Построение дискретного ряда. Группировка данных и построение ряда распределения

Мы продолжим шлифовать технику элементарных преобразований на однородной системе линейных уравнений .
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.

Что такое однородная система линейных уравнений?

Ответ напрашивается сам собой. Система линейных уравнений является однородной, если свободный член каждого уравнения системы равен нулю. Например:

Совершенно ясно, что однородная система всегда совместна , то есть всегда имеет решение. И, прежде всего, в глаза бросается так называемое тривиальное решение . Тривиальное, для тех, кто совсем не понял смысл прилагательного, значит, беспонтовое. Не академично, конечно, но зато доходчиво =) …Чего ходить вокруг да около, давайте выясним, нет ли у данной системы каких-нибудь других решений:

Пример 1


Решение : чтобы решить однородную систему необходимо записать матрицу системы и с помощью элементарных преобразований привести её к ступенчатому виду. Обратите внимание, что здесь отпадает необходимость записывать вертикальную черту и нулевой столбец свободных членов – ведь что ни делай с нулями, они так и останутся нулями:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3.

(2) К третьей строке прибавили вторую строку, умноженную на –1.

Делить третью строку на 3 не имеет особого смысла.

В результате элементарных преобразований получена эквивалентная однородная система , и, применяя обратный ход метода Гаусса, легко убедиться, что решение единственно.

Ответ :

Сформулируем очевидный критерий : однородная система линейных уравнений имеет только тривиальное решение , если ранг матрицы системы данном случае 3) равен количеству переменных (в данном случае – 3 шт.).

Разогреваемся и настраиваем свой радиоприёмник на волну элементарных преобразований:

Пример 2

Решить однородную систему линейных уравнений

Чтобы окончательно закрепить алгоритм, разберём финальное задание:

Пример 7

Решить однородную систему, ответ записать в векторной форме.

Решение : запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

(1) У первой строки сменили знак. Ещё раз заостряю внимание на неоднократно встречавшемся приёме, который позволяет существенно упростить следующее действие.

(1) Ко 2-й и 3-й строкам прибавили первую строку. К 4-й строке прибавили первую строку, умноженную на 2.

(3) Последние три строки пропорциональны, две из них удалили.

В результате получена стандартная ступенчатая матрица, и решение продолжается по накатанной колее:

– базисные переменные;
– свободные переменные.

Выразим базисные переменные через свободные переменные. Из 2-го уравнения:

– подставим в 1-е уравнение:

Таким образом, общее решение:

Поскольку в рассматриваемом примере три свободные переменные, то фундаментальная система содержит три вектора.

Подставим тройку значений в общее решение и получим вектор , координаты которого удовлетворяют каждому уравнению однородной системы. И снова повторюсь, что крайне желательно проверять каждый полученный вектор – времени займет не так много, а от ошибок убережёт стопроцентно.

Для тройки значений находим вектор

И, наконец, для тройки получаем третий вектор:

Ответ : , где

Желающие избежать дробных значений могут рассмотреть тройки и получить ответ в эквивалентном виде:

К слову о дробях. Посмотрим на полученную в задаче матрицу и зададимся вопросом – нельзя ли упростить дальнейшее решение? Ведь здесь мы сначала выразили через дроби базисную переменную , потом через дроби базисную переменную , и, надо сказать, процесс это был не самый простой и не самый приятный.

Второй вариант решения :

Идея состоит в том, чтобы попытаться выбрать другие базисные переменные . Посмотрим на матрицу и заметим две единицы в третьем столбце. Так почему бы не получить ноль вверху? Проведём ещё одно элементарное преобразование:

Лабораторная работа №1

По математической статистике

Тема: Первичная обработка экспериментальных данных

3. Оценка в баллах. 1

5. Контрольные вопросы.. 2

6. Методика выполнения лабораторной работы.. 3

Цель работы

Приобретение навыков первичной обработки эмпирических данных методами математической статистики.

На основе совокупности опытных данных выполнить следующие задания:

Задание 1. Построить интервальный вариационный ряд распределения.

Задание 2. Построить гистограмму частот интервального вариационного ряда.

Задание 3. Составить эмпирическую функцию распределения и построить график.

а) моду и медиану;

б) условные начальные моменты;

в) выборочную среднюю;

г) выборочную дисперсию, исправленную дисперсию генеральной совокупности, исправленное среднее квадратичное отклонение;

д) коэффициент вариации;

е) асимметрию;

ж) эксцесс;

Задание 5. Определить границы истинных значений числовых характеристик, изучаемой случайной величины с заданной надёжностью.

Задание 6. Содержательная интерпретация результатов первичной обработки по условию задачи.

Оценка в баллах

Задания 1-5 6 баллов

Задание 6 2 балла

Защита лабораторной работы (устное собеседование по контрольным вопросам и лабораторной работе) - 2 балла

Работа сдается в письменной форме на листах формата А4 и включает:

1) Титульный лист (Приложение 1)

2) Исходные данные.

3) Представление работы по указанному образцу.

4) Результаты расчетов (выполненные вручную и/или с помощью MS Excel) в указанном порядке.

5) Выводы - содержательная интерпретация результатов первичной обработки по условию задачи.

6) Устное собеседование по работе и контрольным вопросам.



5. Контрольные вопросы


Методика выполнения лабораторной работы

Задание 1. Построить интервальный вариационный ряд распределения

Для того, чтобы статистические данные представить в виде вариационного ряда с равноотстоящими вариантами необходимо:

1.В исходной таблице данных найти наименьшее и наибольшее значения.

2.Определить размах варьирования :

3. Определить длину интервала h, если в выборке до 1000 данных, используют формулу: , где n – объем выборки – количество данных в выборке; для вычислений берут lgn).

Вычисленное отношение округляют до удобногоцелого значения .

4. Определить начало первого интервала для четного числа интервалов рекомендуют брать величину ; а для нечетного числа интервалов .

5. Записать интервалы группировок и расположить их в порядке возрастания границ

, ,………., ,

где - нижняя граница первого интервала. За берется удобное число не большее , верхняя граница последнего интервала должна быть не меньше . Рекомендуется, чтобы интервалы содержали в себе исходные значения случайной величины и выделять от 5 до 20 интервалов.

6. Записать исходные данные по интервалам группировок, т.е. подсчитать по исходной таблице число значений случайной величины, попадающих в указанные интервалы. Если некоторые значения совпадают с границами интервалов, то их относят либо только к предыдущему, либо только к последующему интервалу.

Замечание 1. Интервалы необязательно брать равными по длине. На участках, где значения располагаются гуще, удобнее брать более мелкие короткие интервалы, а там где реже - более крупные.

Замечание 2 .Если для некоторых значений получены “нулевые”, либо малые значения частот , то необходимо перегруппировать данные, укрупняя интервалы (увеличивая шаг ).

Дискретный вариационный ряд строится для дискретный признаков.

Для того, чтобы построить дискретный вариационный ряд нужно выполнить следующие действия: 1) упорядочить единицы наблюдения по возрастанию изучаемого значения признака,

2) определить все возможные значения признака x i , упорядочить их по возрастанию,

значением признака, i .

частота значения признака и обозначают f i . Сумма всех частот ряда равна количеству элементов в изучаемой совокупности.

Пример 1 .

Список оценок полученных студентами на экзаменах: 3; 4; 3; 5; 4; 2; 2; 4; 4; 3; 5; 2; 4; 5; 4; 3; 4; 3; 3; 4; 4; 2; 2; 5; 5; 4; 5; 2; 3; 4; 4; 3; 4; 5; 2; 5; 5; 4; 3; 3; 4; 2; 4; 4; 5; 4; 3; 5; 3; 5; 4; 4; 5; 4; 4; 5; 4; 5; 5; 5.

Здесь число Х – оценка является дискретной случайной величиной, а полученный список оценок - статистические (наблюдаемые) данные .

    упорядочить единицы наблюдения по возрастанию изучаемого значения признака:

2; 2; 2; 2; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5.

2) определить все возможные значения признака x i , упорядочить их по возрастанию:

В данном примере все оценки можно разделить на четыре группы со следующими значениями: 2; 3; 4; 5.

Значение случайной величины, соответствующее отдельной группе наблюдаемых данных, называют значением признака, вариантом (вариантой) и обознпчают x i .

Число, которое показывает, сколько раз встречается соответствующее значение признака в ряде наблюдений называют частота значения признака и обозначают f i .

Для нашего примера

оценка 2 встречается - 8 раз,

оценка 3 встречается - 12 раз,

оценка 4 встречается - 23 раза,

оценка 5 встречается - 17 раз.

Всего 60 оценок.

4) записать полученные данные в таблицу из двух строк (столбцов) - x i и f i .

На основании этих данных можно построить дискретный вариационный ряд

Дискретный вариационный ряд – это таблица, в которой указаны встречающиеся значения изучаемого признака как отдельные значения по возрастанию и их частоты

  1. Построение интервального вариационного ряда

Кроме дискретного вариационного ряда часто встречается такой способ группировки данных, как интервальный вариационный ряд.

Интервальный ряд строится если:

    признак имеет непрерывный характер изменения;

    дискретных значений получилось очень много (больше 10)

    частоты дискретных значений очень малы (не превышают 1-3 при относительно большем количестве единиц наблюдения);

    много дискретных значений признака с одинаковыми частотами.

Интервальный вариационный ряд – это способ группировки данных в виде таблицы, которая имеет две графы (значения признака в виде интервала значений и частота каждого интервала).

В отличие от дискретного ряда значения признака интервального ряда представлены не отдельными значениями, а интервалом значений («от - до»).

Число, которое показывает, сколько единиц наблюдения попало в каждый выделенный интервал, называется частота значения признака и обозначают f i . Сумма всех частот ряда равна количеству элементов (единиц наблюдения) в изучаемой совокупности.

Если единица обладает значением признака, равным величине верхней границы интервала, то ее следует относить к следующему интервалу.

Например, ребёнок с ростом 100 см попадёт во 2-ой интервал, а не в первый; а ребёнок с ростом 130 см попадёт в последний интервал, а не в третий.

На основании этих данных можно построить интервальный вариационный ряд.

У каждого интервала есть нижняя граница (х н), верхняя граница (х в) и ширина интервала (i ).

Граница интервала – это значение признака, которое лежит на границе двух интервалов.

рост детей (см)

рост детей (см)

количество детей

больше 130

Если у интервала есть верхняя и нижняя граница, то он называется закрытый интервал . Если у интервала есть только нижняя или только верхняя граница, то это – открытый интервал. Открытым может быть только самый первый или самый последний интервал. В приведённом примере последний интервал – открытый.

Ширина интервала (i ) – разница между верхней и нижней границей.

i = х н - х в

Ширина открытого интервала принимается такой же, как ширина соседнего закрытого интервала.

рост детей (см)

количество детей

Ширина интервала (i)

для расчётов 130+20=150

20 (потому что ширина соседнего закрытого интервала – 20)

Все интервальные ряды делятся на интервальные ряды с равными интервалами и интервальные ряды с неравными интервалами. В интервальных рядах с равными интервалами ширина всех интервалов одинаковая. В интервальных рядах с неравными интервалами ширина интервалов разная.

В рассматриваемом примере - интервальный ряд с неравными интервалами.

Наиболее простым способом обобщения статистического материала является построение рядов. Результатом сводки статистического исследования могут быть ряды распределения.

После определения группировочного признака, количества групп и интервалов группировки данные сводки и группировки представляются в виде рядов распределения и оформляются в виде статистических таблиц.

Ряд распределния является одним из видов группировок.

Рядом распределения в статистике называется упорядоченное распределение единиц совокупности на группы по какому-либо одному признаку: по качественному или количественному.

  1. Виды рядов распределения

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

    атрибутивными называют ряды распределения, построенные по качественными признакам;

    вариационными называют ряды распределения, построенные в порядке возрастания или убывания значений количественного признака.

Вариационный ряд распределения состоит из двух столбцов. В первом столбце приводятся количественные значения варьирующегося признака, которые называются вариантами и обозначаются. Дискретная варианта - выражается целым числом. Интервальная варианта находится в пределах от и до. В зависимости от типа варианты можно построить дискретный или интервальный вариационный ряд. Во втором столбце содержится количество конкретных вариант, выраженное через частоты или частости:

    частоты - это абсолютные числа, показывающие столько раз в совокупности встречается данное значение признака; сумма всех частот должна быть равна численности единиц всей совокупности;

    частости - это частоты выраженные в процентах к итогу; сумма всех частостей выраженных в процентах должна быть равна 100% в долях единице.

Вариационный ряд характеризуется двумя элементами: вариантой (Х) и частотой (f). Варианта – это отдельное значение признака отдельной единицы или группы совокупности. Число, показывающее, сколько раз встречается то или иное значение признака, называется частотой. Если частота выражена относительным числом, то она называется частостью.

Вариационный ряд может быть:

    интервальным, когда определены границы «от» и «до», интервальные ряды распределения можно представить графически в виде гистограммы;

    дискретным, когда изучаемый признак характеризуется определенным числом.

  1. Графическое изображение рядов распределения

Наглядно ряды распределения представляются при помощи графических изображений.

Ряды распределения изображаются в виде:

    полигона;

    гистограммы;

    кумуляты;

При построении полигона на горизонтальной оси (ось абсцисс) откладывают значения варьирующего признака, а на вертикальной оси (ось ординат) - частоты или частости.

Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).

Распределение признака в вариационном ряду по накопленным частотам (частостям) изображается с помощью кумуляты.

Кумулята или кумулятивная кривая в отличие от полигона строится по накопленным частотам или частостям. При этом на оси абсцисс помещают значения признака, а на оси ординат - накопленные частоты или частости.

Огива строится аналогично кумуляте с той лишь разницей, что накопленные частоты помещают на оси абсцисс, а значения признака - на оси ординат.

Разновидностью кумуляты является кривая концентрации или график Лоренца. Для построения кривой концентрации на обе оси прямоугольной системы координат наносится масштабная шкала в процентах от 0 до 100. При этом на оси абсцисс указывают накопленные частости, а на оси ординат - накопленные значения доли (в процентах) по объему признака.