С алгоритм джонсона для графов. Задача Джонсона

Парная регрессия используется при моделировании, если влиянием других факторов, воздействующих на объект исследования можно пренебречь.

Например, при построении модели потребления того или иного товара от дохода, исследователь предполагает, что в каждой группе дохода одинаково влияние на потребление таких факторов, как цена товара, размер семьи, ее состав. Однако, уверенности в справедливости данного утверждения нет.

Прямой путь решения такой задачи состоит в отборе единиц совокупности с одинаковыми значениями всех других факторов, кроме дохода. Он приводит к планированию эксперимента – метод, который используется в естественнонаучных исследованиях. Экономист лишен возможности регулировать другие факторы. Поведение отдельных экономических переменных контролировать нельзя, т.е. не удается обеспечить равенство прочих условий для оценки влияния одного исследуемого фактора.

Как поступить в этом случае? Надо выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии.

Такого рода уравнения используется при изучении потребления.

Коэффициенты b j – частные производные у по факторами х i

При условии, что все остальные х i = const

Рассмотрим современную потребительскую функцию (впервые 30е годы предложил Кейнс Дж.М.) как модель вида С = f(y,P,M,Z)

c- потребление. у – доход

P – цена, индекс стоимости.

M – наличные деньги

Z – ликвидные активы

При этом

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функций издержек производства, в макроэкономических вопросах и других вопросах эконометрики.

В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого их них в отдельности, а также совокупное воздействие на моделируемый показатель.

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Она включает в себя два круга вопросов:

1. Отбор факторов;

2. Выбор уравнения регрессии.

Включение в уравнение множественной регрессии того или иного набора факторов связано с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Требования к факторам, включаемым во множественную регрессию:

1. они должны быть количественно измеримы, если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости: районы должны быть проранжированы).

2. факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Включение в модель факторов с высокой интеркорреляцией, когда R у x 1

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются интерпретируемыми.

В уравнение предполагается, что факторы х 1 и х 2 независимы друг от друга, r х1х2 = 0, тогда параметр b 1 измеряет силу влияния фактора х 1 на результат у при неизменном значении фактора х 2 . Если r х1х2 =1, то с изменением фактора х 1 фактор х 2 не может оставаться неизменным. Отсюда b 1 и b 2 нельзя интерпретировать как показатели раздельного влияния х 1 и х 2 и на у.

Пример, рассмотрим регрессию себестоимости единицы продукции у (руб.) от заработной платы работника х (руб.) и производительности труда z (ед. в час).

у = 22600 - 5x - 10z + e

коэффициент b 2 = -10, показывает, что с ростом производительности труда на 1 ед. себестоимость единицы продукции снижается на 10 руб. при постоянном уровне оплаты.

Вместе с тем параметр при х нельзя интерпретировать как снижение себестоимости единицы продукции за счет роста заработной платы. Отрицательное значение коэффициента регрессии при переменной х обусловлено высокой корреляцией между х и z (r х z = 0,95). Поэтому роста заработной платы при неизменности производительности труда (не учитывая инфляции) быть не может.

Включенные во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строиться модель с набором р факторов, то для нее рассчитывается показатель детерминации R 2 , которая фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р факторов. Влияние других неучтенных в модели факторов оценивается как 1-R 2 c соответствующей остаточной дисперсией S 2 .

При дополнительном включении в регрессию р+1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшается.

R 2 p +1 ≥ R 2 p и S 2 p +1 ≤ S 2 p .

Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включенный в анализ фактор x р+1 не улучшает модель и практически является лишним фактором.

Если для регрессии, включающей 5 факторов R 2 = 0,857, и включенный 6 дало R 2 = 0,858, то нецелесообразно включать в модель этот фактор.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической не значимости параметров регрессии по критерию t-Стьюдента.

Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости.

Отбор факторов производиться на основе теоретико-экономического анализа. Однако, он часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов осуществляется в две стадии:

на первой – подбирают факторы, исходя из сущности проблемы.

на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Коэффициенты интеркоррелиции (т.е. корреляция между объясняющими переменными) позволяют исключить из моделей дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если r xixj ≥0,7.

Поскольку одним из условий построения уравнения множественной регрессии является независимость действия факторов, т.е. r х ixj = 0, коллинеарность факторов нарушает это условие. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Рассмотрим матрицу парных коэффициентов корреляции при изучении зависимости у = f(x, z, v)

y x z V
Y
X 0,8
Z 0,7 0,8
V 0,6 0,5 0,2

Очевидно, факторы x и z дублируют друг друга. В анализ целесообразно включит фактор z, а не х, так как корреляция z с у слабее чем корреляция фактора х с у (r у z < r ух), но зато слабее межфакторная корреляция (r zv < r х v)

Поэтому в данном случае в уравнение множественной регрессии включает факторы z и v . По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Но наиболее трудности возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарности факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК. Если рассмотренная регрессия у = a + bx + cx + dv + e, то для расчета параметров, применяется МНК:

S y = S факт +S e

или
=
+

общая сумма = факторная + остаточная

Квадратов отклонений

В свою очередь, при независимости факторов друг от друга, выполнимо равенство:

S = S x +S z + S v

Суммы квадратов отклонения, обусловленных влиянием соответствующих факторов.

Если же факторы интеркоррелированы, то данное равенство нарушается.

Включение в модель мультиколлинеарных факторов нежелательно в силу следующего:

· затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл;

· оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Для оценки мультиколлинеарных факторов будем использовать определитель матрицы парных коэффициентов корреляции между факторами. Если бы факторы не коррелировали между собой, то матрица парных коэффициентов была бы единичной.

y = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + e

Если же между факторами существует полная линейная зависимость, то:

Чем ближе к 0 определитель, тем сильнее межколлинеарность факторов и ненадежны результаты множественной регрессии. Чем ближе к 1, тем меньше мультиколлинеарность факторов.

Оценка значимости мультиколлинеарности факторов может быть проведена методами испытания гипотезы 0 независимости переменных H 0:

Доказано, что величина
имеет приближенное распределение с степенями свободы. Если фактически значение превосходит табличное (критическое) то гипотеза H 0 отклоняется. Это означает, что , недиагональные коэффициенты указывают на коллинеарность факторов. Мультиколлинеарность считается доказанной.

Через коэффициенты множественной детерминации можно найти переменные, ответственные за мультиколлинеарность факторов. Для этого в качестве зависимой переменной рассматривается каждый из факторов. Чем ближе значение R 2 к 1, тем сильнее проявляется мультиколлинеарность. Сравнивая между собой коэффициенты множественной детерминации и т.п.

Можно выделить переменные, ответственные за мультиколлинеарность, следовательно, решить проблему отбора факторов, оставляя в уравнения факторы с минимальной величиной коэффициента множественной детерминации.

Существует ряд походов преодоления сильной межфакторной корреляции. Самый простой путь устранения МК состоит в исключении из модели одного или несколько факторов.

Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

Если y = f(x 1 , x 2 , x 3), то возможно построение следующего совмещенного уравнения:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 12 x 1 x 2 + b 13 x 1 x 3 + b 23 x 2 x 3 + e.

Это уравнение включает взаимодействие первого порядка (взаимодействие двух факторов).

Возможно включение в уравнение взаимодействий и более высокого порядка, если будет доказано их статистически значимость по F-критерию

b 123 x 1 x 2 х 3 – взаимодействие второго порядка.

Если анализ совмещенного уравнения показал значимость только взаимодействия факторов х 1 и х 3 , то уравнение будет имеет вид:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 13 x 1 x 3 + e.

Взаимодействие факторов х 1 и х 3 означает, что на разных уровнях фактора х 3 влияние фактора х 1 на у будет неодинаково, т.е. оно зависит от значения фактора х 3 . На рис. 3.1 взаимодействие факторов представляет непараллельными линями связи с результатом у. И наоборот, параллельные линии влияние фактора х 1 на у при разных уровнях фактора х 3 означают отсутствие взаимодействия факторов х 1 и х 3 .

(х 3 =В 2)
(х 3 =В 1)
(х 3 =В 1)
(х 3 =В 2)
у
у
1
х 1
а
б
у
у
Х 1
Х 1

Рис 3.1. Графическая иллюстрация взаимодействия факторов.

а - х 1 влияет на у, причем это влияние одинаково при х 3 =В 1 , так и при х 3 =В 2 (одинаковый наклон линий регрессии), что означает отсутствие взаимодействия факторов х 1 и х 3 ;

б – с ростом х 1 результативный признак у возрастает при х 3 =В 1 , с ростом х 1 результативный признак у снижается при х 3 =В 2 . Между х 1 и х 3 существует взаимодействие.

Совмещенные уравнения регрессии строятся, например, при исследовании эффекта влияния на урожайность разных видов удобрений (комбинации азота и фосфора).

Решению проблемы устранения мультиколлинеарности факторов может помочь и переход к устранениям приведенной формы. С этой целью в уравнение регрессии производится подстановка рассматриваемого фактора через выражение его из другого уравнения.

Пусть, например, рассматривается двухфакторная регрессия вида a + b 1 x 1 + b 2 x 2 , для которой x 1 и x 2 обнаруживают высокую корреляцию. Если исключить один из факторов, то мы придем к уравнению парной регрессии. Вместе с тем можно оставить факторы в модели, но исследовать данное двухфакторное уравнение регрессии совместно с другим уравнением, в котором фактор (например х 2) рассматривается как зависимая переменная. Предположим, известно, что . Постановляя это уравнение в искомое вместо х 2 , получим:

Если , то разделив обе части равенства на , получаем уравнение вида:

,

которое представляет собой приведенную форму уравнения для определения результативного признака у. Это уравнение может быть представлено в виде:

К нему для оценки параметров может быть применен МНК.

Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Походы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно разным методикам. В зависимости от того, какая методика построение уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.

Наиболее широкое применение получили следующие методы построение уравнения множественной регрессии :

· метод исключения;

· метод включения;

· шаговый регрессионный анализ.

Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты – отсев факторов из полного его отбора (метод исключение), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).

На первый взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут в полной мере решать вопрос о целесообразности включения в модель того или иного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется процедура отсева фактора. При отборе факторов рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6-7 раз меньше объема совокупности, по которой строит регрессии. Если это отношение нарушено, то число степеней свободы остаточной вариаций очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а F-критерий меньше табличного значения.

Классическая линейная модель множественной регрессии (КЛММР):

где y – регрессанд; x i – регрессоры; u – случайная составляющая.

Модель множественной регрессии является обобщением модели парной регрессии на многомерный случай.

Независимые переменные (х) предполагаются не случайными (детерминированными) величинами.

Переменная х 1 = x i 1 = 1 называется вспомогательной переменной для свободного члена и еще в уравнениях она называется параметром сдвиги.

«y» и «u» в (2) являются реализациями случайной величины.

Называется также параметром сдвига.

Для статистической оценки параметров регрессионной модели необходим набор (множество) данных наблюдений независимых и зависимых переменных. Данные могут быть представлены в виде пространственных данных или временных рядов наблюдений. Для каждого из таких наблюдений согласно линейной модели можно записать:

Векторно-матричная запись системы (3).

Введем следующие обозначения:

вектор-столбец независимой переменной (регрессанда)

размерность матрицы (n·1)

Матрица наблюдений независимых переменных (регрессоров):

размер (n×k)

Вектор-столбец параметров:

- матричная запись системы уравнений (3). Она проще и компактнее.

Сформируем предпосылки, которые необходимы при выводе уравнении для оценок параметров модели, изучения их свойств и тестирования качества модели. Эти предпосылки обобщают и дополняют предпосылки классической модели парной линейной регрессии (условия Гаусса – Маркова).

Предпосылка 1. независимые переменныене случайны и измеряются без ошибок. Это означает, что матрица наблюдений Х – детерминированная.

Предпосылка 2. (первое условие Гаусса – Маркова): Математическое ожидание случайной составляющей в каждом наблюдении равно нулю.

Предпосылка 3. (второе условие Гаусса – Маркова): теоретическая дисперсия случайной составляющей одинакова для всех наблюдений.

(Это гомоскедастичность)

Предпосылка 4. (третье условие Гаусса – Маркова): случайные составляющие модели не коррелированны для различных наблюдений. Это означает, что теоретическая ковариация

Предпосылки (3) и (4) удобно записать, используя векторные обозначения:

матрица - симметричная матрица. - единичная матрица размерности n, верхний индекс Т – транспонирование.

Матрица называется теоретической матрицей ковариаций (или ковариационной матрицей).

Предпосылка 5. (четвертое условие Гаусса – Маркова): случайная составляющая и объясняющие переменные не коррелированны (для модели нормальной регрессии это условие означает и независимость). В предположении, что объясняющие переменные не случайные, эта предпосылка в классической регрессионной модели всегда выполняется.

Предпосылка 6 . коэффициенты регрессии – постоянные величины.

Предпосылка 7 . уравнение регрессии идентифицируемо. Это означает, что параметры уравнения в принципе оцениваемы, или решение задачи оценивания параметров существует и единственно.

Предпосылка 8 . регрессоры не коллинеарны. В таком случае матрица наблюдений регрессоров должна быть полного ранга. (ее столбцы должны быть линейно независимы). Данная предпосылка тесно связана с предыдущей, так как при применении для оценивания коэффициентов МНК ее выполнение гарантирует идентифицируемость модели (если количество наблюдений больше количества оцениваемых параметров).

Предпосылка 9. Количество наблюдений больше количества оцениваемых параметров, т.е. n>k.

Все эти 1-9 предпосылки одинаково важны, и только при их выполнении можно применять классическую регрессионную модель на практике.

Предпосылка о нормальности случайной составляющей . При построении доверительных интервалов для коэффициентов модели и прогнозов зависимой переменной, проверки статистических гипотез относительно коэффициентов, разработке процедур для анализа адекватности (качества) модели в целом необходимо предположение о нормальном распределении случайной составляющей. С учетом этой предпосылки модель (1) называется классической многомерной линейной моделью регрессии.

Если предпосылки не выполняются, то необходимо строить так называемые обобщенные модели линейной регрессии. От того, насколько корректно (правильно) и осознанно используются возможности регрессионного анализа, зависит успех эконометрического моделирования, и, в конечном счете, обоснованность принимаемых решений.

Для построения уравнения множественной регрессии чаще используются следующие функции

1. линейная: .

2. степенная: .

3. экспоненциальная: .

4. гипербола:

В виду четкой интерпретации параметров наиболее широко используются линейная и степенная функции. В линейной множественной регрессии параметры при Х называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизменном значении других факторов, закрепленных на среднем уровне.

Пример . Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:

где у – расходы семьи за месяц на продукты питания, тыс.руб.;

х 1 – месячный доход на одного члена семьи, тыс.руб.;

х 2 – размер семьи, человек.

Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс. руб. расходы на питание возрастут в среднем на 350 руб. при томже размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же ее доходах предполагает дополнительный рост расходов на питание на 730 руб. Параметр а - не имеет экономической интерпретации.

При изучении вопросов потребления коэффициенты регрессии рассматривают как характеристики предельной склонности к потреблению. Например, если функции потребления С t имеет вид:

С t = a+b 0 R t + b 1 R t -1 +e,

то потребление в период времени t зависит от дохода того же периода R t и от дохода предшествующего периода R t -1 . Соответственно коэффициент b 0 обычно называют краткосрочной предельной склонностью к потреблению. Общим эффектом возрастания как текущего, так и предыдущего дохода будет рост потребления на b= b 0 + b 1 . Коэффициент b рассматривается здесь как долгосрочная склонность к потреблению. Так как коэффициенты b 0 и b 1 >0, то долгосрочная склонность к потреблению должна превосходить краткосрочную b 0 . Например, за период 1905 – 1951 гг. (за исключением военных лет) М.Фридман построил для США следующую функцию потребления: С t = 53+0,58 R t +0,32 R t -1 с краткосрочной предельной склонностью к потреблению 0,58 и с долгосрочной склонностью к потреблению 0,9.

Функция потребления может рассматриваться также в зависимости от прошлых привычек потребления, т.е. от предыдущего уровня потребления

С t-1: С t = a+b 0 R t +b 1 С t-1 +e,

В этом уравнении параметр b 0 также характеризует краткосрочную предельную склонность к потреблению, т.е. влияние на потребление единичного роста доходов того же периода R t . Долгосрочную предельную склонность к потреблению здесь измеряет выражение b 0 /(1- b 1).

Так, если уравнение регрессии составило:

С t = 23,4+0,46 R t +0,20 С t -1 +e,

то краткосрочная склонность к потреблению равна 0,46, а долгосрочная – 0,575 (0,46/0,8).

В степенной функции
коэффициенты b j являются коэффициентами эластичности. Они показывают, на сколько процентов изменяется в среднем результат с изменением соответствующего фактора на 1% при неизменности действия других факторов. Этот вид уравнения регрессии получил наибольшее распространение в производственных функциях, в исследованиях спроса и потребления.

Предположим, что при исследовании спроса на мясо получено уравнение:

где у – количество спрашиваемого мяса; х 1 – его цена; х 2 – доход.

Следовательно, рост цен на 1% при том же доходе вызывает снижение спроса на мясо в среднем на 2.63%. Увеличение дохода на 1% обуславливает при неизменных ценах рост спроса на 1.11%.

В производственных функциях вида:

где P – количество продукта, изготавливаемого с помощью m производственных факторов (F 1 , F 2 , ……F m).

b – параметр, являющийся эластичностью количества продукции по отношению к количеству соответствующих производственных факторов.

Экономический смысл имеют не только коэффициенты b каждого фактора, но и их сумма, т.е. сумма эластичностей: В = b 1 +b 2 +……+b m . Эта величина фиксирует обобщенную характеристику эластичности производства. Производственная функция имеет вид

где Р – выпуск продукции; F 1 – стоимость основных производственных фондов; F 2­ ­ - отработано человеко-дней; F 3 – затраты на производство.

Эластичность выпуска по отдельным факторам производства составляет в среднем 0,3% с ростом F 1 на 1% при неизменном уровне других факторов; 0,2% - с ростом F 2­ ­ на 1% также при неизменности других факторов производства и 0,5% с ростом F 3 на 1% при неизменном уровне факторов F 1 и F 2 . Для данного уравнения В = b 1 +b 2 +b 3 = 1. Следовательно, в целом с ростом каждого фактора производства на 1% коэффициент эластичности выпуска продукции составляет 1%, т.е. выпуск продукции увеличивается на 1%, что в микроэкономике соответствует постоянной отдаче на масштаб.

При практических расчетах не всегда . Она может быть как больше, так и меньше 1. В этом случае величина В фиксирует приближенную оценку эластичности выпуска с ростом каждого фактора производства на 1% в условиях увеличивающейся (В>1) или уменьшающейся (В<1) отдачи на масштаб.

Так, если
, то с ростом значений каждого фактора производства на 1% выпуск продукции в целом возрастает приблизительно на 1.2%.

При оценке параметров модели по МНК мерой (критерием) количества подгонки эмпирической регрессионной модели к наблюдаемой выборке служит сумма квадратов ошибок (остатков).

Где е = (e1,e2,…..e n) T ;

Для уравнения применили равенство: .

Скалярная функция;

Система нормальных уравнений (1) содержит k линейных уравнений относительно k неизвестных i = 1,2,3……k

= (2)

Перемножив (2) получим развернутую форму записи систем нормальных уравнений

Оценка коэффициентов

Стандартизированные коэффициенты регрессии, их интерпретация. Парные и частные коэффициенты корреляции. Множественный коэффициент корреляции. Множественный коэффициент корреляции и множественный коэффициент детерминации. Оценка надежности показателей корреляции.

Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов (МНК). При его применении строится система нормальных уравнений, решение которой и позволяет получить оценки параметров регрессии.

Так, для уравнения система нормальных уравнений составит:

Ее решение может быть осуществлено методом определителей:

, ,…, ,

где D – главный определитель системы;

Dа, Db 1 , …, Db p – частные определители.

а Dа, Db 1 , …, Db p получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Возможен и иной подход в определении параметров множественной регрессии, когда на основе матрицы парных коэффициентов корреляции строится уравнение регрессии в стандартизованном масштабе:

где - стандартизованные переменные , для которых среднее значение равно нулю , а среднее квадратическое отклонение равно единице: ;

Стандартизованные коэффициенты регрессии.

Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных вида

Решая ее методом определителей, найдем параметры – стандартизованные коэффициенты регрессии (b-коэффициенты).

Стандартизованные коэффициенты регрессии показывают, на сколько сигм изменится в среднем результат, если соответствующий фактор х i изменится на одну сигму при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии b I сравнимы между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.

Пример. Пусть функция издержек производства у (тыс. руб.) характеризуется уравнением вида

где х 1 – основные производственные фонды;

х 2 – численность занятых в производстве.

Анализируя его, мы видим, что при той же занятости дополнительный рост стоимости основных производственных фондов на 1 тыс. руб. влечет за собой увеличение затрат в среднем на 1,2 тыс. руб., а увеличение численности занятых на одного человека способствует при той же технической оснащенности предприятий росту затрат в среднем на 1,1 тыс. руб. Однако это не означает, что фактор х 1 оказывает более сильное влияние на издержки производства по сравнению с фактором х 2 . Такое сравнение возможно, если обратиться к уравнению регрессии в стандартизованном масштабе. Предположим, оно выглядит так:

Это означает, что с ростом фактора х 1 на одну сигму при неизменной численности занятых затрат на продукцию увеличиваются в среднем на 0,5 сигмы. Так как b 1 < b 2 (0,5 < 0,8), то можно заключить, что большее влияние оказывает на производство продукции фактор х 2 , а не х 1 , как кажется из уравнения регрессии в натуральном масштабе.

В парной зависимости стандартизованный коэффициент регрессии есть не что иное, как линейный коэффициент корреляции r xy . Подобно тому, как в парной зависимости коэффициент регрессии и корреляции связаны между собой, так и в множественной регрессии коэффициенты «чистой» регрессии b i связаны со стандартизованными коэффициентами регрессии b i , а именно:

(3.1)

Это позволяет от уравнения регрессии в стандартизованном масштабе

(3.2)

переход к уравнению регрессии в натуральном масштабе переменных.

1. Основные определения и формулы

Множественная регрессия - регрессия между переменными и т.е. модель вида:

где - зависимая переменная (результативный признак);

- независимые объясняющие переменные;

Возмущение или стохастическая переменная, включающая влияние неучтенных в модели факторов;

Число параметров при переменных

Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Уравнение множественной линейной регрессии в случае независимых переменных имеет вид а в случае двух независимых переменных - (двухфакторное уравнение).

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов . Строится система нормальных уравнений:

Решение этой системы позволяет получить оценки параметров регрессии с помощью метода определителей

где - определитель системы;

- частные определители, которые получаются путем замены соответствующего столбца матрицы определителя системы данными правой части системы.

Для двухфакторного уравнения коэффициенты множественной линейной регрессии можно вычислить по формулам:

Частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности :

Средние коэффициентами эластичности показывают на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%:

Их можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.

Тесноту совместного влияния факторов на результат оценивает коэффиц и ент (индекс) множественной корреляции :

Величина индекса множественной корреляции лежит в пределах от 0 до 1 и должна быть больше или равна максимальному парному индексу корреляции:

Чем ближе значение индекса множественной корреляции к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

Сравнивая индексы множественной и парной корреляции, можно сделать вывод о целесообразности (величина индекса множественной корреляции существенно отличается от индекса парной корреляции) включения в уравнение регрессии того или иного фактора.

При линейной зависимости совокупный коэффициент множественной ко р реляции определяется через матрицу парных коэффициентов корреляции:

где - определитель матрицы парных коэффициентов корреляции;

- определитель матрицы межфакторной корреляции.

Частны е коэффициент ы корреляции характеризуют тесноту линейной зависимости между результатом и соответствующим фактором при устранении влияния других факторов. Если вычисляется, например, (частный коэффициент корреляции между и при фиксированном влиянии ), это означает, что определяется количественная мера линейной зависимости между и которая будет иметь место, если устранить влияние на эти признаки фактора

Частные коэффициенты корреляции, измеряющие влияние на фактора при неизменном уровне других факторов, можно определить как:

или по рекуррентной формуле:

Для двухфакторного уравнения:

или

Частные коэффициенты корреляции изменяются в пределах от -1 до +1.

Сравнение значений парного и частного коэффициентов корреляции показывает направление воздействия фиксируемого фактора. Если частный коэффициент корреляции получится меньше, чем соответствующий парныйкоэффициент значит взаимосвязь признаков и в некоторой степени обусловлена воздействием на них фиксируемой переменной И наоборот, большее значение частного коэффициента по сравнению с парным свидетельствует о том, что фиксируемая переменная ослабляет своим воздействием связь и

Порядок частного коэффициента корреляции определяется количеством факторов, влияние которых исключается. Например, - коэффициент частной корреляции первого порядка.

Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить совокупный коэффициент мн о жественной корреляции :

Качество построенной модели в целом оценивает коэффициент (индекс) множественной детерминации , который рассчитывается как квадрат индекса множественной корреляции: Индекс множественной детерминации фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как

Если число параметров при близко к объему наблюдений, то коэффициент множественной корреляции приблизится к единице даже при слабой связи факторов с результатом. Для того чтобы не допустить возможногопреувеличения тесноты связи, используется скорректированный индекс множественной корреляции , который содержит поправку на число степеней свободы:

Чем больше величина тем сильнее различия и

Значимость частных коэффициентов корреляции проверяется аналогично случаю парных коэффициентов корреляции. Единственным отличием является число степеней свободы, которое следует брать равным =--2.

Значимость уравнения множественной регрессии в целом , так же как и в парной регрессии, оценивается с помощью - критерия Фишера :

Мерой для оценки включения фактора в модель служит частный -критерий . В общем виде для фактора частный -критерий определяется как

Для двухфакторного уравнения частные -критерии имеют вид:

Если фактическое значение превышает табличное, то дополнительное включение фактора в модель статистически оправданно и коэффициент чистой регрессии при факторе статистически значим. Если же фактическое значение меньше табличного, то фактор нецелесообразно включать в модель, а коэффициент регрессии при данном факторе в этом случае статистически незначим.

Для оценки значимости коэффициентов чистой регрессии по -критерию Стьюдента используется формула:

где - коэффициент чистой регрессии при факторе

- средняя квадратическая (стандартная) ошибка коэффициента регрессии которая может быть определена по формуле:

При дополнительном включении в регрессию нового фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться. Если это не так, то включаемый в анализ новый фактор не улучшает модель и практически является лишним фактором. Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по -критерию Стьюдента.

При построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

Для оценки мультиколлинеарности факторов может использоваться опред е литель матрицы между факторами . Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель, тем меньше мультиколлинеарность факторов.

Для применения МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это означает, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность . При нарушении гомоскедастичности выполняются неравенства

Наличие гетероскедастичности можно наглядно видеть из поля корреляции (рис. 9.22).

Рис. 9.22 . Примеры гетероскедастичности:

а) дисперсия остатков растет по мере увеличения

б) дисперсия остатков достигает максимальной величины при средних значениях переменной и уменьшается при минимальных и максимальных значениях

в) максимальная дисперсия остатков при малых значениях и дисперсия остатков однородна по мере увеличения значений

Для проверки выборки на гетероскедастичность можно использовать метод Гольдфельда-Квандта (при малом объеме выборки) или критерий Бартлетта (при большом объеме выборки).

Последовательность применения теста Гольдфельда-Квандта :

1) Упорядочить данные по убыванию той независимой переменной, относительно которой есть подозрение на гетероскедастичность.

2) Исключить из рассмотрения центральных наблюдений. При этом где - число оцениваемых параметров. Из экспериментальных расчетов для случая однофакторного уравнения регрессии рекомендовано при =30 принимать =8, а при =60 соответственно =16.

3) Разделить совокупность из наблюдений на две группы (соответственно с малыми и большими значениями фактора ) и определить по каждой из групп уравнение регрессии.

4) Вычислить остаточную сумму квадратов для первой и второй групп и найти их отношение где При выполнении нулевой гипотезы о гомоскедастичности отношение будет удовлетворять -критерию Фишера со степенями свободы для каждой остаточной суммы квадратов. Чем больше величина превышает тем более нарушена предпосылка о равенстве дисперсий остаточных величин.

Если необходимо включить в модель факторы, имеющие два или более качественных уровней (пол, профессия, образование, климатические условия, принадлежность к определенному региону и т.д.), то им должны быть присвоены цифровые метки, т.е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные называют фиктивными (и с кусственными) переменными .

К оэффициент регрессии при фиктивной переменной интерпретируется как среднее изменение зависимой переменной при переходе от одной категории к другой при неизменных значениях остальных параметров. Значимость влияния фиктивной переменной проверяется с помощью -критерия Стьюдента.

2. Решение типовых задач

Пример 9. 2. По 15 предприятиям отрасли (табл. 9.4) изучается зависимость затрат на выпуск продукции (тыс. ден. ед.) от объема произведенной продукции (тыс. ед.) и расходов на сырье (тыс. ден. ед). Необходимо:

1) Построить уравнение множественной линейной регрессии.

2) Вычислить и интерпретировать:

Средние коэффициенты эластичности;

Парные коэффициенты корреляции, оценить их значимость на уровне 0,05;

Частные коэффициенты корреляции;

Коэффициент множественной корреляции, множественный коэффициент детерминации, скорректированный коэффициент детерминации.

3) Оценить надежность построенного уравнения регрессии и целесообразность включения фактора после фактора и после

Таблица 9.4

x 1

x 2

Решение:

1) В Excel составим вспомогательную таблицу рис. 9.23.

Рис. 9.23 . Расчетная таблица многофакторной регрессии.

С помощью встроенных функций вычислим: =345,5; =13838,89; =8515,78; =219,315; =9,37; =6558,08.

Затем найдем коэффициенты множественной линейной регрессии и оформим вывод результатов как на рис. 9.24.

Рис. 9.24 . Решение задачи в MS Excel

Для вычисления значения коэффициента используем формулы

Формулы для вычисления параметров заносим в ячейки Е 20 , Е 2 1, Е 2 2. Так длявычисления параметра b 1 в Е 20 поместим формулу =(B20*B24-B21*B22)/(B23*B24-B22^2) и получим 29,83. Аналогично получаем значения =0,301 и Коэффициент =-31,25 (рис. 9.25.).

Рис. 9.25 . Вычисление параметров уравнения множественной регрессии (в с т роке формул формула для расчета b 2) .

Уравнение множественной линейной регрессии примет вид:

31,25+29,83+0,301

Таким образом, при увеличении объема произведенной продукции на 1 тыс. ед. затраты на выпуск этой продукции в среднем увеличатся на 29,83 тыс. ден. ед., а при увеличении расходов на сырье на 1 тыс. ден. ед. затраты увеличатся в среднем на 0,301 тыс. ден. ед.

2) Для вычисления средних коэффициентов эластичности воспользуемся формулой: Вычисляем: =0,884 и =0,184. Т.е. увеличение только объема произведенной продукции (от своего среднего значения) или только расходов на сырье на 1% увеличивает в среднем затраты на выпуск продукции на 0,884% или 0,184% соответственно. Таким образом, фактор оказывает большее влияние на результат, чем фактор

Для вычисления парных коэффициентов корреляции воспользуемся функцией «КОРРЕЛ» рис. 9.26.

Рис. 9.26 . Вычисление парных коэффициентов корреляции

Значения парных коэффициентов корреляции указывают на весьма тесную связь с и на тесную связь с В то же время межфакторная связь очень сильная (=0,88>0,7), что говорит о том, что один из факторов является неинформативным, т.е. в модель необходимо включать или или

З начимост ь парных коэффициентов корреляции оценим с помощью -критерия Стьюдента. =2,1604 определяем с помощью встроенной статистической функции СТЬЮДРАСПОБР взяв =0,05 и =-2=13.

Фактическое значение -критерия Стьюдента для каждого парного коэффициента определим по формулам: . Результат расчета представлен на рис. 9.27.

Рис. 9.27 . Результат расчета фактических значений -критерия Стьюдента

Получим =12,278; =7,1896; =6,845.

Так как фактические значения -статистики превосходят табличные, то парные коэффициенты корреляции не случайно отличаются от нуля, а статистически значимы.

Получим =0,81; =0,34; =0,21. Таким образом, фактор оказывает более сильное влияние на результат, чем

При сравнении значений коэффициентов парной и частной корреляции приходим к выводу, что из-за сильной межфакторной связи коэффициенты парной и частной корреляции отличаются довольно значительно.

Коэффициент множественной корреляции

Следовательно, зависимость от и характеризуется как очень тесная, в которой =93% вариации затрат на выпуск продукции определяются вариацией учтенных в модели факторов: объема произведенной продукции и расходов на сырье. Прочие факторы, не включенные в модель, составляют соответственно 7% от общей вариации

Скорректированный коэффициент множественной детерминации =0,9182 указывает на тесную связь между результатом и признаками.

Рис. 9.28 . Результаты расчета частных коэффициентов корреляции и коэфф и циента множественной корреляции

3) Оценим надежность уравнения регрессии в целом с помощью -критерия Фишера. Вычислим . =3,8853 определяем взяв =0,05, =2, =15-2-1=12 помощью встроенной статистической функции FРАСПОБР с такими же параметрами.

Так как фактическое значение больше табличного, то с вероятностью 95% делаем заключение о статистической значимости уравнения множественной линейной регрессии в целом.

Оценим целесообразность включения фактора после фактора и после с помощью частного -критерия Фишера по формулам

; .

Для этого в ячейку B32 заносим формулу для расчета F x 1 «=(B28- H24^2)*(15-3)/(1-B28) », а в ячейку B 33 формулу для расчета F x 2 «=(B28-H23^2)*(15-3)/(1-B28) », результат вычисления F x 1 = 22,4127, F x 2 = 1,5958. Табличное значение критерия Фишера определим с помощью встроенной функции FРАСПОБР с параметрами =0,05, =1, =12 «=FРАСПОБР(0,05; 1 ;12) », результат - =4,747. Так как =22,4127>=4,747, а =1,5958<=4,747, то включение фактора в модель статистически оправдано и коэффициент чистой регрессии статистически значим, а дополнительное включение фактора после того, как уже введен фактор нецелесообразно (рис. 9.29).

Рис. 9.29 . Результаты расчета критерия Фишера

Низкое значение (немногим больше 1) свидетельствует о статистической незначимости прироста за счет включения в модель фактора после фактора Это означает, что парная регрессионная модель зависимости затрат на выпуск продукции от объема произведенной продукции является достаточно статистически значимой, надежной и что нет необходимости улучшать ее, включая дополнительный фактор (расходы на сырье).

3. Дополнительные сведения для решения задач с помощью MS Excel

Сводные данные основных характеристик для одного или нескольких массивов данных можно получить с помощью инструмента анализа данных Опис а тельная статистика . Порядок действий следующий:

1. Необходимо проверить доступ к Пакету анализа . Для этого в ленте выбираем вкладку «Данные», в ней раздел «Анализ» (рис. 9.30.).

Рис. 9.30 . Вкладка данные диалоговое окно «Анализ данных»

2. В диалоговом окне «Анализ данных» выбрать Описательная стат и стика и нажать кнопку «ОК», в появившемся диалоговом окне заполните необходимые поля (рис. 9.31):

Рис. 9.31 . Диалоговое окно ввода параметров инструмента
« Описательная статистика »

Входной интервал - диапазон, содержащий данные результативного и объясняющих признаков;

Группирование - указать, как расположены данные (в столбцах или строках);

Метки - флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Выходной интервал - достаточно указать левую верхнюю ячейку будущего диапазона;

Новый рабочий лист - можно задать произвольное имя нового листа, на который будут выведены результаты.

Для получения информации Итоговой статистики, Уровня наде ж ности, -го наибольшего и наименьшего значений нужно установить соответствующие флажки в диалоговом окне.

Получаем следующую статистику (рис. 2.10).

В предыдущих разделах было упомянуто о том, что вряд ли выбранная независимая переменная является единственным фактором, который повлияет на зависимую переменную. В большинстве случаев мы можем идентифицировать более одного фактора, способного влиять каким-то образом на зависимую переменную. Так, например, разумно предположить, что расходы цеха будут определяться количеством отработанных часов, использованного сырья, количеством произведенной продукции. По видимому, нужно использовать все факторы, которые мы перечислили для того, чтобы предсказать расходы цеха. Мы можем собрать данные об издержках, отработанном времени, использованном сырье и т.д. за неделю или за месяц Но мы не сможем исследовать природу связи между издержками и всеми другими переменными посредством корреляционной диаграммы. Начнем с предположений о линейной связи, и только если это предположение будет неприемлимо, попробуем использовать нелинейную модель. Линейная модель для множественной регрессии:

Вариация у объясняется вариацией всех независимых переменных, которые в идеале должны быть независимы друг от друга. Например, если мы решим использовать пять независимых переменных, то модель будет следующей:

Как и в случае простой линейной регрессии мы получаем по выборке оценки и т.д. Наилучшая линия для выборки:

Коэффициент а и коэффициенты регрессии вычисляются с помощью минимальности суммы квадратов ошибок Для дальнейшего регрессионной модели используют следующие предположения об ошибка любого данного

2. Дисперсия равна и одинакова для всех х.

3. Ошибки независимы друг от друга.

Эти предположения те же, что и в случае простой регрессии. Однако в случае они ведут к очень сложным вычислениям. К счастью, выполня вычисления, позволяя нам сосредоточиться на интерпретации и оценке торной модели. В следующем разделе мы определим шаги, которые необх предпринять в случае множественной регрессии, но в любом случае мы полагаться на компьютер.

ШАГ 1. ПОДГОТОВКА ИСХОДНЫХ ДАННЫХ

Первый шаг обычно предполагает обдумать, как зависимая переменная быть связана с каждой из независимых переменных. Нет смысла нительные переменные х, если они не дают возможность объяснения вариа Вспомним, что наша задача состоит в объяснить вариацию изменения независимой переменкой х. Нам необходимо рассчитать коэффид корреляции для всех пар переменных при условии независимости наблк друг от друга. Это даст нам возможность определить, связаны х с у линей! же нет, независимы ли между собой. Это важно в множественной регр Мы можем вычислить каждый из коэффициентов корреляции, как пока: разделе 8.5, чтобы посмотреть, насколько их значения отличны от нуля нужно выяснить, нет ли высокой корреляции между значениями незавю переменных. Если мы обнаружим высокую корреляцию, например, между х то маловероятно, что обе эти переменные должны быть включены в оконч модель.

ШАГ 2. ОПРЕДЕНИЕ ВСЕХ СТАТИСТИЧЕСКИ ЗНАЧИМЫХ МОДЕЛ

Мы можем исследовать линейную связь между у и любой комбинацией переменных. Но модель имеет силу только в том случае, если значимая линейная связь между у и всеми х и если каждый коэффи регрессии значимо отличен от нуля.

Мы можем оценить значимость модели в целом, используя того, мы должны использовать -критерий для каждого коэффициента регр чтобы определить, значимо ли он отличен от нуля. Если коэффициент сии не значимо отличается от нуля, то соответствующая независимая перем не помогает в прогнозе значения у и модель не имеет силы.

Полная процедура заключается в том, чтобы установить множествениу нейную регрессионную модель для всех комбинаций независимых переме. Оценим каждую модель, используя F-критерий для модели в целом и -кри для каждого коэффициента регрессии. Если F-критерий или любой из -кря! незначимы, то эта модель не имеет силы и не может быть использована.

модели исключаются из рассмотрения. Этот процесс занимает очень много времени. Например, если у нас имеются пять независимых переменных, то возможно построение 31 модели: одна модель со всеми пятью переменными, пять моделей, включающие четыре из пяти переменных, десять - с тремя переменными, десять - с двумя переменными и пять моделей с одной.

Можно получить множественную регрессию не исключая последовательно независимые переменные, а расширяя их круг. В в этом случае мы начинаем с построения простых регрессий для каждой из независимых переменных поочередно. Мы выбираем лучшую из этих регрессий, т.е. с наивысшим коэффициентом корреляции, затем добавляем к этому, наиболее приемлемому значению переменной у вторую переменную. Этот метод построения множественной регрессии называется прямым.

Обратный метод начинается с исследования модели, включающей все независимые переменные; в нижеприведенном примере их пять. Переменная, которая дает наименьший вклад в общую модель, исключается из рассмотрения, остается только четыре переменных. Для этих четырех переменных определяется линейная модель. Если же эта модель не верна, исключается еще одна переменная, дающая наименьший вклад, остается три переменных. И этот процесс повторяется со следующими переменными. Каждый раз, когда исключается новая переменная, нужно проверять, чтобы значимая переменная не была удалена. Все эти действия нужно производить с большим вниманием, так как можно неосторожно исключить нужную, значимую модель из рассмотрения.

Не важно, какой именно метод используется, может быть несколько значимых моделей и каждая из них может иметь огромное значение.

ШАГ 3. ВЫБОР ЛУЧШЕЙ МОДЕЛИ ИЗ ВСЕХ ЗНАЧИМЫХ МОДЕЛЕЙ

Эта процедура может бьгть рассмотрена с помощью примера, в котором определились три важнейших модели. Первоначально было пять независимых переменных но три из них - - исключены из всех моделей. Эти переменные не помогают в прогнозировании у.

Поэтому значимыми моделями оказались:

Модель 1: у прогнозируется только

Модель 2: у прогнозируется только

Модель 3: у прогнозируется вместе.

Для того, чтобы сделать выбор из этих моделей, проверим значения коэффициента корреляции и стандартного отклонения остатков Коэффициент множественной корреляции - есть отношение "объясненной" вариации у к общей вариации у и вычисляется так же, как и коэффициент парной корреляции для простой регрессии при двух переменных. Модель, которая описывает связь между у и несколькими значениями х, имеет множественный коэффициент корреляции который близок к и значение очень мало. Коэффициент детерминации который часто предлагается в ППП, описывает процент изменяемости у, которая обменяется моделью. Модель имеет значение в том случае, когда близко к 100%.

В данном примере мы просто выбираем модель с наибольшим значением и наименьшим значением Предпочтительной моделью оказалась модель следующем шаге необходимо сравнить модели 1 и 3. Различие между этими моделями состоит во включении переменной в модель 3. Вопрос в том повышает ли значительно точность предсказания значения у или же нет! Следующий критерий поможет ответить нам на этот вопрос - это частный F-критерий. Рассмотрим пример, иллюстрирующий всю процедуру построения множественной регрессии.

Пример 8.2. Руководство большой шоколадной фабрики заинтересовано в построении модели для того, чтобы предсказать реализацию одной из своих уже долго существующих торговых марок. Были собраны следующие данные.

Таблица 8.5. Построение модели для прогноза объема реализации (см. скан)

Для того чтобы модель была полезной и имела силу, мы должны отвергнуть Но и принять Значение F-критерия есть соотношение двух величин, описанных выше:

Этот критерий с одним хвостом (односторонний), потому, что средний квадрат, обусловленный регрессией, должен быть больше, чтобы мы могли принять . В предыдущих разделах, когда мы использовали F-критерий, критерии были двусторонние, так как во главу угла ставилось большее значение вариации, каким бы оно ни было. В регрессионном анализе нет выбора - наверху (в числителе) всегда вариация у по регрессии. Если она меньше, чем вариация по остаточной величине, мы принимает Но, так как модель не объясняет изменений у. Это значение F-критерия сравнивается с табличным:

Из таблиц стандартного распределения F-критерия:

В нашем примере значение критерия:

Поэтому мы получили результат с высокой достоверностью.

Проверим каждое из значений коэффициентов регрессии. Предположим, что компьютер сосчитал все необходимые -критерии. Для первого коэффициента гипотезы формулируются так:

Время не помогает объяснить изменение продаж при условии, что остальные переменные присутствуют в модели, т.е.

Время дает существенный вклад и должно быть включено в модель, т. е.

Проведем испытание гипотезы на -ном уровне, пользуясь двусторонним -критерием при:

Граничные значения на данном уровне:

Значение критерия:

Рассчитанные значения -критерия должны лежать вне указанных границ для того, чтобы мы смогли отвергнуть гипотезу

Рис. 8.20. Распределение остатков для модели с двумя переменными

Оказалось восемь ошибок с отклонениями 10% или более от фактического объема продаж. Наибольшая из них - 27%. Будет ли размер ошибки принят компанией при планировании деятельности? Ответ на этот вопрос будет зависеть от степени надежности других методов.

8.7. НЕЛИНЕЙНЫЕ СВЯЗИ

Вернемся к ситуации, когда у нас всего две переменные, но связь между ними нелинейная. На практике многие связи между переменными являются криволинейными. Например, связь может быть выражена уравнением:

Если связь между переменными сильная, т.е. отклонение от криволинейной модели относительно небольшое, то мы сможем догадаться о природе наилучшей модели по диаграмме (полю корреляции). Однако трудно применить нелинейную модель к выборочной совокупности. Было бы легче, если бы мы могли манипулировать нелинейной моделью в линейной форме. В первых двух записанных моделях функциям могут быть присвоены разные имена, и тогда будет использоваться множественная модель регрессии. Например, если модель:

лучше всего описывает связь между у и х, то перепишем нашу модель, используя независимые переменные

Эти переменные рассматриваются как обыкновенные независимые переменные, даже если мы знаем, что и х не могут быть независимы друг от друга. Лучшая модель выбирается так же, как и в предыдущем разделе.

Третья и четвертая модели рассматриваются по-другому. Тут мы уже встречаемся с необходимостью так называемой линейной трансформации. Например, если связь

то на графике это будет изображено кривой линией. Все необходимые действия могут быть представлены следующим образом:

Таблица 8.10. Расчет

Рис. 8.21. Нелинейная связь

Линейная модель, при трансформированной связи:

Рис. 8.22. Линейная трансформация связи

В общем, если исходная диаграмма показывает, что связь может быть изображена в форме: то представление у против X, где определит прямую линию. Воспользуемся простой линейной регрессией для установления модели: Рассчитанные значения а и - лучшие значения а и (5.

Четвертая модель, приведенная выше, включает трансформацию у с использованием натурального логарифма:

Взяв логарифмы по обеих сторон уравнения, получим:

поэтому: где

Если , то - уравнение линейной связи между Y и х. Пусть - связь между у и х, тогда мы должны трансформировать каждое значение у взятием логарифма по е. Определяем простую линейную регрессию по х для того, чтобы найти значения А и Антилогарифм записан ниже.

Таким образом, метод линейной регрессии может быть применен к нелинейным связям. Однако в этом случае требуется алгебраическое преобразование при записи исходной модели.

Пример 8.3. Следующая таблица содержит данные об общем годовом объеме производства промышленной продукции в определенной стране за период

1. Введение…………………………………………………………………….3

1.1. Линейная модель множественной регрессии……………………...5

1.2. Классический метод наименьших квадратов для модели множественной регрессии…………………………………………..6

2. Обобщенная линейная модель множественной регрессии……………...8

3. Список использованной литературы…………………………………….10

Введение

Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени. Каждый уровень временного ряда формируется под воздействием большой числа факторов, которые условно можно подразделить на три группы:

Факторы, формирующую тенденцию ряда;

Факторы, формирующие циклические колебания ряда;

Случайные факторы.

При различных сочетаниях этих факторов зависимость уров­ней рада от времени может принимать разные формы.

Большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. По всей видимости, эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они форми­руют его возрастающую или убывающую тенденцию.

Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезон­ный характер., поскольку экономическая деятельность ряда от­раслей зависит от времени года (например, цены на сельскохо­зяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес-цикла, в которой находится экономика страны.

Некоторые временные ряды не содержат тенденции и цикли­ческую компоненту, а каждый следующий их уровень образуется как сумма среднего уровня рада и некоторой (положительной или отрицательной) случайной компоненты.

Очевидно, что реальные данные не соответствуют полностью ни одной из описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воз­действием тенденции, сезонных колебаний и случайной компо­ненты.

В большинстве случаев фактический уровень временного ря­да можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой времен­ной ряд представлен как сумма перечисленных компонент, назы­вается аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда.


1.1. Линейная модель множественной регрессии

Парная регрессия может дать хороший результат при моделирова­нии, если влиянием других факторов, воздействующих на объект исследо­вания, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, вводя их в модель, т.е, построить уравнение множественной регрессии.

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов экономет­рики. В настоящее время множественная регрессия - один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии - построить модель с боль­шим числом факторов, определив при этом влияние каждого из них в отдель­ности, а также совокупное их воздействие на моделируемый показатель.

Общий вид линейной модели множественной регрессии:

где n - объём выборки, который по крайней мере в 3 раза превосходит m -количество независимых переменных;

у i - значение результативной пере­менной в наблюдении I;

х i1 ,х i2 , ...,х im -значения независимых перемен­ных в наблюдении i;

β 0 , β 1 , … β m -параметры уравнения регрессии, под­лежащие оценке;

ε - значение случайной ошибки модели множественной регрессии в наблюдении I,

При построении модели множественной линейной регрессии учиты­ваются следующие пять условий:

1. величины х i1 ,х i2 , ...,х im - неслучайные и независимые переменные;

2. математическое ожидание случайной ошибки уравнения регрессии
равно нулю во всех наблюдениях: М (ε) = 0, i= 1,m;

3. дисперсия случайной ошибки уравнения регрессии является постоянной для всех наблюдений: D(ε) = σ 2 = const;

4. случайные ошибки модели регрессии не коррелируют между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): соv(ε i ,ε j .) = 0, i≠j;

5. случайная ошибка модели регрессии - случайная величина, подчиняющаяся нормальному закону распределения с нулевым математическим ожиданием и дисперсией σ 2 .

Матричный вид линейной модели множественной регрессии:

где: - вектор значений результативной переменной размерности n×1

матрица значений независимых переменных размерности n× (m + 1). Первый столбец этой матрицы является единичным, так как в модели регрессии коэффициент β 0 , умножается на единицу;

Вектор значений результативной переменной размерности (m+1)×1

Вектор случайных ошибок размерности n×1

1.2. Классический метод наименьших квадратов для модели множественной регрессии

Неизвестные коэффициенты линейной модели множественной рег­рессии β 0 , β 1 , … β m оцениваются с помощью классического метода наи­меньших квадратов, основная идея которого заключается в определении такого вектора оценки Д, который минимизировал бы сумму квадратов отклонений наблюдаемых значений результативной переменной у от мо­дельных значений (т. е. рассчитанных на основании построенной моде­ли регрессии).

Как известно из курса математического анализа, для того чтобы най­ти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Обозначив b i с соответствующими индексами оценки коэффициентов модели β i , i=0,m, имеет функцию m+1 аргумента.

После элементарных преобразований приходим к системе линейных нормальных уравнений для нахождения оценок параметров линейного уравнения множественной регрессии.

Полученная система нормальных уравнений является квадратной, т. е. количество уравнений равняется количеству неизвестных переменных, поэтому решение системы можно найти с помощью метода Крамера или метода Гаусса,

Решением системы нормальных уравнений в матричной форме будет вектор оценок.

На основе линейного уравнения множественной регрессии могут быть найдены частные уравнения регрессии, т. е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором х i при закреплении остальных факторов на среднем уровне.

При подстановке в эти уравнения средних значений соответствую­щих факторов они принимают вид парных уравнений линейной регрессии.

В отличие от парной регрессии, частные уравнения регрессии харак­теризуют изолированное влияние фактора на результат, ибо другие факто­ры закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:

где b i - коэффициент регрессии для фактора x i ; в уравнении множествен­ной регрессии,

у х1 хm - частное уравнение регрессии.

Наряду с частными коэффициентами эластичности могут быть най­дены средние по совокупности показатели эластичности. которые показывают, на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе из воздействия на результат.

2. Обобщенная линейная модель множественной регрессии

Коренное отличие обобщенной модели от классической состоит только в виде ковариационной квадратной матрицы вектора возмущений: вместо матрицы Σ ε = σ 2 E n для классической модели имеем матрицу Σ ε = Ω для обобщенной. Последняя имеет произвольные значения ковариаций и дисперсий. Например, ковариационные матрицы классической и обобщенной моделей для двух наблюдений (п=2) в общем случае будут иметь вид:

Формально обобщенная линейная модель множественной регрессии (ОЛММР) в матричной форме имеет вид:

Y = Xβ + ε (1)

и описывается системой условий:

1. ε – случайный вектор возмущений с размерностью n; X -неслучайная матрица значений объясняющих переменных (матрица плана) с размерностью nх(р+1); напомним, что 1-й столбец этой матрицы состоит из пединиц;

2. M(ε) = 0 n – математическое ожидание вектора возмущений равно ноль-вектору;

3. Σ ε = M(εε’) = Ω, где Ω – положительно определенная квадратная матрица; заметим, что произведение векторов ε‘ε дает скаляр, а произведение векторов εε’ дает матрицу размерностью nxn;

4. Ранг матрицы X равен р+1, который меньше n; напомним, что р+1 - число объясняющих переменных в модели (вместе с фиктивной переменной), n - число наблюдений за результирующей и объясняющими переменными.

Следствие 1. Оценка параметров модели (1) обычным МНК

b = (X’X) -1 X’Y (2)

является несмещенной и состоятельной, но неэффективной (неоптимальной в смысле теоремы Гаусса-Маркова). Для получения эффективной оценки нужно использовать обобщенный метод наименьших квадратов.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономических переменных контролировать нельзя, т. е. не удается обеспечить равенство всех прочих условий для оценки влияния одного исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. построить уравнение множественной регрессии:

Такого рода уравнение может использоваться при изучении потребления. Тогда коэффициенты - частныепроизводные потребления по соответствующим факторам :

в предположении, что все остальные постоянны.

В 30-е гг. XX в. Кейнс сформулировал свою гипотезу потребительской функции. С того времени исследователи неоднократно обращались к проблеме ее совершенствования. Современная потребительская функция чаще всего рассматривается как модель вида:

где С - потребление; у - доход; Р - цена, индекс стоимости жизни; М - наличные деньги; Z - ликвидные активы.

При этом

Множественная регрессия широко используется в решении проблем спроса, доходности акций; при изучении функции издержек производства, в макроэкономических расчетах и целого ряда других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов эконометрики. Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Построение уравнения множественной регрессия начинается с решения вопроса о спецификации модели. Спецификация модели включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Требования к факторам.

1 Они должны быть количественно измеримы.

2.Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Разновидностью интеркоррелированности факторов является мультиколлинеарность - наличие высокой линейной связи между всеми или несколькими факторами.

Причинами возникновения мультиколлинеарности между призанками являются:

1. Изучаемые факторные признаки, характеризуют одну и ту же сторону явления или процесса. Например, показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба характеризуют размер предприятия;

2. Использование в качестве факторных признаков показателей, суммарное значение которых представляет собой постоянную величину;

3. Факторные признаки, являющиеся составными элементами друг друга;

4. Факторные признаки, по экономическому смыслу дублирующие друг друга.

5. Одним из индикаторов определения наличия мультиколлинеарности между признаками является превышение парным коэффициентом корреляции величины 0,8 (rxi xj) и др.

Мультиколлинеарность может привести к нежелательным последствиям:

1) оценки параметров становятся ненадежными, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только в величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

2) затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;

3) нельзя определить изолированное влияние факторов на результативный показатель.

Включение в модель факторов с высокой интеркорреляцией (Ryx1Rx1x2) может привести к ненадежности оценок коэф-ов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретированными. Включаемые во множ.регрессию факторы должны объяснить вариацию независимой переменной. Отбор факторов производится на основе качественного теоретико-экономического анализа, который обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Если факторы коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.