Вертикальный взлёт. Dornier Do.31: транспортный самолёт вертикального взлёта и посадки

Самолёт-амфибия вертикального взлёта и посадки ВВА-14

Странная конструкция на фото? А это как раз он и есть, вернее то, что от него осталось.
С середины 1950-х годов в СССР начался процесс формирования противолодочной авиации — нового рода сил, предназначенного специально для действий против подводных лодок. Авиация ВМФ и раньше решала подобные задачи, но в связи с созданием в США атомных субмарин борьба с угрозой из глубины моря вышла на первый план. Атомные энергетические установки коренным образом изменили условия и характер вооруженной борьбы на море. Подводные лодки стали подводными в полном смысле слова. Применение атомной энергетики открыло практически неограниченные возможности увеличения дальности плавания полным подводным ходом. Новые дальноходные самонаводящиеся торпеды и баллистические ракеты неизмеримо повысили ударные возможности атомных ПЛ, которые теперь во многом стали определять мощь флота.

С выходом на боевое патрулирование в начале 60-х годов американских атомных ПЛ, вооруженных баллистическими ракетами «Поларис», СССР оказался практически беззащитен. Лодки в подводном положении подходили к нашему побережью, могли в любой момент произвести ракетный залп, нанести колоссальные разрушения и уйти неуязвимыми. Все это требовало немедленного и эффективного ответа. Борьба с атомными ПЛ с целью предотвращения ракетно-ядерных ударов становится одной из приоритетных задач поставленных перед ВМФ. В этой связи резко повышается роль и значение авиации ПЛО, способной осуществлять эффективную борьбу с подводными лодками противника.
«Большое противолодочное направление» в развитии отечественного ВМФ позволило осуществить попытку реализовать в металле такой революционный и уникальный летательный аппарат как амфибию вертикального взлета и посадки ВВА-14.


ВВА-14 должен был стать частью авиационного противолодочного комплекса состоящего из собственно самолета, поисково-прицельной системы «Буревестник», противолодочного оружия и системы заправки топливом на плаву. Комплекс предназначался для обнаружения и уничтожения подводных лодок противника находящихся в районах удаленных от места вылета на 1200-1500 км, как самостоятельно, так и во взаимодействии с другими силами и средствами ВМФ.

ВВА-14 мог бы применятся в поисково-ударном, поисковом и ударном вариантах. Следовало спроектировать и построить три экземпляра машины с началом заводских испытаний первого в последнем квартале 1968 г.

Своего опытного производства КБ Бартини не имело, поэтому постройку ВВА-14 планировалось вести на опытном заводе ╧938 ОКБ Н.И. Камова. Но поскольку камовцы не располагали специалистами, знакомыми со спецификой тяжелого самолетостроения, в 1968 г. Р.Л. Бартини становится главным конструктором по теме ВВА-14 вновь создаваемого ОКБ при таганрогском заводе ╧86. Заместителем Бартини назначается В.И. Бирюлин.

Одновременно вышло решение комиссии президиума СМ СССР по военно-промышленным вопросам ╧305 от 20 ноября 1968 г. и приказ МАП ╧422 от 25 декабря 1968 г. о разработке технического проекта самолета ВВА-14 на Таганрогском машиностроительном заводе.


Поставленная задача оказалась слишком сложна для нового ОКБ и в 1970 г. принимается решение при помощи ОКБ А.К. Константинова разработать конструкторскую документацию и создать опытные образцы вертикально взлетающих аппаратов. Р.Л. Бартини стал Главным конструктором по теме ВВА-14, ведущим конструктором по амфибии стал Н.Д. Леонов, по оборудованию Ю.А. Бондарев.

Фактически работами по созданию ВВА-14 руководил заместитель главного конструктора Н.А. Погорелов, сменивший В.И. Бирюлина, т.к. Р.Л. Бартини жил в Москве и в Таганроге бывал наездами.

ВВА-14 представлял собой целое собрание необычных технических решений, каждое из которых требовало проведения большого объема опытно-конструкторских работ ещё до начала летных испытаний. С целью натурных отработок самолетных систем и элементов конструкции были спроектированы и построены несколько соответствующих стендов.

Для отработки силовой установки на малом понтонном стенде построенном на Ухтомском вертолетном заводе (УВЗ), были проведены экспериментальные работы по изучению впадины и брызгового факела образующихся при воздействии на водную поверхность струи газов ТРД ТС-12М.

Для изучения режимов взлета и посадки ВВА-14 на различные поверхности на УВЗ был создан плавучий газодинамический стенд-аналог 1410, позволявший проводить испытания модели самолета в масштабе 1:4, оборудованной шестью ТРД ТС-12М имитировавших работу всех подъемных двигателей самолета.

Стенд 1410 был перевезен на испытательно-экспериментальную базу ОКБ в г. Геленджике где прошел полный цикл испытаний для изучения режимов взлета и посадки самолета на водную поверхность. Полученные результаты свидетельствовали, в частности, что силы и моменты воздействовавшие на самолет при вертикальном взлете и посадке, были незначительны и система стабилизации и управления самолетом вполне могла их парировать. Комбинированные газоструйные рули для управления по курсу и тангажу были также отработаны на наземном стенде. Для отработки управления ВВА-14, были созданы два пилотажных стенда: с подвижной и неподвижной кабинами.На пилотажных стендах были ещё до первого полета досконально отработаны режимы управления самолетом, среди которых был режим приземления в условиях создания интенсивной динамической воздушной подушки. На стенды часто приглашали летчика-испытателя Ю.М. Куприянова, который высоко оценил работу их создателей, сказав на разборе первого полета: «Летали так, как на тренажере!»

Планировалось построить три опытных ВВА-14. В производство запустили одновременно два экземпляра самолета, машины «1М» и «2М».Первый опытный самолет «1М» был выполнен без подъемных двигателей и предназначался для отработки и доводки аэродинамики и конструкции на всех режимах полета, кроме вертикального взлета и посадки, исследования устойчивости и управляемости на этих режимах, для отработки маршевой силовой установки и самолетных систем. Для обеспечения взлета и посадки с аэродрома, на самолете устанавливалось шасси велосипедной схемы с управляемыми носовыми колесами (в конструкции шасси использовались стойки от бомбардировщиков 3М и Ту-22).




Вторая опытная машина «2М» должна была получить подъемные двигатели. На ней должны были изучаться и отрабатываться переходные режимы и режимы вертикального взлета и посадки с земли и воды, подъемная силовая установка, системы струйного управления, автоматики и другие системы, связанные с вертикальным взлетом и посадкой.После отработки основных технических вопросов на «1М» и «2М» наступала очередь третьего экземпляра ВВА-14. На нем должны были быть испытаны комплексы специального оборудования и вооружения, а также отработанно боевое применение.Изготовлялись самолеты в кооперации между опытным производством ОКБ (директор завода А. Самоделков) и соседним серийным заводом (Таганрогский механический завод им. Г. Димитрова, директор С. Головин).На серийном заводе изготавливали фюзеляж, консоли крыла и оперение, а сборка, монтаж самолетных систем и контрольно-записывающей аппаратуры была за опытным производством ОКБ.

К лету 1972 г. основные работы по сборке самолета ВВА-14 («1М») были закончены и машина покинувшая сборочный цех была передана ЛИКу для окончательной доводки перед летными испытаниями.ВВА-14 имел очень необычный вид. Фюзеляж с кабиной пилотов переходил в центроплан, по бокам которого располагались два огромных отсека с поплавками и системой их наддува. Разнесенное стреловидное горизонтальное и вертикальное оперение. Отъемные части крыла крепились к кессону центроплана. За оригинальность конструкции самолет получил кличку «Фантомас».Ведущим инженером по испытаниям стал И.К. Винокуров, летчиком-испытателем Ю.М. Куприянов, штурманом-испытателем Л.Ф. Кузнецов.

Стоянка, на которой расположили ВВА-14, располагалась на краю летного поля у небольшой рощи, т.н. «карантина», а в целях конспирации «1М» получил гражданскую регистрацию СССР-19172 и символику «Аэрофлота» на борту.В период с 12 по 14 июля 1972 г. начались первые рулежки и пробежки самолета по грунтовой ВПП заводского аэродрома. Затем от ВВА-14 отстыковали консоли крыла и хвостовое оперение и соблюдая все положенные меры секретности, в одну из ночей перевезли на соседний таганрогский аэродром, имевший бетонную полосу, на котором базировался один из учебных полков Ейского военного училища летчиков.Там, с 10 по 12 августа, пробежки продолжились. Их результаты были обнадеживающими, ВВА-14 на пробежках до скорости 230 км/ч вел себя нормально, силовая установка и бортовое оборудование работали без замечаний. В своем отчете летчик-испытатель Ю.М. Куприянов отметил, что: «На разбеге, подлете и пробеге самолет устойчив, управляем, ухода с курса взлета и кренений нет». Кроме того, обращено внимание на хороший обзор из пилотской кабины и удобное расположение пилотажно-навигационных приборов и приборов контроля за силовой установкой.

Первый раз в воздух ВВА-14 поднялся 4 сентября 1972 г. с экипажем в составе летчика-испытателя Ю.М. Куприянова и штурмана-испытателя Л.Ф. Кузнецова. Полет, продолжавшийся почти час, показал, что устойчивость и управляемость машины в воздухе в пределах нормы и ничуть не хуже, чем у традиционных самолетов.Как и на земле, в воздухе ВВА-14 выглядел очень необычно, получив за свою «трехголовость» при виде снизу (центральный нос-фюзеляж и два бортовых отсека) ещё одну кличку — «Змей Горыныч». К отдельным полетам в качестве самолета сопровождения и самолета-эталона для калибровки пилотажно-навигационного оборудования привлекался Бе-30 (╧05 «ОС»).Летные испытания первого этапа завершились к лету 1973 г. Их результаты подтвердили, что оригинальная аэродинамическая схема с крылом-центропланом вполне жизнеспособна, а маршевая силовая установка и основные системы работают надежно и обеспечивают выполнение испытательных полетов.Но самым значимым итогом этого этапа летных испытаний стало то, что под самолетом при полете вблизи земли толщина динамической воздушной подушки оказалась значительно больше по отношению к средней аэродинамической хорде крыла, чем это считалась ранее. При средней аэродинамической хорде ВВА-14 в 10,75 м эффект динамической подушки ощущался с высоты 10-12 м, а на высоте выравнивания (около 8 м) подушка была уже так плотна и устойчива, что Ю.М. Куприянов на разборах полетов много раз просил разрешения бросить ручку управления и дать машине сесть самой. Провести такой эксперимент ему, правда, так и не дали, опасаясь, что может просто не хватить взлетной полосы.

Единственным серьезным инцидентом был отказ гидросистемы ╧1 в первом полете. Причиной стало разрушение трубки отвода рабочей жидкости от насосов, из-за совпадения колебаний фюзеляжа с частотой пульсации жидкости. Выход из положения нашли, заменив трубки на резиновые шланги.Хотя перспективы получения реальных, а не «бумажных» подъемных двигателей оставались весьма неопределенными, наконец, было готово пневматическое взлетно-посадочное устройство (ПВПУ). Поплавки ПВПУ имели длину 14 м, диаметр 2,5 м, объем каждого составлял 50 м3. Они были спроектированы Долгопрудненским КБ агрегатов и изготовлены на Ярославском шинном заводе.Поэтому зиму 1973-74 гг. ВВА-14 («1М») провел в цехе опытного производства ОКБ где на него установили системы и устройства ПВПУ. Одновременно выполнялись статические испытания на специально подготовленном поплавке.Выпуск поплавков осуществлялся двенадцатью управляемыми пневматическими кольцевыми эжекторами — по одному на каждый отсек поплавка. Воздух высокого давления отбирался от компрессоров маршевых двигателей. Уборка ПВПУ осуществлялась гидроцилиндрами, которые воздействовали через продольные штанги на тросы, охватывающие поплавки, вытесняя воздух из их отсеков через редукционные клапаны.


Поплавки и система их уборки-выпуска была буквально напичканы различными уникальными устройствами и системами, поэтому оказались очень непростыми в доводке и наладке, которые продолжались всю весну и часть лета 1974 г.Затем начался этап испытаний ВВА-14 на плаву. Поскольку шасси все время морских испытаний находилось в убранном положении, для спуска и подъема машины с надутыми поплавками были изготовлены специальные перекатные тележки.Первым делом была проверена непотопляемость самолета при разгерметизации отсеков поплавков. Сброс давления из двух отсеков одного поплавка подтвердил, что ВВА-14 сохраняет при этом нормальную плавучесть. После наступил черед рулежек с постепенным увеличением скорости движения по воде. Испытания показали, что максимальная скорость при этом не должна превышать 35 км/ч. На больших скоростях машина начинала опускать нос к поверхности воды и возникала опасность деформации и последующего разрушения мягких поплавков. Но для вертикально взлетающей амфибии этой скорости было вполне достаточно.


По окончании этапа мореходных испытаний испытательные полеты продолжились пока при убранных поплавках ПВПУ. Однако к этому времени интерес заказчика к ВВА-14 заметно угас. Основное внимание уделялось совершенствованию уже поступивших на вооружение Бе-12, Ил-38 и Ту-142. Стало окончательно ясно, что подъемных двигателей с приемлемыми характеристиками не будет даже в отдаленном будущем. Поэтому ещё в разгар работ по монтажу и испытаниям ПВПУ Р.Л. Бартини принял решение доработать «1М» в аппарат по типу экраноплана с поддувом воздуха от дополнительных двигателей под центроплан. Начатые в этом направлении работы привели к созданию экспериментального экранолета 14М1П, но его испытания начались уже без Бартини. В декабре 1974 г. Роберта Людовиковича не стало.Летные испытания, по инерции, продолжились и в 1975 г. Предстояло испытать ПВПУ и поведение машины с выпущенными поплавками в полете. Предварительно провели серию пробежек и подлетов с постепенным увеличением степени выпуска поплавков (для этого гидросистема самолета была соответствующим образом модифицирована).Первый полет ВВА-14 с полным выпуском и уборкой поплавков в воздухе состоялся 11 июня 1975 г. с экипажем в составе Ю.М. Куприянова и Л.Ф. Кузнецова. Всего в период с 11 по 27 июня, в испытательных полетах, было выполнено 11 выпусков-уборок ПВПУ. Особых проблем в поведение машины в воздухе выпущенные поплавки не вызвали. Выявившаяся при испытаниях тряска самолета с надутыми поплавками при выпущенных закрылках, «как при пробежках по грунтовой полосе» по замечанию летчиков, опасности не представляла и могла быть устранена изменением формы хвостовых частей поплавков. Все попытки самолета рыскать при выпущенном ПВПУ устойчиво парировались системой автоматического управления САУ-М.Эти полеты стали завершающим аккордом в истории ВВА-14. Всего с сентября 1972 г. по июнь 1975 г. на машине «1М» было выполнено 107 полетов с налетом более 103 часов.

После прекращения программы ВВА-14, самолет «1М» закатили в цех на переоборудование в экспериментальный экранолет 14М1П, собранный планер машины «2М» отвезли на дальний край заводской стоянки, третий экземпляр вертикально взлетающей амфибии так и не начали строить.На базе ВВА-14 существовали проекты создания модификаций различного назначения.Корабельный вариант имел бы складные консоли крыла и хвостовое оперение и мог базироваться на противолодочных крейсерах проекта 1123, специально дооборудованных крупнотоннажных сухогрузах и танкерах, либо на противолодочных крейсерах-носителях ВВА-14.В транспортном варианте ВВА-14 мог бы перевозить 32 человека или 5000 кг груза на расстояние до 3300 км.В поисково-спасательном варианте в состав экипажа амфибии дополнительно включались два спасателя и врач. В грузовом отсеке размещалось специальное оборудование (лодки, плоты, лебедка и т.д.). Летные характеристики ВВА-14 в спасательном варианте оставались практически такими же, как у противолодочного самолета за исключением дальности полета, которая могла быть увеличена на 500-1000 км.


В варианте самолета-ретранслятора для ВВА-14 планировалось разработать специальную антенну и систему для её подъема на высоту 200-300 м, при нахождении машины на плаву.На ВВА-14 предусматривалась установка перспективного поисково-ударного комплекса «Полюс» для поражения ракетных подводных лодок на удалении от самолета не менее 200 км. В этом варианте амфибия несла одну ракету «воздух-поверхность» весом 3000-4000 кг, длиной до 9,5 м и калибром 700-780 мм в нижней части фюзеляжа и радиолокационный дальномер на киле. Кроме того, в этом варианте устанавливались инфракрасный пеленгатор и панорамная РЛС. Все эти работы не вышли из первоначальной стадии рассмотрения технических предложений и изучения вопроса заказчиком.Но в целом затраченные усилия не пропали даром. В результате испытаний был получен богатый экспериментальный материал, а сама работа над ВВА-14 стала великолепной школой для специалистов ОКБ.


Конструкция СВВП выполнен по схеме высокоплана с составным крылом из несущего центроплана и консолей разнесенным горизонтальным и вертикальным оперением и поплавковым взлетно-посадочным устройством. Конструкция в основном выполнена из алюминиевых сплавов с антикоррозионным покрытием и кадмированных сталей.Фюзеляж полумонококовой конструкции, переходящий в центроплан. В носовой части размещена трехместная кабина экипажа, отделяемая при аварийных ситуациях и обеспечивающая спасение экипажа на всех режимах полета без использования катапультных кресел. За кабиной размещен отсек силовой установки с 12 подъемными двигателями и отсек вооружения.Крыло состоит из прямоугольного центроплана и отъемных частей (ОЧК) трапециевидной формы в плане с углом поперечного V +2╟ и заклинения 1╟, образованных профилями с относительной толщиной 0,12. На ОЧК имеются по всему размаху предкрылки, однощелевые закрылки и элероны. С центропланом сопрягаются сигарообразные обтекатели, на которых размещается оперение и ПВПУ.Оперение свободнонесущее, расположенное на обтекателях, стреловидное. Горизонтальное оперение общей площадью 21,8 м2 имеет стреловидность по передней кромке 40╟, снабжено рулями высоты общей площадью 6,33 м2. Вертикальное оперение двухкилевое общей площадью 22,75 м2 имеет стреловидность по передней кромке 54╟, общая площадь рулей направления 6,75 м2.Пневматическое взлетно-посадочное устройство включает надувные поплавки длиной 14 м, диаметром 2,5 м и объемом по 50 м3, которые имеют по 12 отсеков. Для выпуска и уборки поплавков используется сложная механогидропневмоэлектрическая система с 12 кольцевыми инжекторами (по одному на каждый отсек). Воздух в систему подается от компрессоров маршевых двигателей. Для транспортировки самолета на земле предусмотрено убирающееся трехопорное колесное шасси с носовой опорой и главными опорами на обтекателях по бокам поплавков, каждая опора имеет по два колеса. Было использовано шасси серийного Ту-22.Силовая установка комбинированная, состоит из двух маршевых двухконтурных двигателей Д-30М тягой по 6800 кгс (генеральный конструктор П.А. Соловьев), установленных рядом в отдельных гондолах сверху центроплана, и 12 подъемных ТРДД РД-36-35ПР тягой по 4400 кгс (главный конструктор П.А. Колосов), установленных попарно с наклоном вперед в отсеке фюзеляжа с открывающимися вверх створками воздухозаборников для каждой пары двигателей и нижними створками с решетками, отклонение которых могло регулироваться. Подъемные двигатели к началу летных испытаний не были доведены, и полеты самолета проводились без них. Предусматривалось использование вспомогательной силовой установки с турбокомпрессором.Топливная система включает 14 баков; два бака отсека и 12 протектированных баков общей емкостью 15 500 л. Предусматривалась установка системы заправки топливом на плаву.


Система управления обеспечивала управление аэродинамическими рулями с помощью гидроусилителей, как на обычных самолетах, а управление на режимах вертикального взлета и посадки и переходных режимах должно было осуществляться с помощью 12 струйных рулей, установленных попарно и использующих сжатый воздух, отбираемый от подъемных двигателей. Система автоматического управления обеспечивает стабилизацию по тангажу, курсу и высоте на всех режимах полета.Самолетные системы. Самолет оснащен всеми необходимыми для эксплуатации системами: противопожарной в отсеках силовой установки, противообледенительной с подводом горячего воздуха к носкам крыла, оперения и воздухозаборников, имеются кислородная система и система кондиционирования воздуха.Оборудование. На самолете было установлено необходимое для летных испытаний пилотажно-навигационное и радиосвязное оборудование и предусматривалось использование новейшего оборудования для обеспечения автоматической стабилизации при взлете и посадке и на маршруте для автономного полета в сложных метеорологических условиях. В спасательном варианте СВВП предполагалось оснастить аварийно-спасательными радиосредствами. На противолодочном СВВП предполагалось использовать поисково-прицельную систему ╚Буревестник╩, обеспечивающую поиск подводных лодок и определение координат и необходимых данных для применения оружия. Для обнаружения подводных лодок предполагалось использовать 144 радиогидроакустических буя РГБ-1У и до ста взрывных источников звука, а также поисковый аэромагнитометр ╚Бор-1╩.Вооружение. В противолодочном варианте предполагалось разместить в бомбоотсеке различное вооружение общим весом до 2000 кг: 2 авиационные торпеды или 8 авиационных мин ИГМД-500 (при увеличении боевой нагрузки до 4000 кг) или 16 авиационных бомб ПЛАБ-250. Для обороны на маршруте патрулирования предусматривался оборонительный комплекс, обеспечивающий постановку активных и пассивных помех.


ЛТХ:
Модификация ВВА-14
Размах крыла, м 28.50
Длина, м 25.97
Высота, м 6.79
Площадь крыла, м2 217.72
Масса, кг
пустого самолета 35356
максимальная взлетная 52000
топлива 14000
Тип двигателя
маршевые 2 ДТРД Д-30М
подъемные 12 ДТРД РД36-35ПР
Тяга, кгс
маршевые 2 х 6800
подъемные 12 х 4400
Максимальная скорость, км/ч 760
Крейсерская скорость, км/ч 640
Скорость барражирования, км/ч 360
Практическая дальность, км 2450
Продолжительность патрулирования, ч 2.25
Практический потолок, м 10000
Экипаж, чел 3
Вооружение: боевая нагрузка — 2000 кг (максимально — 4000 кг),
2 авиационные торпеды или 8 авиационных мин ИГМД-500 (при увеличении боевой нагрузки до 4000 кг) или 16 авиационных бомб ПЛАБ-250.

Скажем немного о конструкции поплавков и системах их уборки и выпуска.

Поплавки ПВПУ имели длину 14 м, диаметр 2,5 м. Объем каждого составлял по 50 м. Они были спроектированы Долгопрудненским конструкторским бюро агрегатов (ДКБА) и изготовлены Ярославскими шинниками.

Система уборки-выпуска ПВПУ оказалась весьма непростой в доводке и наладке испытаний, поскольку этот механогидропневмоэлектрический комплекс вобрал в себя различные уникальные специализированные устройства, натурная лабораторная отработка которых в большинстве своем оказалась по срокам, а то и по технике неосуществленной (собственно поплавки, системы их привода и управления).

Для отработки ПВПУ необходимо было подавать при выпуске (наполнении) большое количество активного воздуха от имитатора компрессоров маршевых двигателей. Из положения вышли, спроектировав и изготовив фильтровальную станцию, очищавшую воздух высокого давления, подаваемый от заводской пневмосети. Выпуск поплавков осуществлялся двенадцатью управляемыми пневматическими кольцевыми эжекторами — по одному на каждый отсек поплавка.

Процесс начинался открытием замков гидроцилиндров уборки, которые при выпуске играли роль де-мпферов, обеспечивая тросами, охватывающими поплавки, сопротивление оболочки. Излишек воздуха для поддержания постоянного максимального избыточного давления в поплавках через редукционные клапаны выбрасывался в атмосферу. При режиме работы «выпуск — уборка ПВПУ» избыточное давление обеспечивалось в пределах 0,15…0,25 МПа, или (0,015…0,025) атм.

После полного формообразования по сигналу выпущенного положения управляемый эжектор переключался на режим подачи активного воздуха без смешивания его с атмосферным — режим «дожим». По достижении давления (1,5…2,5) МПа (или 0,15…0,25 атм), эжектор автоматически закрывался по сигналу избыточного давления «0,2 кгс/см » и периодически включался на «дожим» при снижении давления в поплавке вследствие охлаждения воздуха или из-за негерметичности. Максимальное избыточное давление ограничивалось переключением редукционного клапана на давление 3,5 + 0,5 МПа (0,35 + 0,05 атм).

Подача воздуха на «дожим» при выпуске осуществлялась от компрессора маршевых двигателей, а на стоянке и при вертикальном полете — от пневмосистемы высокого давления или от компрессора вспомогательной энергоустановки ТА-6. В самолетном полете дополнительно подавался атмосферный воздух от специальных воздухозаборников.

Уборка ПВПУ осуществлялась достаточно мощными гидроцилиндрами, которые воздействовали через продольные штанги на тросы, охватывающие поплавки, вытесняя воздух из отсеков через упомянутые редукционные клапаны. Они переключались на режим «выпуск — уборка ПВПУ» (0выми замками, открываемыми снаружи пневмоцилиндрами.

Поплавки и комплекс систем их привода и управления были буквально напичканы изобретениями, которые, как и у всех изобретателей, давались с большим трудом и подогреваемым Р. Бартини стремлением поиска нового, но — непременно! — оптимального решения. Вот два примера.

Первый. Эксплуатационная нагрузка от механизма уборки поплавков, преодолеваемая мощными гидроцилиндрами, составляла 14 тонн и была пружинная, не зависевшая от хода (900 мм). В убранном положении поршень фиксировался цанговым замком цилиндра, который при выпуске поплавков должен был открываться первым. Каждый понимает: если толкать дверь, нагружая замок, открыть его гораздо труднее, чем если перекосы и пружинение двери устранить рукой, а затем открывать свободный замок.
Так вот, предположение о возможности заклинивания цанговых замков, нагруженных большим усилием при их открытии, в лаборатории «блестяще» подтвердилось после трех открытий замка под нагрузкой. Что делать? Тогда обиходное решение с дверным замком было перенесено на систему ПВПУ: перед открытием замка вначале подавали давление на уборку поплавков, разгружали замок, открывали его снаружи, после чего снимали сигнал уборки, и освобожденный поршень свободно шел на выпуск.

Второй пример. Эжекторная подача воздуха в отсеки поплавков при выпуске обеспечивала его уменьшенную температуру. Однако при заполнении до давления максимальной работоемкости 0,2 атм («дожиме») в отсеки поплавков через специальный канал эжектора подавался горячий воздух от компрессоров ТРД и возникала вероятность ускоренного старения и растрескивания эластичной оболочки поплавков в зоне установки эжекторов.

Для предотвращения этой опасности конец канала выпуска горячего воздуха был снабжен специальным рассекателем, в конструкции которого, как в миниатюре, решались задачи, известные из области воздухозаборников сверхзвуковых самолетов, — каналы предусматривали борьбу со скачками уплотнения, подсос холодного воздуха и т. п.

Роберт Бартини — учитель Королева , ну а так же мы рассматривали уже

Недавно заместитель министра обороны Юрий Борисов сообщил, что для российских авианосцев может быть создан самолет нового типа: укороченного взлета и посадки или полноценного вертикального взлета. С одной стороны, изобретать ничего особенно не надо: соответствующая машина — Як-141 — была создана еще в последние годы СССР и неплохо себя зарекомендовала. Но насколько сейчас нужен такой самолет российскому флоту?

Самолет Як-141. Фото: WikiMedia Commons

Самолет, который способен взлетать и садиться без разбега, издавна был мечтой авиаторов: для него не требуются длинные взлетно-посадочные полосы, а вполне достаточно небольшой площадки, как для вертолета. Особенно это важно для военной авиации, ведь аэродромы в боевой обстановке часто разрушаются вражескими атаками. Для морской авиации иметь длинные ВПП тем более проблематично, так как их размер лимитируется длиной корабельной палубы.

Между тем перевооружение Российских вооруженных сил предусматривает и строительство новых авианесущих крейсеров. В связи с чем военные и задумались: не оснастить ли такие корабли и самолетами вертикального взлета и посадки?

Стоит заметить, что изобретать велосипед российской оборонке не придется: у нее еще с советских времен накоплен колоссальный опыт в данном направлении. Достаточно сказать, что знаменитому пассажирскому самолету Ан-28 для взлета было достаточно всего 40 метров полосы!

Боевые машины с вертикальным взлетом на вооружении ВВС Советского Союза тоже были, например, штурмовик Як-38; правда, в условиях тропических морей во время дальних походов советских кораблей его двигатели начинали барахлить. Однако более современная разработка КБ Яковлева — самолет Як-141, интенсивные испытания которого начались в конце 80-х годов, поставил целых 12 мировых рекордов для машин своего класса! Увы, этот уникальный самолет не пережил распад СССР, и программа была аккуратно свернута. Впрочем, неполностью: в середине 90-х в рамках заключенного контракта американская компания Lockheed успешно применила разработки "яковлевцев" при создании истребителя-бомбардировщика пятого поколения F-35, среди многих особенностей которого (вроде технологии невидимости для локаторов), была и возможность вертикального взлета.

Но чужая технология без ее авторов не принесла американцам успеха, сравнимого с Як-141: хваленый суперистребитель в рамках устроенного в самих же США испытания проиграл учебный бой почти что допотопному (родом из 70-х годов XX века) F-16. Правда, минимум один "рекорд" новый "Фантом" все же поставил: по дороговизне программы своей разработки, уже превысившей полтора триллиона долларов. Так что даже президент Трамп, известный своим уважительным отношением к перевооружению армии, задумался о том, стоит ли овчинка выделки. А правительства ФРГ и Франции благоразумно предпочли не закупать заокеанскую дорогостоящую игрушку, обойдясь собственными надежными и проверенными машинами четвертого поколения пусть и без возможности вертикального взлета. Думается, в первую очередь потому, что последняя функция в большинстве случаев не так уж критически важна.

Аэродромы противник может разбомбить? Так еще советский комдив Покрышкин во время боев в Германии использовал для своей авиадивизии в качестве взлетной полосы добротный немецкий автобан. К тому же, современная техника позволяет положить (а тем более отремонтировать) такие дороги за считанные часы.

Палуба авианосца слишком коротка? Но ведь эти корабли вошли в широкое применение еще перед Второй мировой войной, когда никаких самолетов вертикального взлета и в помине не было. Для взлета и посадки обычных истребителей и бомбардировщиков применялись другие хитрости.

Сейчас вертикальные машины составляют довольно незначительную долю от существующего самолетного парка авианесущих крейсеров. В том числе и у американцев, где недостатка в "вертикалках" вроде бы нет. А все потому, что недостатки (и весьма значительные) есть у самих "чудо-машин".

Главный из них: необходимость значительно снижать взлетный вес для того, чтобы самолет мог вертикально оторваться от палубы. В связи с чем, например, у единственной по-настоящему массово применявшейся модели — британского истребителя Sea Harrier, радиус полета составлял жалкие 135 километров. Впрочем, его скорость, лишь слегка превосходящая скорость звука, тоже не впечатляла.

И исторический Як-141, и суперсовременный F-35 могут развить максимальную скорость чуть меньше двух тысяч километров в час, в то время как обычный палубный истребитель российского ВМФ Су-33 — 2300 километров. К тому же, радиус действия последнего превосходит в разы аналогичные показатели у своих коллег-"вертикальщиков".

Наконец, самолет вертикального взлета и посадки намного труднее пилотировать как раз из-за смены режимов полета. Достаточно сказать, что один из двух опытных образцов Як-141 разбился во время испытаний именно по этой причине при том, что за его штурвалом находился опытнейший летчик-испытатель, а не рядовой пилот.

Неопределенность в словах замминистра обороны "мы обсуждаем создание самолета с укороченным взлетом и посадкой, возможно, вертикального взлета и посадки" вполне объяснима. С одной стороны, возрождение уникальных наработок яковлевского КБ не составит особой проблемы, за исключением, конечно, необходимой для этого суммы. Понятно ведь, что дополнительные миллиарды долларов для российского военного бюджета выделить будет затруднительно. Но главное, будут ли стоить потенциальные выгоды затраченных усилий? Об этом еще предстоит подумать компетентным структурам.

Dornier Do.31, который разрабатывался в 1960-е годы в ФРГ инженерами компании Dornier, является по-настоящему уникальным летательным аппаратом. Это единственный в мире транспортный самолет вертикального взлета и посадки. Он разрабатывался по заказу военного ведомства ФРГ в качестве тактического реактивного транспортного самолета. Проект, к сожалению, так и не пошел дальше стадии экспериментального самолета, всего было произведено три прототипа Dornier Do.31. Один из построенных прототипов сегодня является важным экспонатом авиационного музея в Мюнхене.

В 1960 году немецкая компания «Дорнье» в условиях строгой секретности по заказу министерства обороны ФРГ приступила к проектированию нового тактического военно-транспортного самолета вертикального взлета и посадки. Самолет должен был получить обозначение Do.31, его особенностью была комбинированная силовая установка из подъемно-маршевых и подъемных двигателей.

Проектированием нового самолета занимались не только инженеры компании «Дорнье», но и представители других немецких авиационных фирм: «Везер», «Фокке-Вульф» и «Гамбургер Флюгцойгбау», которые в 1963 году были объединены в единую авиационную компанию, получившую обозначение WFV. При этом сам проект военно-транспортного самолета Do.31 был частью программы ФРГ по созданию вертикально взлетающих транспортных самолетов. В этой программе были учтены и переработаны тактико-технические требования NATO к военно-транспортному СВВП.

В 1963 году при поддержке министерств обороны ФРГ и Великобритании было подписано соглашение сроком на два года об участии в проекте британской компании «Хоукер Сиддли», которая имела большой опыт по проектированию самолета вертикального взлета и посадки «Харриер». Примечательно, что после окончания срока действия договора он не был продлен, поэтому в 1965 году компания «Хоукер Сиддли» вернулась к разработке собственных проектов. В то же время немцы пытались привлечь к работе над проектом и производством самолета Do.31 компании из США. В этой области немцы добились определенных успехов, им удалось подписать договор о совместных исследованиях с агентством NASA.

Для того чтобы определиться с оптимальной схемой разрабатываемого транспортника, компанией «Дорнье» было осуществлено сравнение вертикально взлетающих летательных аппаратов трех типов: вертолета, самолета с поворотными винтами и самолета с подъемно-маршевыми ТРДД. В качестве исходного задания конструкторы использовали следующие параметры: перевозка на расстояние до 500 км трех тонн груза и последующее возвращение на базу . Проведенные исследования продемонстрировали, что вертикально взлетающий тактический военно-транспортный самолет, оснащенный подъемно-маршевыми ТРДД имеет ряд важных преимуществ по сравнению с двумя другими типами рассматриваемых летательных аппаратов. Поэтому в компании Dornier сосредоточились на работе над выбранным проектом и занялись расчетами, направленными на выбор оптимальной схемы размещения силовой установки.

Проектированию первого прототипа Do.31 предшествовали достаточно серьезные испытания моделей, которые велись не только в ФРГ в Геттингене и Штуттгарте, но и в США, где ими занимались специалисты NASA. Первые модели военно-транспортного самолета не имели гондол с подъемными ТРД, так как планировалось, что силовая установка самолета будет состоять лишь из двух подъемно-маршевых ТРДД компании Bristol с тягой по 16 000 кгс на форсаже. В 1963 году в США в научно-исследовательском центре NASA в Лэнгли состоялись испытания моделей самолета и отдельных элементов его конструкции в аэродинамических трубах. Позднее состоялись испытания летающей модели в свободном полете.

В результате проведенных в двух странах исследований был сформирован окончательный вариант будущего самолета Do.31, он должен был получить комбинированную силовую установку из подъемно-маршевых и подъемных двигателей. Для исследования управляемости и устойчивости самолета с комбинированной силовой установкой в режиме висения компанией «Дорнье» был построен экспериментальный летающий стенд, обладавший ферменной конструкцией крестообразной формы. Габаритные размеры стенда повторяли габариты будущего Do.31, а вот общая масса была существенно меньше – всего 2800 кг. К концу 1965 года данный стенд прошел большой испытательный путь, всего он выполнил 247 полетов. Данные полеты сделали возможным строительство полноценного военно-транспортного самолета вертикального взлета и посадки.

На следующем этапе специально для испытаний конструкции, отработки техники пилотирования и проверки надежности систем нового аппарата был создан экспериментальный самолет, получивший обозначение Do.31E. Минобороны ФРГ заказало к постройке три подобных машины, при этом два экспериментальных самолета предназначались для проведения летных испытаний, а третий – для проведения статических испытаний.

Тактический военно-транспортный самолет Dornier Do 31 был выполнен по нормальной аэродинамической схеме. Это был высокоплан, оснащенный маршевыми и подъемными двигателями. Первоначальная концепция предполагала установку двух турбовентиляторных двигателей Bristol Pegasus в каждой из двух внутренних мотогондол и четырех подъемных двигателей Rolls-Royce RB162, которые располагались в двух внешних мотогондолах на концах крыла. Впоследствии планировалось установить на самолет более мощные и совершенные двигатели RB153.

Фюзеляж самолета типа полумонокок был цельнометаллическим и имел круглое поперечное сечение диаметром 3,2 метра. В носовой части фюзеляжа находилась кабина экипажа, рассчитанная на двух пилотов. За ней располагалась грузовая кабина, которая имела объем 50 м 3 и габаритные размеры 9,2×2,75×2,2 метра. В грузовой кабине можно было свободно разместить 36 десантников со снаряжением на откидывающихся сиденьях или 24 раненных на носилках . В хвостовой части самолета находился грузовой люк, здесь имелась погрузочная рампа.

Шасси самолета было убирающимся трехопорным, на каждой стойке имелись сдвоенные колеса. Главные опоры убирались назад в гондолы подъемно-маршевых двигателей. Носовая опора стойки шасси была выполнена управляемой и самоориентирующейся, она также убиралась назад.

Постройка первого экспериментального самолета была закончена в ноябре 1965 года, он получил обозначение Do.31E1. Впервые самолет поднялся в воздух 10 февраля 1967 года, выполнив обычные взлет и посадку, так как на тот момент подъемные ТРД на самолет установлены не были. Вторая экспериментальная машина Do.31E2 применялась для проведения различных наземных испытаний, а третий экспериментальный транспортный самолет Do.31E3 получил полный комплект двигателей. Третий самолет совершил первый полет с вертикальным взлетом, это произошло 14 июля 1967 года . Этот же самолет выполнил полный переход от вертикального взлета к горизонтальному полету с последующей вертикальной посадкой, это произошло 16 и 21 декабря 1967 года.

Именно третий экземпляр экспериментального самолета Dornier Do 31 в настоящее время находится в Мюнхенском музее авиации. В 1968 году данный самолет был впервые представлен широкой публике, это произошла в рамках международной авиационной выставки, которая проходила в Ганновере. На выставке новый транспортник привлек к себе внимание представителей британских и американских фирм, которые были заинтересованы в возможностях не только военного, но и его гражданского применения. Интерес к самолету проявляли и в американском космическом агентстве, NASA оказала финансовую помощь для проведения летных испытаний и исследования оптимальных траекторий захода на посадку самолетов с вертикальным взлетом и посадкой.

В следующем году экспериментальный самолет Do.31E3 показывали на авиакосмическом салоне в Париже, здесь самолет также пользовался успехом, привлекая к себе внимание зрителей и специалистов. 27 мая 1969 года самолет выполнил перелет из Мюнхена в Париж. В рамках данного перелета было установлено три мировых рекорда для самолетов с вертикальным взлетом и посадкой: скорости полета – 512,962 км/ч, высоты – 9100 метров и дальности – 681 км . К середине того же года на СВВП Do.31E было выполнено уже 200 полетов. Во время данных полетов летчиками-испытателями было осуществлено 110 вертикальных взлетов с последующим переходом к горизонтальному полету.

В апреле 1970 года экспериментальный самолет Do.31E3 совершил свой последний полет, финансирование данной программы было прекращено, а сама она свернута . Это произошло несмотря на успешный, а главное безаварийный ход летных испытаний нового летательного аппарата. На тот момент общая стоимость затрат ФРГ на программу по созданию нового военно-транспортного самолета превысила 200 миллионов марок (начиная с 1962 года).

Одними из технических причин свертывания перспективной программы можно было назвать сравнительно невысокую максимальную скорость самолета, его грузоподъемность и дальность полета особенно в сравнении с традиционными самолетами транспортной авиации. У Do.31 скорость полета снижалась, в том числе, и из-за высокого аэродинамического сопротивления мотогондол его подъемных двигателей. Еще одной причиной свертывания работ было назревшее на тот момент разочарование в военных, политических и конструкторских кругах самой концепцией самолетов с вертикальным взлетом и посадкой.

Несмотря на это, компанией Dornier на базе экспериментального самолета Do.31Е были разработаны проекты усовершенствованных военно-транспортных СВВП, обладавших большей грузоподъемностью – Do.31-25. У них число подъемных двигателей в гондолах планировалось увеличить сначала до 10, а затем и до 12 штук. Помимо этого инженерами «Дорнье» был спроектирован самолет вертикального взлета и посадки Do.131В, который обладал сразу 14 подъемными ТРД.

Также был разработан отдельный проект гражданского самолета Do.231, который должен был получить два подъемно-маршевых ТРДД компании Rolls Royce тягой 10 850 кгс каждый и еще 12 подъемных ТРДД той же компании с тягой по 5935 кгс, из которых восемь двигателей располагались по четыре в гондолах и четыре по два в носовой и хвостовой частях фюзеляжа самолета. Расчетная масса данной модели летательного аппарата с вертикальным взлетом и посадкой достигала 59 тонн при полезной нагрузке до 10 тонн. Планировалось, что Do.231 сможете перевозить до 100 пассажиров с максимальной скоростью 900 км/ч на расстояние в 1000 километров.

Однако данные проекты так и не были реализованы. При этом экспериментальный Dornier Do 31 был (и остается в настоящее время) единственным в мире построенным реактивным военно-транспортным самолетом вертикального взлета и посадки.

Летно-технические характеристики Dornier Do.31:
Габаритные размеры:
— длина – 20,88 м,
— высота – 8,53 м,
— размах крыла – 18,06 м,
— площадь крыла – 57 м 2 .
Масса пустого – 22 453 кг.
Нормальная взлетная масса – 27 442 кг.
Силовая установка: 8 подъемных турбореактивных двигателей Rolls Royce RB162-4D, тяга взлетная – 8х1996 кгс; 2 подъемно-маршевых турбовентиляторных двигателя Rolls Royce Pegasus BE.53/2, тяга 2х7031 кгс.
Максимальная скорость – 730 км/ч.
Крейсерская скорость – 650 км/ч.
Практическая дальность – 1800 км.
Практический потолок – 10 515 м.
Вместимость – до 36 солдат со снаряжением или 24 раненых на носилках.
Экипаж – 2 человека.

Источники информации:
— www.airwar.ru/enc/xplane/do31.html
— igor113.livejournal.com/134992.html
— www.arms-expo.ru/articles/129/67970

В современном мире появляется все больше самолетов с любыми характеристиками и мощностью. Инженеры повсеместно пытаются решить главные проблемы, связанные с этим видом транспорта: уменьшить расход топлива, увеличить дальность, упростить взлет и посадку, но при этом не жертвовать пространством и площадью салона.

Пожалуй, все привыкли видеть разгон самолета по взлетной полосе – это сложная задача, и сами пилоты говорят, что именно от взлета и посадки во многом зависит удачность полета в целом. Но не логичнее ли представить, как упростится эта процедура, если самолет будет просто подниматься вверх, вертикально? Однако в широком обсуждении нигде особо таких вариантов не видно. Самолет с вертикальным взлетом – это миф, реальность или, может быть, далеко идущие планы, за которыми стоит будущее авиации? Стоит разобраться подробнее.

Истребитель короткого взлета и вертикальной посадки STOVL F-35B

В первую очередь нужно знать, что самолет вертикального взлета и посадки действительно существует. Первые модели начали появляться одновременно с развитием реактивной авиации, и с тех пор до сих пор не дают покоя инженерам во всем мире. По времени это совпадает со второй половиной прошлого столетия. Название они носили весьма говорящее – «турболеты ». Поскольку тогда происходил бум военных разработок техники, к инженерам выдвигалось требование разработать такой аппарат, который поднимался бы воздух с минимальными усилиями или вообще из вертикального положения. Такие самолеты не требуют взлетной полосы, а значит, стартовать им можно откуда угодно и в любых условиях, даже с мачты корабля.

Все эти проекты совпали с другими, не менее важными, связанными с освоением космического пространства. Общий симбиоз позволил удвоить силы, черпать идеи из космического проектирования. Как итог, первый вертикальный аппарат увидел свет в 1955 году. Можно сказать, что это было одно из самых странных строений в истории техники. У самолета не было крыльев, хвоста – только двигатель (турбореактивный), колбообразная кабина, топливные бани. Двигатель был сделан внизу. Можно выделить такие особенности первого турболета:

  1. Подъем за счет реактивной струи из двигателя.
  2. Управление посредством газовых рулей.
  3. Вес первого аппарата – немногим больше 2000 килограмм.
  4. Тяга – 2800 килограмм.

Поскольку такой самолет нельзя было назвать ни устойчивым, ни управляемым, первые испытания были сопряжены с большим риском для жизни. Несмотря на это, в Тушино прошла демонстрация аппарата, причем успешно. Это все дало базу для дальнейших исследований в этой области, хоть сам самолет был далек от идеала. Но информация послужила для создания нового проекта. Это был первый российский самолет с вертикальным взлетом под названием ЯК-38.

История создания вертикальных самолетов в России и других странах

Многие инженеры и проектировщики до сих пор утверждают, что турбореактивные двигатели, которые начали активно использовать и совершенствовать в 50-х годах, позволили сделать множество открытий, используемые и в настоящее время. Одно из них – активные испытания вертикальных аппаратов. Особый вклад принесло развитие этой области, а точнее, реактивных устройств, в странах, которые в то время считались передовыми. Поскольку реактивные самолеты имели огромные показатели скорости при посадке и взлете, для них, соответственно, использовались очень длинные, масштабные и качественные взлетные полосы. А это – дополнительные траты, оборудование новых аэродромов, неудобства в военное время. Вертикальный самолет может решить все эти проблемы.

Именно в 50-е годы были созданы различные образцы. Но их проектировали в одном или двух вариантах, не больше, ведь все равно не получалось создать полностью подходящие варианты. Ведь поднимаясь в воздух, они терпели крушения. Несмотря на неудачи, комиссия НАТО в 60-х годах дала этому направлению приоритет, как крайне перспективному. Были попытки создать и конкурсы, но каждая страна сфокусировалась на своих разработках. Так, свет увидели такие аппараты со всего мира:

  • «Мираж» III V;
  • ФРГ VJ-101C;
  • XFV-12A.

В СССР таким турболетом стал ЯК-36, а после и 38. Его разработки начались в тех же годах, а для испытаний создали специальный павильон. Уже через 6 лет прошел первый полет. То есть, самолет вертикально взлетел, принял горизонтальное положение, а после вертикально приземлился. Поскольку испытания были успешными, создали 38-ю модель, а после Россия представила самолет с вертикальным взлетом ЯК-141 и 201 в девяностых.

«Мираж» III V

Самолет ФРГ VJ-101C

Самолет XFV-12A

Особенности конструкции

Фюзеляж в таких аппаратах может быть расположен вертикально или горизонтально. Но в обоих случаях бывают модели реактивные и с винтами. Довольно мощные самолеты с вертикальным фюзеляжем, которые используют тягу от маршевого двигателя. Еще один вариант – кольцевые крылья, которые также дает неплохие результаты во время подъема и полета.

Если говорить подробнее о горизонтально фюзеляже, то тут часто делают поворотные крылья. Другая разновидность, когда винты располагают на конце крыльев. Здесь может быть и двигатель поворотного типа. В Англии также вели активную работу над подобными аппаратами. Там активно разрабатывали проект, который назывался инновационный, реализованный с помощью двух двигателей с тягой в 1800 килограмм. В итоге даже это не спасло самолет от аварии.

Сейчас во всем мире ведутся работы по разработке уже не военного, а гражданского вертикального самолета. В теории, это прекрасные перспективы, ведь тогда самолеты смогут без труда летать даже в небольшие города, где нет масштабным и дорогостоящих самолетов, а взлет и посадка облегчаются в разы. Но на деле, есть множество минусов у такой технологии и задумки.

Почему вертикальные самолеты до сих пор не нашли широкого применения?

К сожалению, все разработки, даже если отличались неплохими результатами, не могут похвастаться надежностью. Лопасти винтов, которые и помогают делать вертикальный взлет, поражают своими размерами. Они вместе с мощными двигателями создают невообразимый шум. Также с точки зрения конструкции нужно избежать любых возможных препятствий на их пути, исключить попадание различных предметов.

Как ни крути, невозможно отменить ограничение по скорости. Просто по законам физики такой самолет не сможет двигаться также быстро, как современные. И если военные аппараты могут развить фантастическую в их случае скорость в 1000 километров в час, то с увеличением массы и размеров для гражданской авиации показатель падает до 700 и ниже километров в час.

Вконтакте

Самолеты вертикального взлета и посадки привлекательны нетребовательностью к системе базирования, что делает их оружием гарантированного ответа и высокой гибкости применения.

Конец 60-х годов был важным периодом в развитии мировой авиации. Тогда создавались и принимались на вооружение качественно новые типы летательных аппаратов, большинство из которых концептуально определяют авиацию до сих пор. Одним из таких прорывных направлений был самолет вертикального (короткого) взлета и посадки (СВКВП). К началу 70-х определились мировые лидеры в новой сфере – Великобритания и СССР, сумевшие наладить серийное производство. В Советском Союзе головным конструкторским бюро по развитию этого класса стало ОКБ имени А.С.Яковлева.

Отечественный первенец, самолёт Як-38, был несовершенен и рассматривался как переходная модель. Его сменил качественно новый Як-41 , первый в мире сверхзвуковой СВКВП. По тактико-техническим данным он значительно превзошел британского конкурента «Харриер» самых последних модификаций и мог практически на равных бороться с новейшим на тот момент американским палубным истребителем-бомбардировщиком F/A-18А. При максимальной скорости1800 км/ч боевой радиус Як-41 при вертикальном взлете и полете к цели на дозвуковой скорости мог достигать400 км, а при взлете с коротким разбегом – до700 км.

Самолет Як-41 был оснащен многорежимной РЛС, по характеристикам близкой к РЛС «Жук» на . Имел встроенную 30-мм пушку, на подвеске нес корректируемые авиабомбы и ракеты, в том числе воздушного боя средней дальности Р-27 различных модификаций и малой дальности Р-73, «воздух-земля» Х-29 и Х-25, противокорабельные Х-35 и противорадиолокационные Х-31. Распад Советского Союза и последующие экономические неурядицы пресекли развитие отечественных СВКВП, с 1992 года финансирование этого направления в ОКБ имени Яковлева прекратилось.

Великобритания же начала поэтапную модернизацию своего СВКВП «Харриер». Первоначальный его вариант был почти равноценен Як-38, не имел бортовой РЛС, имел только неуправляемое оружие и сопоставимый с советским аналогом радиус боевого применения. В дальнейшем самолет подвергся глубокой модернизации.

К началу войны за Фолклендские (Мальвинские) острова в 1982 году принятый на вооружение флота «Си Харриер» FRS.1 уже был полноценной боевой машиной, мог использоваться как истребитель и штурмовик. 28 самолетов этого типа, действуя с авианосцев «Инвинсибл», «Гермес» и наскоро оборудованных площадок на берегу, в боях с аргентинскими ВВС сбили 22 машины, оказывали эффективную поддержку морским десантам в глубине обороны противника. Действия британской авианосной авиации продемонстрировали исключительное значение СВКВП при проведении морских операций.

«Харриер» различных модификаций до сих пор остается единственным серийным самолетом этого класса, он стоит на вооружении многих стран, в том числе США, Великобритании, Индии, Италии и Испании. За исключением Америки «Харриер» везде числится палубным самолетом. То есть в странах, не имеющих полноценных авианосцев, «Харриер» заменяет машины с обычным взлетом и посадкой.

Основные достоинства этого класса, прежде всего, заключаются в качественно более широких возможностях наземного базирования, которые позволяют значительно повысить боевую устойчивость группировки ВВС под ударами противника. Но пока эти преимущества нигде не использованы.

Всем рассредоточиться!

Опыт войн последних десятилетий показывает, что боевые действия начинаются с масштабного воздушного наступления. Первая подобная операция направлена главным образом на завоевание превосходства в воздухе. Важнейшей составной частью этого остается разгром авиации противника на аэродромах.

Ударами по базам достигается тройная цель: уничтожаются самолеты, разрушается аэродромная сеть, прежде всего взлетно-посадочные полосы (ВПП), и нарушается система тылового обеспечения ВВС, в частности ущерб наносится запасам топлива и боеприпасов, силам и средствам их подачи к самолетам. В результате если и удается сохранить часть авиации, она лишена боеспособности.

Самолеты вертикального взлета и посадки Як-41

Для стран, которые не предполагают первыми начинать военные действия, вопрос обеспечения боевой устойчивости авиации в районах базирования под массированными воздушными ударами является критически важным. Обеспечить эту устойчивость только за счет надежной системы ПВО весьма проблематично. Количество аэродромов ограничено, их местоположение и характеристики хорошо известны, поэтому агрессор может создать такую группировку ударных сил и средств, выбрать такой способ действий, которые позволят ему гарантированно преодолеть ПВО.

Ключевым условием обеспечения устойчивости ВВС является рассредоточение на запасные аэродромы . Однако у современных боевых самолетов с нормальным взлетом высокие требования по длине и качеству (например, прочности покрытия) ВПП. Такая полоса – это капитальное сооружение, которое долго строить и легко выявить современными средствами разведки. Если использовать в качестве аэродромов рассредоточения гражданские аэропорты и участки шоссе, проблему радикально не решить, так как их немного, особенно в районах со слабо развитой дорожной сетью.

Отсюда вытекает важнейший вывод: обеспечить боевую устойчивость группировок современной боевой авиации от упреждающих ударов противника возможно главным образом за счет радикального повышения возможностей ее рассредоточения.

Одним из весьма перспективных выходов из положения может стать принятие на вооружение СВКВП. При коротком взлете им достаточно полосы около 150 метров, при вертикальном – ровной площадки в несколько десятков метров. Лесная поляна или участок шоссе могут стать настоящим аэродромом. Требования к качеству покрытия также существенно ниже, поскольку динамические нагрузки при посадке и взлете СВКВП на поверхность значительно меньше, чем при обычном взлете. Принятие на вооружение самолетов вертикального и короткого взлета и посадки позволит значительно расширить систему базирования, повысить боевую устойчивость в целом .

Нельзя сбрасывать со счетов и существенные возможности СВКВП на море. В случае необходимости с их помощью можно увеличить количество авианесущих кораблей в составе любого флота. Впервые это продемонстрировала Великобритания в ходе конфликта на Фолклендах. В дополнение к двум имевшимся тогда авианосцам британцы в течение семи – девяти суток по американскому проекту АРАПАХО переоборудовали под носители «Харриеров» крупные контейнеровозы «Атлантик Конвейерз», «Атлантик Коузвей» и «Контендер Безант».

СВКВП обладают и рядом серьезных недостатков, не позволяющих полностью заменить самолеты с нормальным взлетом . Прежде всего, это меньшая на 15–30 % дальность полета даже при взлете с коротким разбегом. При вертикальном взлете радиус сокращается еще больше – в два-три раза и достигает всего 200–400 км. Меньше и боевая нагрузка из-за сложной и тяжелой двигательной установки. По оценке директора инженерного центра ОКБ имени А.С.Яковлева Константина Поповича, стоимость самолета с вертикальным и коротким взлетом и посадкой может быть в полтора раза больше.

Однако важно отметить, что нет причин и факторов, препятствующих созданию СВКВП, способного на равных бороться с обычными самолетами. Примером может стать разработка и принятие на вооружение американского СВКВП F-35 («Лайтнинг-2»). Машина выполнена с применением «стелс-технологий», при максимальной взлетной массе около 30 тонн имеет приличный боевой радиус около800 кми боевую нагрузку – около8000 кг. Правда, стоимость ее велика и для серийных изделий может составлять 70–100 млн. долларов.

Отмеченные достоинства и недостатки определяют нишу СВКВП в системе авиационного вооружения любого государства . В составе ВВС эти самолеты способны быть основой группировки гарантированного ответа, то есть той части авиации, которая после упреждающего массированного удара противника может принять участие в боевых действиях. Рассредоточение СВКВП малыми группами по множеству небольших, скрытых от разведки противника взлетных площадок, пусть и неважного качества, исключит поражение при первых ударах.

Во флотах, даже обладающих полноценными авианосцами, эти самолеты позволят значительно наращивать численность авианесущих кораблей, которые будут незаменимы при поддержании благоприятного оперативного режима в важных районах, защите коммуникаций, десантных соединений на переходе морем и в районе высадки, а также в интересах группировок тыла.

Так что ниша для СВКВП очевидна, никакой другой класс авиации их в этом качестве заменить не может. Этот факт все больше осознают в мире. Не случайно за «Лайтнингами-2» уже выстроилась очередь желающих стран, разместивших заказы на их закупку.

Сила – залог добрососедства

А в России, к сожалению, дела с этим классом авиации обстоят чрезвычайно плохо. В 90-е годы программа их развития была закрыта, причем некоторые технологии оказались в США и там их успешно используют. К настоящему времени научно-технологические и инженерно-конструкторские школы СВКВП уничтожены. Как с грустью говорит Константин Попович, остались единицы специалистов, участвовавших в разработке Як-41.

Имеющаяся документация и сохранившиеся специалисты еще позволяют возродить производство отечественных СВКВП . Для этого, по оценкам Поповича, потребуется до десяти лет. Необходимы значительные расходы на воссоздание всей производственной цепочки, начиная с комплектующих. А прежде всего необходимо возродить производство соответствующих двигателей, для чего принять специальную государственную программу.

В современном однополярном мире гарантией сохранения партнерских отношений с государствами на западе, особенно за океаном, востоке и юге может быть только твердое понимание всеми сторонами, что военное давление на Россию не имеет смысла, успех военной операции против нее не обеспечен. Одним из важнейших факторов, позволяющих достигнуть устойчивого положения, является способность наших ВВС в любых условиях ответить агрессору. В свою очередь достичь этого возможно за счет достаточной группировки СВКВП.

Для отражения массированных ударов с воздуха нам необходимо ввести в сражение сопоставимое с атакующими силами количество истребителей во взаимодействии с наземными средствами ПВО. Значит, ВВС нуждаются как минимум в 250–300 самолетах вертикального и короткого взлета и посадки. Имея столько машин, Россия способна поднять на перехват агрессора не менее 100–150 СВКВП, даже если основные и запасные аэродромы с обычными самолетами уже разгромлены.

ВМФ России без авианесущих кораблей неспособен обеспечить решение такой ключевой задачи, как поддержание благоприятного оперативного режима за пределами досягаемости авиации берегового базирования. Воздушная поддержка особенно актуальна для прикрытия надводных кораблей, подводных лодок от базовой патрульной авиации противника, для предотвращения прорыва небольших групп надводных кораблей и катеров в защищаемые районы.

Корабли с СВКВП могут существенно повысить эффективность отечественного флота также в дальней морской и океанской зонах. Там они способны успешно решать задачи ПВО (это продемонстрировали английские «Харриеры» в ходе англо-аргентинского конфликта) и наносить удары по отдельным корабельным группам противника.

Как показывает опыт боевого применения американских универсальных десантных кораблей (УДК) против Югославии, их авиагруппы эффективны при нанесении ударов по наземным объектам в составе массированных авиационно-ракетных ударов, а также в ходе систематических действий.

Сегодня в составе нашего флота есть только один авианосец. Поэтому весь спектр задач, которые необходимо возложить на авиацию корабельного базирования, он своей авиагруппой решить не готов. На каждом из наших флотов необходимо иметь минимум два легких авианосца, имеющих СВКВП. В этой роли можно использовать , навязанные нашему флоту. С такой авиагруппой их пребывание в составе ВМФ РФ будет серьезно обосновано.

Общие потребности ВМФ России в СВКВП составляют около 100 единиц, а с учетом ВВС нашей стране необходимо как минимум 350–400 машин . Проанализировав необходимые затраты на развитие аэродромной сети и компенсацию потерь от возможных упреждающих массированных авиационно-ракетных ударов противника, делаем вывод, что существенно дешевле обойдутся программа создания СВКВП и закупка необходимого количества таких самолетов. А эффективность обороны государства только возрастет.