Танк с реактивным двигателем. Не задохнуться в пыли

Газотурбинный двигатель - представляет собой тепловой силовой агрегат, который осуществляет свою работу по принципу реорганизации тепловой энергии в механическую.

Ниже подробно рассмотрим, как работает газотурбинный двигатель, а также его устройство, разновидности, преимущества и недостатки.

Отличительные черты газотурбинных двигателей

Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом . Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.

Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

Для экономного потребления топлива газовая турбина оснащена теплообменником - диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

Устройство и принцип работы агрегата

По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

Помимо этого мотор состоит из таких составляющих как - редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.

В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

Плюсы и минусы двигателя

Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.

Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.

Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.

Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.

Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД , например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.

Среди главных преимуществ агрегата можно также выделить:

  • Низкое содержание вредоносных веществ в выхлопных газах;
  • Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
  • Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
  • Низкий уровень шума во время работы;
  • Хорошая характеристика кривой крутящего момента;
  • Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
  • Повышенная удельная мощность.

Виды газотурбинных двигателей

По своему строению данные агрегаты разделяются на четыре типа. Первый из них это турбореактивный, его в большинстве своем устанавливают на военные самолеты, обладающие высокой скоростью. Принцип работы заключается в том, что газы, выходящие на большой скорости из мотора, через сопло толкают самолет вперед.

Другой тип - турбиновинтовой. Его устройство от первого отличается тем, что он имеет еще одну секцию турбины. Данная турбина составлена из ряда лопаток, которые забирают остаток энергии у газов, прошедших через турбину компрессора и благодаря этому осуществляют вращение воздушного винта.

Винт может располагаться как в задней части агрегата, так и в передней. Отходящие газы выводятся через выхлопные трубы. Такой реактивный аппарат оснащается на самолетах, летающих на низкой скорости и на малой высоте.

Третий тип - турбовентиляторный, который похож по своей конструкции на предыдущий двигатель, но у него 2-я турбинная секция забирает энергию у газов не полностью и поэтому подобные движки также обладают выхлопными трубами.

Главная особенность такого двигателя в том, что его вентилятор, закрытый в кожух, работает от турбины низкого давления. Поэтому движок называют еще 2-х контурным, поскольку воздушный поток проходит через агрегат, являющейся внутренним контуром и через свой внешний контур, необходимый только лишь для направления потока воздуха, который толкает мотор вперед.

Самые новейшие самолеты оборудованы именно турбовентиляторными двигателями. Они эффективно функционируют на большой высоте, а также отличаются экономичностью.

Последний тип - турбовальный. Схема и устройство газотурбинного двигателя этого типа почти такая же, как и у прошлого движка, но от его вала, который присоединен к турбине, приводится в действие практически все. Чаще всего его устанавливают в вертолеты, и даже на современные танки.

Двухпоршневой и малоразмерный двигатель

Наиболее распространен двигатель с двумя валами, оборудованный теплообменником. В сравнении с агрегатами, у которых всего 1 вал, такие аппараты более эффективные и мощные. 2-х вальный двигатель оснащен турбинами, одна из которых предназначена для привода компрессора, а другая для привода осей.

Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

Также существуют малоразмерные газотурбинные двигатели. Они состоят из компрессора, газо-воздушного теплообменника, камеры сгорания и двух турбин, одна из которых находятся в одном корпусе со сборником газа.

Малоразмерные газотурбинные двигатели применяются в основном на самолетах и вертолетах, которые преодолевают большие расстояние, а также на беспилотных летательных устройств и ВСУ.

Агрегат со свободно поршневым генератором

На сегодняшний день аппараты этого типа являются наиболее перспективными для авто. Устройство движка представлено блоком, который соединяет поршневой компрессор и 2-х тактовый дизель. В середине находится цилиндр с наличием двух поршней объединенных друг с другом с помощью специального приспособления.

Работа движка начинается с того, что воздух сжимается во время схождения поршней и происходит возгорание горючего. Газы образуются за счет сгоревшей смеси, они способствуют расхождению поршней при повышенной температуре. Затем газы оказываются в газо-сборнике. За счет продувочных щелей в цилиндр попадает пережатый воздух, помогающий очистить агрегат от отработанных газов. Затем цикл начинается заново.

ОТЕЧЕСТВЕННОМУ ТАНКУ ДАЛИ «ЧЕРНУЮ МЕТКУ»

С большим интересом прочли статью Михаила Растопшина «Бронеиллюзион» (газета «Завтра», №38 (722) сентябрь 2007 г. ). Много фактов, цифр, а итог – все плохо и очень плохо. Конечно, хотелось бы рассказать «налогоплательщикам» (так называет автор всех нас) не в «общих формулировках» обо всех новинках танкового вооружения, защиты и подвижности, но, видимо, это не делается на страницах газеты. Также, впрочем, не обсуждаются и «результаты НИОКР по разработке унифицированных бортовых информационно-управляющих систем» по которым печалится автор, т.к. они «до настоящего времени отсутствуют». Разоблачения по Растопшину пестрят сильными выражениями: «деградация», «предательская ошибка», «избавление от иллюзионистов» и т.д. На вопрос «Что делать?» автор сформулировал ответ: «Сегодня танкостроение требует… избавления от иллюзионистов, которые маскируют с помощью модернизации продолжающуюся деградацию отечественной бронетехники».

Но, полагаем, в статье нет главного: требуя «форсированного развития и избавления от иллюзионистов» кандидат технических наук М. Растопшин мог бы и предложить что-то.

Мы не будем вступать с ним здесь в техническую полемику, хотя есть что сказать. Мы поделимся впечатлениями о празднике с дня танкистов и некоторыми проблемами танкостроения.

ВПЕЧАТЛЕНИЯ ПОСЛЕ ДНЯ ТАНКИСТА

Известно, что танку давно приклеили ярлык – «рожденный ползать летать не может». Это не правда – может и не только летать, но и танцевать.

Россия, как и США, – единственные страны, обладающие уникальной технологией серийного производства газотурбинного двигателя для танков. Танки Т-80 успешно эксплуатируются в ряде военных округов, но, особенно, в Ленинградском военном округе. Объяснение этому простое – танк создан и производился на Кировском заводе Санкт-Петербурга. Здесь, в свое время, в период освоения машин, дневали и ночевали конструктора прославленного коллектива конструкторского бюро завода во главе с Генеральным конструктором Николаем Поповым.

В одной из частей Ленинградского военного округа стало доброй традицией демонстрировать свое воинское мастерство.

На празднике не только бомонд танкостроителей Санкт-Петербурга. Много молодежи, будущих воинов. Здесь командование ЛенВО, шефы, ветераны. Здесь интересно и поучительно – это настоящий танковый салон.

Апогеем праздника стал показ техники. Воины-танкисты показывают, чего они добились. Результаты впечатляющие – одни названия фигур высшего пилотажа чего стоят: выстрел «в полете», «танковый вальс», «цыганочка». Грандиозное зрелище, когда 46-тонные монстры легко и грациозно под музыку старинного вальса или зажигательной цыганочки выписывают под аплодисменты зрителей пируэты. Грациозно останавливаясь и покачивая стволами пушек в такты вальса, они стремительно набирают скорость и закладывают крутые виражи.

Невольно сравниваешь эти па с мастерством летчиков на показах в авиационных салонах, вспоминаются недавние кадры телевидения с МАКСа-2007. Но то в воздухе, в трехмерном пространстве, а это на плоскости – на земле. И все же много общего – в необычности движения тяжелых боевых машин и легкости движений. Есть и еще одно родство с авиацией – оно, в газотурбинном двигателе. На Т-80 установлен 1250-сильный ГТД. Благодаря ему танк имеет самую высокую удельную мощность среди отечественных и зарубежных машин. Это дает возможность иметь прекрасную динамику, а технические характеристики двигателя, обеспечивают высокую плавность хода и такой, недостижимый для дизеля параметр, как незаглохаемость. Да и другие системы на высочайшем мировом уровне – ведь наука танкостроения также в Санкт-Петербурге: это ученые «ВНИИТрансмаш» – разработчики первого в мире лунохода. Определяет успех и высочайшее мастерство экипажей, особенно механиков водителей: старших прапорщиков – Сидоренко Р. и Гущина А.

Алексей Гущин на вопрос: «Кто бы выиграл соревнования – танк «Абрамс» или Т-80 ?», — сказал: «Я знаю, что «Абрамс» уже повоевал и двигатель у него помощнее, но встречаться с ним надо не в бою, а на таких показах и соревнованиях. Думаю, что мы выиграем, уж очень тяжелый американец». Аплодисменты зрителей, подарки шефов стали наградой мастерству воинов-танкистов.

Хочется верить, что танковый салон может стать традицией Санкт-Петербургских танкостроителей, хорошие примеры заразительны. Так, в самом деле, что же делать? Первое – осваивать технику, совершенствовать воинское мастерство «до блеска».

От редакции «Отваги»: Кстати, на недавно проходившем в Алабино «танковом биатлоне» танкисты 4-й гвардейской Кантемировской дивизии на своих газотурбинных красавцах Т-80У стали настоящими героями мероприятия, продемонстрировав умение виртуозно водить свои «восьмидесятки». И все это называлось кратко – «танковый балет».

МОДЕРНИЗАЦИОННЫЙ РЫВОК

Второе – что делать? Это путь по которому идет весь бронетанковый мир. Сделаем попытку проанализировать один аспект известной танковой триады – проблемы подвижности.

Танк, как система вооружения, непрерывно развивается, приобретая новые качества и свойства, его боевые возможности неуклонно повышаются. За все годы развития отечественного танкостроения калибр пушки возрос почти в 3,5 раза, масса танка в 6,5 раз, а мощность двигателя в 37 раз. Об этом убедительно свидетельствуют и показатели роста мощности двигателей танков других стран.

Танк рассматривается, прежде всего, как наступательное средство, поэтому принципы его применения жестко связаны с проблемами обеспечения движения и увеличения подвижности. При этом подвижность связывают с возможностью уклониться от поражения за счёт улучшения разгонных и тормозных характеристик.

Газотурбинная силовая установка (ГТСУ) стала одним из основных факторов, обеспечивающих боевое и эксплуатационно-техническое превосходство танков (Т-80 , Т-80У ) над лучшими отечественными и зарубежными танками. Помимо многолетней войсковой эксплуатации в России, ГДР, Польше это подтверждено сравнительными испытаниями в Швеции и Индии (1993–1994 гг.), выставках вооружения и военной техники в ОАЭ (1993–1995 гг.), и в Греции (1998 г.).

В то же время неадекватная оценка опыта эксплуатации прежде всего акцентируется на одной из его характеристик – расходе топлива. Возможно, не всем известно, что в последних модификациях этой машины, осуществлен целый комплекс научно-технических решений, снизивших эксплуатационный расход топлива более чем в 1,3 раза. Расчёты показывают, что при доведении температуры газов на входе в турбину до 1316–1370°С (что возможно при применении керамических материалов) реально получить расход топлива до 86 г/квт.ч (117 г/л.с.ч.), а тепловой КПД – 53%. Это меняет представление об экономичности газовой турбины.

Достигнутые показатели являются далеко не пределом для ГТД. Имеются наработки решений (и теоретических, и практических), которые позволяют достичь значений эксплуатационных расходов топлива на уровне танков с дизельными двигателями равной мощности.

КОНСТРУКТИВНЫЕ ПРЕИМУЩЕСТВА

Нет сомнения, что конкуренция между дизелем и ГТД продолжится. Несмотря на работы по дальнейшему совершенствованию дизеля, ему присущ ряд особенностей конструкции, которые затрудняют существенно улучшить достигнутый уровень:

Это, прежде всего, необходимость преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Это, как следствие, большое трение скольжения на значительных поверхностях поршень-гильза. Это нестационарный процесс горения топлива в цилиндре во время рабочего хода. Заметим, при этом, что для 4-тактного двигателя только один из четырех тактов является по сути «рабочим», а остальные – вспомогательными.

При основном своём положительном качестве (удельному расходу топлива) танковый дизель недолго останется в танкостроении бесконкурентным, что связано не только с перечисленными недостатками. Дизели мощностью свыше 1000 л.с., в ограниченных объемах МТО, вызывают массу проблем для обеспечения его работы без перегрева.

На систему жидкостного охлаждения четырехтактного дизеля расходуется от 15 до 20% его мощности. Кроме того, в дизеле необходимо 2–3% мощности затратить на охлаждение масла.

Известно, что теплоотдача двухтактного двигателя (6ТД2) мощностью 1200 л.с. составляет 420 тыс. ккал/час, а ГТД (изд. «29») мощностью 1250 л.с. – 48 тыс. ккал/час (почти в 9 раз меньше). Это ведет к увеличенным размерам системы охлаждения.

Для ГТД характерен показатель, выгодно отличающий его от дизеля – мощность, «снимаемая» с единицы объема двигателя. Этот параметр у ГТД в 1,6 раза лучше. В этой связи объемы моторно-трансмиссионного отделения у танка с ГТД меньше.


п/п
Марка машины Параметры
Объем МТО, куб.м Мощность двигателя, л.с. Габаритная мощность МТО,
NМТО, л.с./куб.м
1. Танк Т-80У 2,8 1250 446
2. Танк М1А2 «Абрамс» 6,8 1500 220
3. Танк «Леопард-2» 7,3 1500 205

Значительное превосходство по габаритной мощности танка Т-80 над американским танком «Абрамс» объясняется его увеличенными габаритами силовой установки, из-за большого объема воздухоочистителя.

Показатель габаритной мощности свидетельствует не только об оптимальной компоновке МТО, но говорит о совершенстве систем и узлов силовой установки. Габаритная мощность МТО танка Т-80У превосходит габаритную мощность танка «Леопард-2» в 2,2 раза.

Увеличенные объемы МТО зарубежных танков вынуждают удлинять базу танка, увеличивать силуэт, добавляя несколько тонн совокупного «лишнего» веса, наращивать тем самым с одной стороны затраты мощности двигателя на добавленную массу машины, а с другой стороны ухудшая показатели подвижности. В этой связи сравним основные габаритные показатели танков с ГТД России и США по площади лобовой (Sл) и боковой (Sб) проекции: Т-80 – 7,1 и 12,2 кв.м, и М1А1 – 7,68 и 15,5 кв.м соответственно.

Для осуществления рабочего процесса необходимо определенное количество воздуха. Так как в газотурбинном двигателе часть воздуха расходуется на охлаждение камеры сгорания, а коэффициент избытка воздуха в рабочем процессе также увеличен, то потребности воздуха у ГТД больше, чем для дизеля. И, несмотря на то, что для процесса горения воздуха в дизеле потребляется меньше, его общее количество (с учётом охлаждения двигателя и трансмиссии) существенно увеличено. Сравним по этому параметру двигатели танков М1 «Абрамс» и «Леопард-2» .

Параметр Дизель ГТД

– Расход воздуха на горение, кг/сек

1,8 3,4

– Расход воздуха на охлаждение, кг/сек
1) двигатель
2) трансмиссия

7
4,76
2,56
2,98

– Общий расход, кг/сек

13,56 7,98

Каков же вывод? За увеличенной (практически вдвое) потребностью в воздухе, а также увеличенной в несколько раз суммарной теплоотдачей следуют важные следствия: необходимость в увеличении (почти втрое) площадей радиаторов (теплообменников), в увеличении площадей всасывающих жалюзи, (т.е. увеличении ослабленных зон).

ЭКСПЛУАТАЦИОННЫЕ ПРЕИМУЩЕСТВА

По данным иностранных источников стоимость изготовления газотурбинного двигателя (одинаковой мощности с дизелем) примерно в три раза больше. Несколько большей разницей оценивались эти показатели в отечественном двигателестроении, (однако сравнения были недостаточно корректны, так как танковых дизелей одинаковой с ГТД мощностью у нас не производилось). Не следует забывать, что стоимостные показатели следует рассматривать с учётом эксплуатационных затрат на техническое обслуживание, ремонт и срок службы сравниваемых двигателей и их систем.

Приведем результаты стоимостного анализа учебной и боевой эксплуатации, базирующегося на данных, соответствующих полному сроку эксплуатации боевых машин с ГТД и дизельным двигателем (одинаковой мощности), проведенных MJCV (США).

Эксплуатация в войсках показывает, что ресурс танкового ГТД почти в 2-3 раза выше, чем у дизельных двигателей, вследствие уравновешенности и меньшего количества деталей.

Аналогичны оценки ресурса ГТД по данным иностранных источников: по оценке MJCV (США) срок службы ГТД GT-601 в боевых условиях равен 3000 ч, в мирное время до 10000 ч.

Очень важны и такие эксплуатационные показатели:

Время подготовки танка к работе, особенно пуск ГТД при низких температурах окружающего воздуха, в несколько раз меньше, чем дизельного двигателя;

Проведенные за рубежом исследования установили, что уровень шумности у ГТД вдвое ниже дизеля.

Если учесть, что трудоёмкость технического обслуживания системы воздухоочистки и охлаждения в танке Т-80 (и его модификациях) практически отсутствует, то преимущества ГТД очевидны.

ЭКОЛОГИЧЕСКИЕ ПРЕИМУЩЕСТВА

Приведем данные по уровню токсичности отработавших газов для транспортных ГТД и дизельных двигателей, полученные при эксплуатации в штате Калифорния (США).

Двигатель Содержание в отработавших газах, г/квт ч
HC+NOX CO
дизель без наддува 22 8,2
дизель с турбонаддувом 10,3 6,8
дизель с разделённой камерой сгорания 8–11 13,5–4,0
ГТД (2 S/350K фирмы «Бритиш Лейланд») 3,8 3,5
Примечание: предельная норма штата Калифорния по HC+NOX=6,8 г/кВт.ч.

Газотурбинному двигателю танка Т-80 нет альтернативы при работе в зоне с радиоактивной зараженностью. Радиоактивные частицы, выбрасываемые вместе с выхлопными газами, не контактируют (как это происходит в дизеле), с маслом и, следовательно, не попадают в масляную систему, где может возникнуть радиационный источник.

Существенно и то, что одноступенчатый воздухоочиститель танка Т-80 , являясь инерционным аппаратом, не задерживает в себе радиоактивные частицы, в отличие от двухступенчатых, барьерных (в большинстве дизелей и в двигателе AGT-1500) и выбрасывает их с отсепарированой пылью наружу.

Эти выводы полностью подтвердились при эксплуатации машины с ГТД в районе аварии Чернобыльской АЭС в 1986 г. ( )

ВМЕСТО ПОСЛЕСЛОВИЯ

Танк с газотурбинным двигателем, опередив свое время, ворвался в XXI век с огромным, неисчерпаемым потенциалом. С точки зрения политики активной обороны, провозглашенной специалистами, потенциальных источников будущей войны, климатических и географических особенностей отечественных регионов, ГТД является сегодня идеальной энергетической установкой для танков настоящего и будущего. Подчеркнем, что начиная с 1972 г. (по 1986 г. включительно) регулярно проводились контрольно-войсковые испытания (КВИ) всех типов имеющихся танков. В сложнейших условиях ускоренной войсковой эксплуатации, усложняя с каждым годом требования, расширяя географию танки проходили тысячи километров по бездорожью, решая усложненные стрельбовые задачи и выявляя слабые (или как говорили раньше «узкие») места в конструкции и технологии.

По итогам КВИ каждое КБ разрабатывало комплекс всевозможных мероприятий направленных и на устранение выявленных дефектов и совершенствование конструкции. Иными словами была организована широкомасштабная системная работа, своеобразные соревнования на конкурсной основе. К заслугам ГБТУ надо отнести, что наиболее передовые конструктивные идеи «переходили» от одной марки машины к другой.

КВИ стали мощным стимулом совершенствования и повышения качества всех типов танков. Каждые КВИ, как соревнование лучших, предполагало интригу, выявляло новые неожиданные «сюрпризы», которые сообща устранялись и были под контролем специалистов ГАБТУ.

Никто не хотел «ударить лицом в грязь», каждый рождал технические шедевры. Конкуренция создавала атмосферу постоянного совершенствования, а зарубежные танкостроители вынуждены были постоянно нас «догонять».

Сегодня зарубежные танкостроители наряду с разработкой танков следующего поколения активно занимаются модернизацией существующих образцов. По этому же пути идем и мы, благо возможности для модернизации наших машин огромны.

Не следует постоянно оглядываться на США, американцы хорошо понимают, что им не нужна боевая машина массой 60-70 тонн. И не случайно совершенствуется новый ГТД LV-100 – идет интенсивный поиск снижения веса машины.

При всей схожести двух марок (Т-90 и Т-80У ) у них есть свои преимущества и, конечно, свои недостатки, и победит тот, чья машина по боевой эффективности будет более конкурентоспособной.

Более того, идет совершенствование и организационных структур. По примеру авиационных и военно-морских организаций на базе «Уралвагонзавода» создан научно-производственный холдинг, что не только объединит усилия разработчиков БТВ.

Несмотря на трудности, в первую очередь финансовые, у танкостроителей России, идет постоянная работа, как по танку будущего, так и по модернизации существующего парка. Потенциал отечественного танкостроения неисчерпаем, а стереотип о системном кризисе отечественного танкостроения является несостоятельным.

Центробежная ступень компрессора ТВаД.

Сегодня продолжаем серию рассказов о типах авиационных двигателей.

Как известно, основной узел любого газотурбинного двигателя (ГТД) – это турбокомпрессор. В нем компрессор работает в связке с турбиной , которая его вращает. Функции турбины этим могут и ограничиться. Тогда вся оставшаяся полезная энергия газового потока, проходящего через двигатель, срабатывается в выходном устройстве (реактивном сопле ). Как говорил мой преподаватель «спускается на ветер»:-). Тем самым создается реактивная тяга и ГТД становится обычным (ТРД).

Но можно сделать и по-другому. Турбину ведь можно заставить кроме компрессора вращать и другие нужные агрегаты, используя ту самую оставшуюся полезную энергию. Это может быть, например, самолетный . В этом случае ГТД становится уже , в котором 10-15% энергии все же расходуется «на воздух»:-), то есть создает реактивную тягу.

Принцип работы турбовального двигателя.

Но если вся полезная энергия в двигателе срабатывается на валу и через него передается для привода агрегатов, то мы уже имеем так называемый турбовальный двигатель (ТваД ).

Такой двигатель чаще всего имеет свободную турбину . То есть вся турбина как бы поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая . Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Сопла на таком двигателе нет. То есть выходное устройство для отработанных газов конечно имеется, но соплом оно не является и тяги не создает. Просто труба… Зачастую еще и искривленная:-).

Компоновка двигателя Arriel 1E2.

Турбовальный двигатель ARRIEL 1E2.

Eurocopter BK 117 c 2-мя турбовальными двигателями Arriel 1E2.

Выходной вал ТваД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.

Компоновка двигателя Arrius 2B2.

Турбовальный двигатель ARRIUS 2B2.

Eurocopter EC 135 с 2-мя турбовальными двигателями Arrius 2B2.

Надо сказать, что редуктор – непременная принадлежность турбовального двигателя . Ведь скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.

Компоновка двигателя Makila 1A1.

Турбовальный двигатель MAKILA 1A1

Eurocopter AS 332 Super Puma с 2-мя турбовальными двигателями Makila 1A1

Компрессор у ТваД может быть (если двигатель мощный) либо . Часто компрессор бывает и смешанным по конструкции, то есть в нем есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД. Примером разнообразия конструкций ТваД могут служить двигатели известной французской двигателестроительной фирмы TURBOMEKA . Здесь я представляю ряд иллюстраций на эту тему (их сегодня вообще много как-то получилось:-)… Ну много — не мало… :-)).

Компоновка двигателя Arrius 2K1

Турбовальный двигатель ARRIUS 2K1.

Вертолет Agusta A-109S с 2-мя турбовальными двигателями Arrius 2K1.

Основное свое применение турбовальный двигатель находит сегодня конечно же в авиации, по большей части на . Его часто и называют вертолетный ГТД. Полезная нагрузка в этом случае – несущий винт вертолета. Известным примером (кроме французов:-))могут служить широко распространенные до сих пор отличные классические вертолеты МИ-8 и МИ-24 с двигателями ТВ2-117 и ТВ3-117 .

Вертолет МИ-8Т с 2-мя турбовальными двигателями ТВ2-117.

Турбовальный двигатель ТВ2-117.

Вертолет МИ-24 с 2-мя турбовальными двигателями ТВ3-117.

Турбовальный двигатель ТВ3-117 для вертолета МИ-24.

Кроме того ТваД может применяться в качестве вспомогательной силовой установки (ВСУ , о ней подробнее в :-)), а также в виде специальных устройств для запуска двигателей. Такие устройства представляют собой миниатюрный турбовальный двигатель , свободная турбина которого раскручивает ротор основного двигателя при его запуске. Называется такое устройство турбостартер . В качестве примера могу привести турбостартер ТС-21 , используемый на двигателе АЛ-21Ф-3 , который устанавливается на самолеты СУ-24 , в частности на мой родной СУ-24МР :-)…

Двигатель АЛ-21Ф-3 с турбостартером ТС-21.

Турбостартер ТС-21, снятый с двигателя.

Фронтовой бомбардировщик СУ-24М с 2-мя двигателями АЛ-21Ф-3.

Однако, говоря о турбовальных двигателях , нельзя не сказать о совсем неавиационном направлении их использования. Дело в том, что ведь изначально газотурбинный двигатель не был монополией авиации. Главный его рабочий орган, газовая турбина , создавался задолго до появления самолетов. И предназначался ГТД для целей более прозаических, нежели полеты в воздушной стихии:-). Эта самая воздушная стихия его все же завоевала. Однако неавиационное приземленное предназначение существует и серьезности своей не потеряло, скорее наоборот.

На земле, так же как и в воздухе ГТД (турбовальный двигатель ) применяется на транспорте.

Первое – это перекачка природного газа по крупным магистралям через газоперекачивающие станции. ГТД используются здесь в качестве мощных насосов.

Второе – это водный транспорт. Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходы . Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создается при помощи ГТД.

Газотурбоход "Циклон-М" с 2-мя газотурбинными двигателями ДО37.

Пасажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно «Циклон-М » появилось в очень неудобное для себя время в 1986 году. Успешно пройдя все испытания, оно «благополучно» перестало существовать для России. Перестройка… Более таких судов не строили. Зато у военных в этом плане дела обстоят несколько лучше. Чего стоит один только десантный корабль «Зубр» , самое большое в мире судно на воздушной подушке.

Десантный корабль на воздушной подушке "Зубр" с газотурбинными двигателями.

Третье – это железнодорожный транспорт. Локомотивы на которых стоят турбовальные газотурбинные двигатели, называют газотурбовозы . На них используется так называемая электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, вращает электродвигатели, приводящие локомотив в движение. В 60-е годы прошлого века в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревновавния с электровозами и в начале 70-х проект был свернут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец газотурбовоза с ГТД, работающем на сжиженном природном газе (опять криогенное топливо:-)). Газотурбовоз успешно прошел испытания, планируется его дальнейшая эксплуатация.

И наконец четвертое , самое, наверное, экзотическое… Танки . Грозные боевые машины. На сегодняшний момент достаточно широко известны два типа ныне использующихся боевых танков с газотурбинными двигателями. Это американский М1 Abrams и российский Т-80 .

Танк M1A1 Abrams с газотурбинным двигателем AGT-1500.

Во всех вышеописанных случаях применения ГТД (суть турбовальный двигатель ), он обычно заменяет дизельный двигатель. Это происходит потому, что (как я уже описывал здесь) при одинаковых размерах турбовальный двигатель значительно превосходит дизельный по мощности, имеет гораздо меньший вес и шумность.

Танк Т-80 с газотурбинным двигателем ГТД-1000Т.

Однако у него есть и крупный недостаток.Он обладает сравнительно низким коэффициентом полезного действия, что обуславливает большой расход топлива. Это естественно снижает запас хода любого транспортного средства (и танка в том числе:-)). Кроме того он чувствителен к грязи и посторонним предметам, всасываемым вместе с воздухом. Они могут повредить лопатки компрессора. Поэтому приходится создавать достаточно объемные системы очистки при использовании такого двигателя.

Эти недостатки достаточно серьезны. Именно поэтому турбовальный двигатель получил гораздо большее распространение в авиации, чем в наземном транспорте. Там этот трудяга-движок, ничего не пуская «на ветер»:-), заставляет подниматься в воздух . И они в родной для них стихии из несуразных, на первый взгляд, машин превращаются в изумительные по красоте и возможностям творения рук человеческих… Все-таки авиация – это здорово:-)…

P.S. Вы только посмотрите, что они вытворяют!

Все фотографии и схемы кликабельны.

Для тех, кто интересуется моторами в целом и их авиационными моделями в частности, турбовальный двигатель в первую очередь ассоциируется с вертолетами, недаром их называют «вертолетными ГТД». Именно здесь ТВаД нашли наибольшее применение и уже не один десяток лет с успехом используются. Но вертолеты – не предел их возможностей, многие другие отрасли машино- и судостроения взяли на вооружение этот тип двигателей, но обо всем по порядку.

Итак, турбовальный двигатель принадлежит славному семейству газотурбинных двигателей (ГТД) наравне с турбореактивными (ТРД) и турбовинтовыми (ТВД). ГТД представляет собой тепловую машину, в упрощенной схеме состоящую из компрессора и турбины, работающей за счет сжигания топлива в камере сгорания. Наиболее простой его разновидностью является турбореактивный двигатель, в котором энергия от сжигания топлива идет только на вращение компрессора через турбину, а излишек энергии выходит через сопло в виде газов под высоким давлением, образуя реактивную тягу. Но эта энергия может не только «вылетать в трубу», но и выполнять полезную работу, вращая воздушный винт (турбовинтовой двигатель) или вал (турбовальный двигатель). Это и является принципиальной разницей между всеми вышеотмеченными видами моторов семейства ГТД – способ использования свободной энергии.

Устройство и принцип работы двигателя

Строение турбовального двигателя в общих чертах напоминает строение ТРД. Основными составляющими являются комрессор, турбина, камера сгорания и вал. В отличие от других газотурбинных двигателей ТВаД совсем не имеет реактивной тяги – вся свободная энергия расходуется на вращение вала, поэтому и сопла, как такового, у него нет, а есть только каналы (своеобразные выхлопные трубы), по которым отводятся отработанные газы. Еще одна особенность ТВаД – наличие не одной, а двух турбин, не связанных между собой механически. Одна турбина приводит в движение компрессор, а вторая – рабочий вал. Между собой они связаны газодинамически. Некоторые модели турбовинтовых двигателей также имеют схожую конструкцию, но не обязательно. В случае с ТВаД турбин всегда две.

Две основные схемы устройства ТВаД с описание расположенных механизмов. Картинки кликабельны.


Принцип работы турбовального двигателя тоже не сильно отличается от ТРД или ТВД. Компрессор, приводимый в движение турбиной, нагнетает воздух в камеру сгорания, где он перемешивается с впрыснутым через форсунки топливом. Топливный заряд воспламеняется и сгорает, в результате чего образуются газы с большим запасом энергии. Расширяясь, они вращают турбины, приводя в движение компрессор и вал, а отработанные газы выводятся наружу.

Компрессор турбовального двигателя имеет несколько ступеней и может быть центробежным, осевым или комбинированным. Комбинированные компрессоры сочетают в себе и центробежные, и осевые ступени.

Обязательным конструктивным элементом ТВаД, как, впрочем, и турбовинтового двигателя, является редуктор, установленный между турбиной и валом. Сама турбина вращается с угловой скоростью, достигающей 20 000 об/мин. Понятно, что винт, закрепленный на валу и создающий тягу, не сможет работать при такой скорости и выполнять свои функции, ведь тогда ему придется вращаться со сверхзвуковой скоростью. Редуктор, установленный перед валом, понижает обороты и увеличивает крутящий момент, так что скорость вращения лопастей винта вертолета значительно меньше скорости вращения турбины.

Если турбовинтовые двигатели, которые используются на самолетах, должны иметь компактные размеры, а вал турбины и вал винта у них устанавливаются параллельно в одном корпусе, то к габаритам турбовальных двигателей таких жестких требований нет. Рабочий вал у них может находиться впереди турбины или за ней, в одном корпусе с ней или отдельно. Это объясняется тем, что мотор спрятан в конструкции кабины, где его можно расположить в любом удобном положении. Различают цельные моторы и модульные, состоящие из отдельных модулей, связанных между собой механически. Часто в одном модуле расположены компрессор и турбины, а в другом – рабочий вал, связанный с валом турбины редуктором.

Легкий американский вертолет AH-6j Little Bird

Применение

Нашел себе применение турбовальный двигатель и на земле. Правильнее даже говорить, что именно на земле он изначально и использовался, и только после появления авиации, как таковой, «переселился» на небо. Его можно встретить и на транспорте, и на различных магистральных станциях, где он обычно используется, как альтернатива дизельного двигателя. В сравнении с дизелем ТВД более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера.

В промышленности и народном хозяйства

ТВаД успешно используется в качестве нагнетателя природного газа на газоперекачивающих станциях. Его нередко можно увидеть на крупных газовых магистралях. Одна из последних разработок газовая турбина T16, мощностью 16 МВт. Короткое видео с применением турбовального двигателя в электроэнергетики.

Основные показатели:

  • 16,5 МВт - мощность на валу.
  • 37% - КПД, механический привод.
  • 36% - КПД, электрический (простой цикл).
  • 80% - КПД, комбинированное производство электроэнергии и тепла
  • 200 000 часов - полный жизненный цикл
  • выбросы NOx - не более 25 ppm.

Турбовальные двигатели используются в мобильных электростанциях для привода генератора. Электростанции с данным двигателем занимают меньший объем, аналогичной электростанции с традиционными двигателями.


В транспортной сфере

Несмотря на то, что в большинстве случаев турбовальные двигатели описываются, как силовые установки вертолетов, их применение не ограничено только ими. Частенько ТВаД играет роль не основного движителя, а вспомогательной установки. Такими установками обычно оснащаются самолеты, а используются они для питания энергией основных систем судна при его наземном обслуживании. То есть, когда самолет находится на земле, не обязательно запускать его основные моторы для получения электричества или создания давления в гидросистемах, для этого достаточно запуска такой небольшой установки. Также ТВаД используется в качестве пускового агрегата, который проворачивает ротор турбины при запуске. В этом случае он имеет название турбостартер.

Вид железнодорожного транспорта, на который устанавливается ТВаД, носит название газотурбовоз. Принцип его работы заключается в том, что турбовальный двигатель вращает вал генератора, вырабатывающего электрический ток. Ток поступает на электромоторы, которые, по сути, и являются основной силовой установкой. История газотурбовозов началась в 60-е годы, когда были сконструированы первые опытные образцы, правда, потом они уступили место более известным сейчас электровозам. Вместе с тем с 2007 года возобновились работы по созданию газотурбовозов, и даже был создан пробный экземпляр, работающий на сжиженном газе. Его испытания прошли успешно, так что в скором будущем, возможно, он будет выпускаться серийно.

Не обошли стороной ТВаД и создатели военной наземной техники. Некоторые танки, в том числе и отечественный Т-80 и американский М1 Abrams, оснащены ТВаД. Короткое видео разработки, внедрения и применения турбовального двигателя на танке.

Турбовальные двигатели также используются и на водном транспорте, называемом газотурбоходами. К ним относятся суда на воздушной подушке или на подводных крыльях. Наиболее известным отечественным газотурбоходом является военное судно «Зубр» — наиболее крупный десантный корабль на воздушной подушке. Этот гигант известен далеко за пределами России и является мировым рекордсменом среди суден на воздушной подушке по своим габаритам. А вот с отечественными пассажирскими газотурбоходами как-то не сложилось. Судно «Циклон», сконструированное в 80-хх годах, не пережило перестройки и со временем забылось, а новые пассажирские суда, оснащенные ТВаД пока не появились.

Танк Т-80 с газотурбинным двигателем
Десантное судно «Зубр»

Преимущества и недостатки

Основным преимуществом турбовального двигателя является то, что по сравнения с поршневыми двигателями он более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера. Вся суть турбовального двигателя и заключается, чтоб максимально использовать энергию сгорающего топлива, по сравнению с поршневыми двигателями это реализуется лучшим образом. Тем самым в одном килограмме двигателя можно реализовать конструкцию, более мощную своих цилиндрических сородичей, которая с каждого килограмма топлива будет забирать тепловую энергию и преобразовывать ее в механическую.

Есть у турбовального двигателя и недостатки. Первый из них – сравнительно большой расход топлива и, соответственно, низкий КПД, несмотря на высокие показатели мощности. Именно этот недостаток объясняет его ограниченное применение на наземном транспорте, где его можно заменить более эффективными силовыми установками. Второй недостаток – чувствительность к загрязнениям. Компрессор, втягивая воздух в камеру сгорания, заодно всасывает и пыль, и посторонние предметы, что сказывается на качестве работы двигателя и на его исправность в целом. На высоких оборотах даже незначительные твердые частички могут повредить лопасти турбины. Поэтому ТВаД нуждается в надежной системе тщательной очистки воздуха, а расходы на нее далеко не всегда оправданы – в большинстве случаев намного проще и дешевле использовать традиционный дизель. Это еще одна причина, по которой эти двигатели в основном используются в воздухе: там и грязи меньше, и птицы летают ниже высоты полета, так что нормальной работе компрессора и турбины ничего не мешает. Зато масса ТВаД намного меньше любого поршневого двигателя, а это в авиации немаловажно.

Турбовальные двигатели – это действительно в первую очередь «сердца» вертолетов, а уж потом все остальное. Именно эти стальные «стрекозы» дают возможность оценить основные преимущества ТВаД, ну а недостатки в этом случае совсем незначительны.

Основной боевой танк Т-80У «Объект 219АС»


"Объект 219СБ1"

История создания

В 70-е годы ХКБМ была проведена большая работа по совершенствованию серийного танка Т-64Б включавшая установку нового дизеля 6ТД-1 мощностью 1000…1200 л.с. и повышению характеристик системы управления вооружением.

Было разработано новое боевое отделения, которое затем без изменений было принято и для установки на танке Т-80У. Танк Т-80У конструктивно отличался от серийного танка Т-64Б в основном двумя особенностями:

Применением опорных катков с внешней ошиновкой (вместо катков с внутренней амортизацией);

Установкой газотурбинного двигателя (ГТД) вместо дизельного двигателя.

Компоновка танка Т-80У аналогична принятой на Т-64 и основана на наработках по его модернизации.

Танк Т-80 с ГТД возник как альтернатива танку Т-64 с двухтактным дизельным двигателем (5ТДФ).


Поэтому конструктор Н.С. Попов был категорически против установки двигателя 6ТД-1 в танк Т-80 даже в качестве резервного варианта. Танк Т-80 принятый на вооружение в 1976 г., постоянно совершенствовался, но основные разработки новейших достижений по защите, управлению вооружением осуществлялись в ХКБМ, разработки же конструкторов «Спецмаш » были в основном заняты проблемами интеграции ГТД в конструкцию танка и обеспечения ее работоспособности.

В начале 80-х годов влияние сторонников газотурбинной силовой установки в высших рядах правительства, включая первых лиц государства. С целью унификации танкового парка было принято решение о производстве на заводе им. Малышева (Харьков), Ленинградском кировском заводе и заводе омском заводе «Октябрьской революции» основного танка Т-80У. Решение принималось без достаточной научной и экономической базы и основывалось на мнениях ряда влиятельных государственных деятелей СССР, в первую очередь Д. Ф. Устинова и Н.С. Попова, при поддержке ряда влиятельных государственных деятелей.


Время создания Т-80У- 1979...1990.

Основной проблемой Т-80и его модификаций оставался высокий расход топлива, превышавший расход у дизелей равной мощности в 1,5…1,7 раза.

В конце 70-х, начале 80-х годов ЛНПО им. Климова активно работало над созданием двигателя ВГТД-1000ФМ со сниженным расходом топлива, для производства этого двигателя велось строительство нового завода в Харькове.

Но решаемые задачи были слишком сложными, двигатель не выдерживал испытаний. Негативные результаты испытаний явились основной причиной неоднократных переносов сроков официального предъявления двигателя на приемочные испытания. По этой причине не был он предъявлен и в июле 1983 года - очередной установленный срок, который такжене был выдержан.

Даже перед самыми большими сторонниками ГТД встал вопрос: в каком направлении двигаться дальше?

Стало очевидным, что дальше упорствовать в доводке ВГТД-1000ФМ нет смысла. В Харькове считали, что надо прекратить работы по ГТД и приступить к организации серийного производства двигателя 6ТД-1 мощностью 1000 л.с. Но это бы означало поражение сторонников ГТД, а в эту аферу были втянуты первые лица государства.

Для обсуждения создавшегося положения было собрано совещание в ЦК КПСС, где было решено на заводе им. В. А. Малышева организовать производство модернизированного двигателя ГТД-1100Ф, выпускаемого Калужским опытным моторным заводом, форсированного до 1200- 1250 л.с.

По удельному расходу топлива ГТД-1100Ф проигрывал двигателю ВГТД-1000ФМ. Указанные предложения вскоре были официально утверждены постановлением № 604-137 от 11.06.84 г.

Затраченные средства на проектирование и изготовление оснастки для экономичного ВГТД-1000ФМв объеме примерно 30% первоначальной стоимости, изготовление и доводку двигателя и танка с ним выброшены на ветер . Выброшены на ветер миллиарды рублей.

Началась новая гонка - теперь по модернизированному двигателю ГТД-1100Ф, который существенно отличался от предыдущего двигателя ВГТД-1000ФМ.

Переход на новый двигатель существенно облегчал задачу его доводки в ЛНПО им. В.Я. Климова, так как он базировался на серийном двигателе, но усложнил задачу заводу им. В.А. Малы-шева, так как построение произ-водственных линий нужно было начинать с нуля. Время показало, что серийное производство Т-80У с ГТД-1250 быстро наладить не удалось. Первые два двигателя были предъявлены на приемочные испытания в апреле 1985 года и показали невысокий ресурс. С указанными двигателями, выпущенными Калужским опытным моторным заводом, заводом им. В. А. Малышева была изготовлена установочная партия танков Т-80У в количестве 45 шт. Таким образом, завод имени В.А. Малышева приступил к реализации Постановления ЦК КПСС.

На этом производство танков с ГТД в Харькове закончилось. Обстановка начала изменяться после смерти Д.Ф. Устинова 20 декабря 1984 г. 23 января 1985 г. С уходом Д. Ф. Устинова изменилось и мнение многих сторонников ГТД, занимавших высокие посты.

Постановлением ЦК КПСС и Совета Министров СССР от 02.09.85 г. № 837-249 принят на серийное производство с формулировкой «Танк Т-80У с двигателем 6ТД». Но существовало Постановление об освоении на предприятии «Завод имени В.А. Малышева» танка Т-80У с ГТД.

Результаты сравнительных испытаний танков Т-80У с двигателями ГТД и 6ТД-1 мощностью 1000 л.с. были доложены представителями 38 НИИ БТВТ. Танк с двигателем 6ТД-1 не уступал по своим характеристикам танку с ГТД, а по показателям расхода топлива был значительно более экономичным.

Из сборочного цеха 27 декабря 1987 года ушел последний танк Т-64. Это было прощание с целой эпохой, оставившей глубокий след в отечественном танкостроении. Его место занял танк Т-80УД .

Несмотря на то, что Т-80У с ГТД был принят на вооружение раньше, его производство реально началось только в конце 80-х годов.Крупносерийное производство танка Т-80У с более мощным двигателем ГТД-1250 началось 1990 г. Было внедрено также устройство защиты силовой установки от перегрева и меры улучшения по топливной экономичности. Даже с этими мерами Т-80У не достиг уровня экономичности по топливу танка с двигателем 6ТД-1.

На период середины 90-х годов МТО с ГТД мощностью 1250 л.с. было отработано для серийного производства и обеспечивало требуемый уровень надежности, поставлялось на экспорт. Принципиального решения вопроса топливной экономичности в серийном производстве ГТД в достигнуто не было.

Тем не менее при отсутствии реальных альтернатив в виде современных и мощных дизелей серии В2 и 2В в России на данный момент развитие и модернизация ГТД может быть перспективной.

Огневая мощь

Как и все отечественные танки, начиная с Т-64А танк Т-80У вооружен гладкоствольной 125 мм пушкой.

На Т-80У установлена ее усовершенствованная модификация 2А46М-1. Скорострельность до 8 выстрелов в минуту в движении. В конвейере механизма заряжания находится 28 выстрелов, общий боекомплект 45 выстрелов. Основным противотанковым вооружением Т-80У являются бронебойные подкалиберные снаряды 3БM-42 с сердечником изготовленным из вольфрамового сплава и выстрелы ЗБМ32 с сердечником из обедненного урана. Особое место занимает комплекс управляемого вооружения «Рефлекс» с ракетами 9М119М и 9М119М1, которые обеспечивают поражение танков на дистанции до 5000 м.


Комплекс «Рефлекс»может применяться по низколетящим целям - вертолетам. Ракета 9MI19, управляемая по лучу лазера, обеспечивает дальность поражения цели типа «танк» при стрельбе на дальностях 5000 м с вероятностью 0.8 и на дальность 4000 с вероятностью 0.9.

Танк оснащен комплексом управления огнем 1А45 в состав которого входят:

Система управления огнем дневного прицела включающая:

Дневной прицел наводчика 1Г46 с независимой в двух плоскостях стабилизацией поля зрения и лазерным дальномером;

Стабилизатор вооружения, состоящий из электрогидравлического привода ВН (вертикальное наведение), электромеханического привода ГН (горизонтальное наведение), блока управления стабилизатора и датчиков;

Баллистический вычислитель 1В528, состоящий из двух блоков и переключателя баллистик,

Комплект датчиков условий стрельбы, состоящий из датчиков: поперечного ветра, крена, скорости танка, курсового угла (косинусный потенциометр);

Ночной прицел наводчика «Буран-ПА» с зависимой стабилизацией поля зрения в двух плоскостях (прибор связан с пушкой параллелограммом, стабилизация поля зрения обеспечивается стабилизацией пушки и башни, наведение поля зрения осуществляется при наведении пушки и башни). Прицел оснащен механизмом для ручного измерения дальности с «базой на цели» и ручным вводом дальности по баллистическим шкалам в поле зрения. Стрельба производится только при выключенном баллистическом вычислителе (ТВП «Агава-2» для изделий 640А).

Дневно-ночной прицел командира ТКН-4С с независимой стабилизацией поля зрения по ВН и зависимой стабилизацией поля зрения по ГН (стабилизация поля зрения обеспечивается стабилизацией башни). ТКН-4Соснащен механизмом для ручного измерения дальности с «базой на цели», ручным вводом дальности по баллистическим шкалам в поле зрения, стрельба через который производится с автоматическим отключением баллистического вычислителя (режим ДУБЛЬ).

Аппаратура установщики временных интервалов УВИ, включаю-щую пульт управления ПУВИ, блок управления, стыковочное устройство и концевой выключатель КВ-СУ, обеспечивающую стрельбу снарядами дистанционного подрыва на траектории полета (для изделий 640А).

Дневной и ночной прицелы расположены на месте наводчика, а дневно-ночной - на месте командира.



Дневной оптический прицел 1Г46 «Иртыш» с встроенным лазерным дальномером позволяет наводчику обнаруживать малоразмерные цели. Независимо от орудия прицел стабилизирован в двух плоскостях. Его панкреатическая система изменяеткратность увеличения оптического канала в пределах х3.6…12.0.

Ночью наводчик осуществляет поиск и прицеливание с помощью активно-пассивного прицела «Буран-ПА»,также имеющего стабилизированное полезрения. Дальность распознавания целей ночью - 1200 м.

Командир ганка ведет наблюдение и дает целеуказания наводчику посредствам прицельно-наблюдательного дневного ночного комплекса ПНК-4С, стабилизированного в вертикальной плоскости.

Цифровой баллисти-ческий вычислитель учитыва-ет поправки на дальность, фланговую скорость цели, ско-рость своего танка, угол накло-на цапф пушки, износ канала ствола, температура воздуха, атмосферное давление и боко-вой ветер.

Зенитная пулеметная установка на Т-80У открытого типа с тумбовой установкой, что является серьезным недостатком по сравнению с Т-80УД.

Защита

При создании танка Т-80У значительное внимание уделялось усилению его защищенно-сти. Работы велись в нескольких направлениях. За счет применения нового камуфлирующей ок-раски, искажающей внешний вид танка, удалось снизить вероятность обнаружения Т-80У в види-мом и ИК-днапатонах .

Первые серии танка оснащались навесным комплектом динамической защиты «Контакт-1». Позднее на танк был установлен комплекс универсальной динамической защиты «Контакт-5». Этот тип ДЗ работает как против кумулятивных средств (КС), так и против бронебойных подкалиберных снарядов (БПС). Крышка блока ДЗ из толстой высокопрочной стали при ударе в нее БПС генерирует поток высокоскоростных осколков, которые и детонируют ЭДЗ. Воздействие на БПС движущейся толстой крышки оказывается достаточным, чтобы снизить бронепробивные характеристики как кумулятивных средств, так и БПС.

Встроенная динамическая защита прикрывает более 60% поверхности в курсовых углах обстрела ±20° (по корпусу) и ±35° (по башне).Сочетание усовершенствованной многослойной комбинированной брони и ВДЗ уменьшает угрозу поражения танка наиболее массовыми кумулятивными и кинетическими средствам поражения, такими как М829 и М829А1.

Важным достоинством Т-80У стала его совершенная система защиты от ОМП, превосходящая подобную защиту лучших зарубежных танков НАТО.

На танке применены подбой и надбой водородосодержащих полимеров с добавками свинца, лития и бора, экраны локальной защиты из тяжелых металлов и система автоматическойгерметизации обитаемых отделений и очистки воздуха.


Повышению выживаемости способствует применение на танке системы самоокапывания с бульдозерным отвалом шириной 2140 мм и системы постановки дымовых завес при помощи системы «Туча», включающей восемь мортирок-гранатометов 902Б. На танке может устанавливаться, также, навесной колейный трал КМТ-6, исключающий подрыв мин пол днищем и гусеницами.

Существенным нововведением стало применение на танке вспомогательного энергоагрегата ГТА-18A мощностью 30 л.с, позволяющего экономить топливо во время стоянки танка, при ведении оборонительною боя, а также в засаде. Экономится и ресурс основного двигателя.

Вспомогательный энергоагрегат , расположенный в корме машины в бункере на левой надгусеничной полке, «встроен» в общую систему работы ГТД и не требует каких-либо дополнительных устройств для своего функционирования.

Защита экв . (мм.)

башня

корпус

от БПС с ВДЗ «Контакт- V »

от КС с ВДЗ «Контакт- V »

1100

900…1100

Характеристики подвижности

На Т-80У, принятом на вооружение СА в 1985 году, был установлен газотурбинный двигатель ГТД-1000ТФ мощностью 1100 л .с. , в последствии на танке Т-80У установлена более мощная силовая газотурбинная установка 1250 л.с.

На двигателе был применен "циклонный" метод очистки воздуха от пыли. Высокоэффективный комбинированный прямоточный циклон с центральной конусной решеткой (важнейший элемент воздухоочистителя) с эффективностью воздухоочистки до 98,5%. Но в проточной части все же оседают неотфильтрованные частицы пыли. Для их удаления, при движении танка в особо тяжелых условиях, предусмотрена процедура виброочистки лопаток и продувка проточной части сжатым воздухом.

Блок воздухоочистителя и радиаторов установлен поперечно корпусу танка и крепится к передней опоре двигательного моноблока. Воздух для системы очистки забирается через прикрытые сетками жалюзи на крыше моторно-трансмиссионного отделения. Вентиляторы системы очистки и охлаждения имеют привод от основного двигателя.

Усовершенствование двигателя ГТД-1000Т проходило поэтапно в направлении повышения его мощности путем увеличения температуры газов без увеличения габаритных размеров. Сначала двигатель был форсирован до 1100 л.с. (ГТД-1000ТФ) и установлен на танки Т-80Б, Т-80БВ и T-80У раннего выпуска. В 1990 г. началось производство танка T-80У с новым вариантом двигателя ГТД-1250 мощностью 1250 л.с.Когда встал вопрос о дополнительных мерах обеспечения двигателя более чистым воздухом, наиболее реальным вариантом казалось устройство забора чистого воздуха на высоте башни танка.

к реализации была принята конструкция, представляющая собой овальный, расширяющийся в нижней части короб, устанавливаемый на башне при помощи кронштейнов. В нижней части короб имел двухпозиционное приводное уплотнительное устройство, обеспечивающее две позиции стыковки с входными жалюзями . При обычной эксплуатации герметизация обеспечивалась только с помощью мягкого воротника по всему контуру жалюзи. Такая стыковка не препятствовала вращению башни и производству стрельбы из пушки. А при преодолении водных преград вводилось в работу дополнительное уплотнение, обеспечивающее герметизацию стыковки. С этим устройством танк получил возможность преодолевать водные преграды глубиной до 1,8 м.

Преимуществом Т-80У является наличие вспомогательной силовой установки ГТА-18А, что позволило существенно уменьшить суммарный расход топлива на 1 час работы систем танка ~ 60 л/ч (суммарное время работы танка составляет - 50% на месте и 50% в движении).

Существенным фактором экономии топлива стала установка дополнительного энергоагрегата ГТА-18А в моторно-трансмиссионное отделение (МТО) танка. Этот агрегат состоит из одновального газотурбинного двигателя и спаренного с ним генератора постоянного тока мощностью 18 кВт Основное назначение энергоагрегата — обеспечение энергопитанием тех потребителей, которые будут работать во время стоянки машины. Разработчиком и изготовителем энергоагрегата стало специальное конструкторское бюро «Турбина», начавшее серийное производство энергоагрегатов .

Энергоагрегат обеспечивает увеличение на 1/3 моторесурса , снижает демаскирующие шумы и теплоизлучение, увеличивает периодичность технического обслуживания и срока службы аккумуляторных батарей.

Были изготовлены 10 танков с пониженным эксплуатационным расходом топлива.

У пяти из них была установлена система автоматического включения режима стояночного малого газа и система автоматического уменьшения режима работы двигателя. Также было внедрено ограничение перемещения рычага ручного сектора газа (не выше малого газа), система раскрытия РСА силовой турбины в положение максимального проходного сечения при запуске. У других 5 танков, дополнительно к названным мероприятиям, установлены вспомогательные энергоагрегаты ГТА-18А.

Для сравнения с экспериментальными десятью танками были выделены 5 обычных машин. На базе учебного полка создали экспериментальную танковую роту, в которую вошли 15 танков. Председателем комиссии по испытаниям был назначен начальник бронетанковой службы Группы советских войск в Германии генерал-майор Владимир Иванович Владимиров. Испытания проводились в различных дорожных условиях, в разное время суток и неоднократно выполнялись все виды боевой учебы.

Средний объем наработки танка при условиях войсковой эксплуатации составил 3000 км, двигатели отработали 290 моточасов . Подчеркну, что на танках с энергоагрегатом наработка в среднем составила 197 моточасов основного двигателя и 106 моточасов вспомогательного агрегата. Танки участвовали во всех видах стрельб и учений. Марши проходили в условиях густой сети автомобильных и железных дорог и, благодаря хорошей организации, без происшествий.

Результаты испытаний показали, что танки, принимавшие участие в испытаниях, имели расход топлива в 1,5 раза меньший по сравнению с серийными танками. После экспериментальной проверки эффективности мероприятий в ГДР было принято решение о внедрении наших предложений в серийное производство на танках Т-80У.

Для танка с дизельным двигателем без вспомогательной силовой установки мощностью 1500 л. с, расход топлива составляет 120…150 л/ч. Главным недостатком турбин считается их невысокая топливная экономичность.

В ходе сравнительных испытаний запас хода при движении по горным, грунтовым и дорогам с асфальтовым покрытием для Т-80У составил 350 км, а для Леопарда-2А5 - 370 км, что в целом сравнимые показатели.

Тактико-технические характеристики

Параметр

Единица измерений

Полная масса

46 (46,5)

Экипаж

чел.

Удельная мощность

л.с./т

27,2 (26,8)

Двигатель (ГТД-1250)

л.с.

1250

Энергоагрегат газотурбинный (ГТА-18А)

л.с.

Ширина танка

Удельное давление на грунт

кгс/см 2

0,91

Температурный режим работы

°С

40…+55

(со снижением мощности)

Длина танка

с пушкой вперед

мм

9654

корпуса

мм

6900

Ширина танка

по гусенице

мм

3400

по съемным защитным экранам

мм

3670

Высота по крыше башни

мм

2202

Длина опорной поверхности

мм

4290

Дорожный просвет

мм

Ширина колеи

мм

Скорость движения

Средняя по сухой грунтовой дороге

км/ч

40…45

Максимальная по дороге с твердым покрытием

км/ч

На передаче заднего хода, максимальная

км/ч

Расход топлива на 100 км

По сухой грунтовой дороге

л, до

450…790

По дороге с твердым покрытием

л, до

430…500

на основных топливных баках

км

с дополнительными бочками

км

Боекомплект

Выстрелов к пушке

шт

(из них в конвейере механизма заряжания)

шт

Патронов:

к пулемету (7,62 мм)

шт

1250

к пулемету(12,7 мм)

шт

Аэрозольных гранат

шт


Использовались данные из книг

«Танк, бросающий вызов времени». М.В. Ашик , А.С. Ефремов, Н.С. Попов. 2001 г.

«Моторы и судьбы. О времени и о себе». Н.К. Рязанцев. 1991 г.