей в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве .
  • Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов [каких? ] .
  • Нитинол (никель-титан) - сплав, обладающий памятью формы, применяемый в медицине и технике.
  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что, в свою очередь, определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.
  • Титан является одним из наиболее распространённых