Виды и типы современных тепловых электростанций (ТЭС). Обзор: мировой рынок угольной генерации

Тепловая электростанция

Теплова́я электроста́нция

(ТЭС), энергетическая установка, на которой в результате сжигания органического топлива получают тепловую энергию, преобразуемую затем в электрическую. ТЭС – основной тип электрических станций, доля вырабатываемой ими электроэнергии составляет в промышленно развитых странах 70–80 % (в России в 2000 г. – ок. 67 %). Тепловая на ТЭС используется для нагрева воды и получения пара (на паротурбинных электростанциях) или для получения горячих газов (на газотурбинных). Для получения тепла органическое сжигают в котлоагрегатах ТЭС. В качестве топлива используется уголь, природный газ, мазут, горючие . На тепловых паротурбинных электростанциях (ТПЭС) получаемый в парогенераторе (котлоагрегате) пар приводит во вращение паровую турбину , соединённую с электрическим генератором. На таких электростанциях вырабатывается почти вся электроэнергия, производимая ТЭС (99 %); их кпд приближается к 40 %, единичная установленная мощность – к 3 МВт; топливом для них служат уголь, мазут, торф, сланцы, природный газ и т. д. Электростанции с теплофикационными паровыми турбинами, на которых тепло отработанного пара утилизируется и выдаётся промышленным или коммунальным потребителям, называются теплоэлектроцентралями. На них вырабатывается примерно 33 % электроэнергии, производимой ТЭС. На электростанциях с конденсационными турбинами весь отработанный пар конденсируется и в виде пароводяной смеси возвращается в котлоагрегат для повторного использования. На таких конденсационных электростанциях (КЭС) вырабатывается ок. 67 % электроэнергии, производимой на ТЭС. Официальное название таких электростанций в России – Государственная районная электрическая станция (ГРЭС).

Паровые турбины ТЭС соединяют с электрогенераторами обычно непосредственно, без промежуточных передач, образуя турбоагрегат. Кроме того, как правило, турбоагрегат объединяют с парогенератором в единый энергоблок, из них затем компонуют мощные ТПЭС.

В камерах сгорания газотурбинных тепловых электростанций сжигают газ или жидкое топливо. Получаемые продукты сгорания поступают на газовую турбину , вращающую электрогенератор. Мощность таких электростанций, как правило, составляет несколько сотен мегаватт, кпд – 26–28 %. Газотурбинные электростанции обычно сооружают в блоке с паротурбинной электростанцией для покрытия пиков электрической нагрузки. Условно к ТЭС относят также атомные электростанции (АЭС), геотермальные электростанции и электростанции с магнитогидродинамическими генераторами . Первые ТЭС, работающие на угле, появились в 1882 г. в Нью-Йорке, в 1883 г. – в Санкт-Петербурге.

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Смотреть что такое "тепловая электростанция" в других словарях:

    Тепловая электростанция - (ТЭС) - электрическая станция (комплекс оборудования, установок, аппаратуры), вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. В настоящее время среди ТЭС… … Нефтегазовая микроэнциклопедия

    тепловая электростанция - Электростанция, преобразующая химическую энергию топлива в электрическую энергию или электрическую энергию и тепло. [ГОСТ 19431 84] EN thermal power station a power station in which electricity is generated by conversion of thermal energy Note… … Справочник технического переводчика

    тепловая электростанция - Электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива … Словарь по географии

    - (ТЭС) вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основные типы ТЭС: паротурбинные (преобладают), газотурбинные и дизельные. Иногда к ТЭС условно относят… … Большой Энциклопедический словарь

    ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ - (ТЭС) предприятие для производства электрической энергии в результате преобразования энергии, выделяющейся при сжигании органического топлива. Основные части ТЭС котельная установка, паровая турбина и электрогенератор, превращающий механическую… … Большая политехническая энциклопедия

    Тепловая электростанция - ПГУ 16. Тепловая электростанция По ГОСТ 19431 84 Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    - (ТЭС),вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. ТЭС работают на твёрдом, жидком, газообразном и смешанном топливе (угле, мазуте, природном газе, реже буром… … Географическая энциклопедия

    - (ТЭС), вырабатывает электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Основные типы ТЭС: паротурбинные (преобладают), газотурбинные и дизельные. Иногда к ТЭС условно относят… … Энциклопедический словарь

    тепловая электростанция - šiluminė elektrinė statusas T sritis automatika atitikmenys: angl. thermal power station; thermal station vok. Wärmekraftwerk, n rus. тепловая электростанция, f pranc. centrale électrothermique, f; centrale thermoélectrique, f … Automatikos terminų žodynas

    тепловая электростанция - šiluminė elektrinė statusas T sritis fizika atitikmenys: angl. heat power plant; steam power plant vok. Wärmekraftwerk, n rus. тепловая электростанция, f; теплоэлектростанция, f pranc. centrale électrothermique, f; centrale thermique, f; usine… … Fizikos terminų žodynas

    - (ТЭС) Электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в конце 19 в. (в 1882 в Нью Йорке, 1883 в Петербурге, 1884 в… … Большая советская энциклопедия

Топливо, холодная вода и воздух - вот что потребляет тепловая электростанция. Зола, горячая вода, дым и электроэнергия - то, что она производит.

Тепловые электростанции работают на различных видах топлива.

В средней полосе Советского Союза многие электростанции работают на местном топливе - торфе. Его сжигают в топках паровых котлов в кусковом виде на движущихся решетках или в виде торфяной крошки - фрезерного торфа - в шахтно-мельничных топках или топках системы инж. Шершнева.

Фрезерный торф получается путем снятия мелкой стружки, крошки с торфяного массива зубчатыми барабанами - фрезами. Затем эту крошку сушат.

Сжигание фрезерного торфа в чистом виде долгое время оставалось неразрешенной проблемой, пока у нас в СССР инженер Шершнев не сконструировал топку, в которой фрезерный торф сжигается во взвешенном состоянии. Фрезерный торф вдувается воздухом в топку. Несгоревшие крупные частицы падают, но опять подхватываются сильной струей воздуха и, таким образом, остаются в топочном пространстве во взвешенном состоянии до полного сгорания.

В 1931 г. в СССР пущена первая в мире электростанция, сжигающая фрезерный торф в подобных топках. Это Брянская районная электростанция.

Позднее для сжигания фрезерного торфа были сконструированы шахтно-мельничные топки. В шахтных мельницах фрезерный торф подсушивается, дробится, перемешивается с воздухом и уже в виде очень мелких подсушенных частиц попадает в топку, где сгорает.

В нефтяных районах СССР есть еще электростанции, работающие па жидком топливе - мазуте (отходы перегонки нефти). Электростанции, находящиеся вблизи металлургических заводов, потребляют в качестве топлива доменный газ и газ коксовых печей. С открытием месторождений природного· газа часть электростанций стала применять и этот газ в топках своих котлов.

Но ни один из этих видов топлива не является таким распространенным, как уголь. Большинство тепловых электростанций СССР потребляет в качестве топлива различные со-рта углей.

Современные электростанции очень неприхотливы к качеству угля. Они могут использовать многозольные и Блажные угли, которые непригодны к сжиганию в топках пароходов и паровозов, в доменных и мартеновских печах.

Раньше на электростанциях уголь сжигался в топках паровых котлов на решетках - таких же, как в печах для кускового торфа и для дров. Практика показала, что значительно выгоднее сжигать уголь в виде мелкого порошка - угольной пыли. Для ее получения уголь размалывается в мельницах. В этих же мельницах он и подсушивается. Большинство современных тепло-вых электростанций работает на угольной пыли.

Для тепловой электростанции требуется очень большое количество воды. Надо питать паровые котлы. Но больше всего воды идет для охлаждения отработанного пара, для конденсирования его.

Современные крупные тепловые электростанции строятся большей частью на берегу реки, озера или специально созданного пруда. Но не всегда в том месте, где строится электростанция, есть достаточное количество воды. В этом случае довольствуются маленьким водохранилищем, где воду искусственно «охлаждают при помощи брызгальных бассейнов или градирен.

Фиг. 4-4. Распределение потерь и полезной энергии на паротурбинной электростанции.

Цифрами от 7 до 6 показаны потери: 1 - потери в котле (ушло в окружающий воздух и на нагревание котельной); 2-потери с уходящими газами;^- потери в паропроводах; 4 - потери в турбине и на нагревание машинного зала; 5 -потери в генераторе; 6 - потери с охлаждающей водой.

На конденсационной электростанции внутренние потери и потери с охлаждающей водой составляют 77%. На теплоэлектроцентрали часть тепла, содержащегося в отборном и отработанном паре турбин, используется в промышленных предприятиях 7 и для бытовых нужд 8. Суммарные потери составляют 65%.

К брызгальным бассейнам теплая вода подходит под напором. Система труб распределяет эту воду между множеством сопел. Вода выходит из них небольшими фонтанами, распыляется на мелкие брызги, охлаждается окружающим воздухом, и, уже охлажденная, падает в бассейн.

Градирни представляют собой высокие, полые внутри башни. В нижней их части по окружности расположены решетки. Теплая вода льется на решетки мелким дождем. Воздух проходит сквозь этот искусственный дождь, нагревается за счет тепла воды и вместе с парами воды попадает в центральную часть градирни. Эта гигантская труба создает тягу. Теплый воздух поднимается вверх и выбрасывается наружу. Над градирнями всегда стоят огромные облака пара.

Теплоэлектроцентралями - сокращенно ТЭЦ - называются электростанции, которые кроме электроэнергии отдают потребителям еще и тепло в виде пара для технологических нужд фабрик и заводов и в виде горячей воды, идущей на отопление жилищ и бытовые нужды населения.

Теплоэлектроцентрали значительно экономичнее простых или, как их называют, конденсационных электростанций. На последних больше половины тепла, получившегося при сжигании топлива, уносится с охлаждающей водой. На теплоэлектроцентралях эти потери значительно меньше, так как часть отработанного в турбинах пара идет непосредственно к потребителям и на подогрев воды для отопления и горячего водоснабжения окружающего района.

Итак, наиболее распространенной у нас в СССР является тепловая электростанция, работающая на угле, сжигаемом в топках паровых котлов в пылевидном состоянии. Такую именно электростанцию и посетим.

Топлавоподана

Для того, чтобы выработать 1 квтч электроэнергии на современной электростанции, затрачивается всего несколько сот граммов угля, но даже «средняя» электростанция в сутки потребляет несколько тысяч тонн угля.

Вот распахнулись ворота электростанции и, лязгая буферами, медленно входит очередной состав тяжелыхФиг. 4-5. технологического процесса тепловой электростанции (топливоподача и котельная). Поданный в саморазгружающихся вагонах в бункеры разгрузочного сарая 1 кусковой уголь по системе транспортеров 2 попадает в бункеры 3 дробильной башни и через магнитный сепаратор 4 и колосниковьй грохот 5- в дробилку 6, где дробится до кусков размером 10- 13 ΛίΛί. После дробилки мелкий уголь по транспортеру 2 подается на транспортеры бункерной галлереи 7 и по ним в бункера сырого угля котлов 8.

Из бункеров сырого угля посредством ленточного питателя 9, скомбинированного с ленточными весами, уголь попадает в шаровую мельнипу 10, где размалывается и подсушивается топочными газами, подведенными к мельнице по газопроводу 11. Смесь угольной пыли и газов отсасывается из мельницы мельничным вентилятором (эксгаустером) 12, проходит через мельничньй сепаратор 13, где крупные частицы пыли отделяются и возвращаются по пылепроводу 14 обратно в мельницу. Мелкая пыль с газами попадает в пь левой циклон 15, где пыль отделяется от газов и ссыпается в бункер пыли 16. Из циклона пыли 15 газы отсасываются по газопроводу 17 и через горелку 19

Вдуваются в топку котла 20.

В-этот же поток газов посредством питателей пыли 18 подсыпается количество пыли, необходимое для данной нагрузки котла. Дутьевой вентилятор 21 забирает из верхней части котельной нагретый воздух, прогоняет его через воздухоподогреватель 22, где воздух доводится до температуры 300 - ^50°, и подает его в количестве, нужном для полного сгорания пыли, по воздушным коробам 23 к горелкам 19. Огненные факелы, выходящие из горелок, имеют температуру около 1 500°Раскаленные топочные газы, образующиеся при сгорании пыли, отдают часть своего тепла лучеиспусканием экранным трубам 24, отсасываются из топки дымососом 29 и им же по борову 30 выбрасываются в дымовую трубу 31.

По пути из топки газы омывают кипятильные трубы 25, пароперегреватель 26, водоподогреватель - водяной экономайзер 27 и воздухоподогреватель 22. Температура газои падает ниже 200°. В электрофильтрах 28 уходящие газы очищаются от золы, которая ссыпается· вместе со шлаком из топки в каналы гидрозолоудаления 12, из которых уносится мощным потоком воды.

Вода в котел поступает из машинного зала по трубопроводу питательной воды 33, проходит через водяной экономайзер 27, где подогревается приблизительно до точки кипения для данного давления, подается в барабан котла 34 и оттуда заполняет всю трубную систему. Образующийся пар отводится из верхней части балабана котла по пароотводящим трубам 35 в пароперегреватель 26. Перегретый пар через главную паровую задвижку 37 по паропроводу перегретого пара 36 идет в машинный зал к турбинам.

четырехосных саморазгружающихся гондол. Каждая способна! вместить до 60 т угля.

Состав подается на вагонные весы, Где каждая гондола взвешивается. Взвешивание топлива необходимо для ведения точного учета техникс-эко’номических показателей работы электростанции и денежных расчетов с железной дорогой и шахтами-поставщиками.

После взвешивания часть вагонов идет на угольный склад, где разгружается для создания запасов угля. Склад необходим на случай возможных перебоев с транспортом.

Угольные склады электростанции оснащены мощными погрузочно-|разгрузочными механизмами - портальными кранами, кабель-кранами, паровыми или электрическими самоходными грейферными кранами. Простой вагонов под погрузкой и разгрузкой сводится к минимуму.

В зависимости от условий топливоснабжения на складе хранится такое количество угля, которое достаточно для обеспечения работы станции с полной нагрузкой в течение нескольких дней или даже недель.

Другая часть вагонов, которая оставалась у вагонных весов, забирается станционным паровозом И 1 подается к длинному зданию - разгрузочному сараю. Открываются большие двустворчатые двери разгрузочного сарая, загораются предупредительные сигналы, звонит звонок и весь состав вместе с паровозом входит внутрь - под разгрузку.

Рабочие поворачивают запорные рычаги, раскрывают нижние боковые щиты гондол и черный поток угля льется в большие, покрытые железными решетками с крупными ячейками ямы, расположенные по обеим сторонам железнодорожного пути. Это бункеры разгрузки. Мощные электрические лампы под потолком кажутся тусклыми от поднимающихся вверх клубов пыли Уголь подали сухой, потому так многоФиг. 4-6. технологического процесса (продолжение фиг. 4-5). тепловой электростанции (машинный зал и электрическая часть).

Перегретый пар от котлов по паропроводу 1 поступает в паровую турбину 2, где тепловая энергия пара переходит в механическую. Ротор турбины вращает соединенный с ним ротор генератора Л. Отработавший в турбине пар поступает в 4, где сжижается - конденсируется, отдавая свое тепло циркуляционной воде. Превратившийся в воду пар - конденсат - откачивается конденсатным насосом б и направляется в аккумуляторные баки 7 и деаэратор б, в котором из нагретой воды удаляется кислород. В ‘4 деаэратор, кроме конденсата, направляется добавка воды по трубопроводу 12 из химической водоочистки для возмещения потерь конденсата, сюда же перекачивающим насосом 9 подается дренаж из сборных дренажных баков 10. В зависимости от потребления воды котельной конденсат или накапливается в аккумуляторном баке, или расходуется из него в деаэратор. Освобождение воды от растворенного в ней кислорода происходит при прохождении головки деаэратора 11.

Из деаэратора воду забирает питательный насос /5и под напором гонит ее через подогреватель 14, где вода подогревается отборным паром турбины и по напорному трубопроводу питательной воды 15 идет в котельную к котлам. Отборный пар из турбины, кроме подогревателя, подается также и в деаэраторную головку.

Мощным циркуляционным насосом 16 прокачивается через латунные трубы 5 конденсатора холодная вода (циркуляционная вода). Отработанный пар турбины омывает эти тпубы, отдает циркуляционной воде свое тепло и конденсируется. Теплая циркуляционная вода по трубопроводу 17 поступает в розетку 18 градирни, стекает оттуда по решетке 19 в виде мелкого дождя и, встречаясь с потоком воз·духа, идущего в башню 20 градирни, охлаждается и из приемного бассейна 2/, уже охлажденная, возвращается к всасу циркуляционного насоса 16.

От статора генератора выработанная электроэнергия кабелем 22 через генераторные разъединители 23 и масляный выключатель 24 отводится на сборные шины распределительного устройства 27. От сборных шин часть электроэнергии через понижающие трансформаторы собственных нужд щет на питание электродвигателей собственного расхода и на освещение станции. Основная часть электроэнергии через повысительные трансформаторы 26 и масляные выключатели 27 идет по высоковольтной линии 28 в общую высоковольтную.

сеть энергосистемы.

пыли. Но бывает и по-иному. В осеннее и зимнее время, когда идут сильные дожди и снегопады, влажность угля чрезвычайно увеличивается. Уголь смерзается и его приходится ломами выбивать из гондол.

Из бункеров разгрузки уголь по системе ленточных транспорте;ров, сначала подземных, а затем поднимающихся по наклонным галлереям вверх, попадает в дробильную башню. Здесь молотковые дробилки мельчат его на куски величиной в 10-13 мм. Отсюда уголь идет в бункеры сырого угля паровых котлов. На этом заканчивается хозяйство цеха топли воподачи.

Фабрика пара

Когда стоишь внизу в котельной, в проходе между котлами, то кажется, будто находишься на узкой улице между высокими домами. Только дома необычного вида, обшиты стальными листами, окрашенными в черный цвет, и опоясаны легкими решетчатыми стальными мостками и лестницами. Современные котлы достигают высоты пятиэтажного дома.

Со всех сторон, котла-гладкая черная обшивка. Только на самом верху виднеется серебряный купол, как будто внутрь котла вмурован дирижабль. Это - барабан котла. Купол стального· барабана покрыт слоем теплоизоляции и покрашен алюминиевой бронзой. В куполе есть люк, чтобы можно было залезать внутрь барабана при монтаже и ремонте.

В нескольких местах на обшивке котла устроены небольшие дверцы-гляделки. Откроем одну из них. Лицо сразу обдает жаром, нестерпимо яркий свет ударяет в глаза. Гляделки выходят в топку котла, где происходит сгорание топлива. Напротив одной из открытых горелок укреплена черная трубка со стек-лянной линзой на конце, вроде половинки бинокля. Это оптический пирометр, измеряющий температуру в топке. Внутри трубки пирометра помещена чувствительная . Провода от нее идут к гальванометру, укрепленному на контрольном тепловом щите котла. Шкала гальванометра градуирована в градусах.

Температура внутри топки котла больше полутора тысяч градусов, а обшивка его стенок только теплая. Пламя в топке со всех сторон окружено рядом труб, наполненных водой и соединенных с барабаном котла. Эти трубы - водяной экран, как их называют, - воспринимают лучистую энергию раскаленных газов топки. За трубами экрана идет кладка из огнеупорного кирпича. За слоем огнеупорного кирпича выложен слой изоляционного диатомитового кирпича с очень малой теплопроводностью. А за этим кирпичом непосредственно под стальными щитами обшивки проложен еще слой стеклянной ваты или асбеста. Трубы, выходящие из котла, покрыты толстым слоем тепловой изоляции. Все эти меры значительно уменьшают потери тепла в окружающую среду.

Внутри топки

Рядом котел остановлен на ремонт. Через проем в его стене можно пройти внутрь топки на временный дощатый помост, сделанный на время ремонта. Как все серо внутри!

Все четыре стены топки покрыты трубами водяного экрана. Трубы одеты слоем рыхлой золы и шлака. В некоторых местах на боковых стенках топки трубы разведены и видны зияющие черные отверстия - горелки, через которые угольная пыль вдувается в топку:

Внизу стены топки сужаются в виде опрокинутой пирамиды, переходящей в узкую шахту. Это шлаковый бункер и шлаковая шахта. Сюда падает образующийся при горении угольной пыли шлак. Из шлаковых шахт шлак и зола смываются сильной струей воды в каналы гидрозолоудаления или ссыпаются в вагонетки и вывозятся на золоотвалы.

Когда стоишь внизу топки, то плохое освещение вначале скрадывает высоту топочного пространства. Но эта высота становится ощутимой, если окинуть взглядом одну из труб водяного экрана от самого низа до верха.

Внизу на уровне помоста трубы кажутся толщиной в руку и промежутки между ними ясно различимы. Вверху грубы изгибаются, образуя плоский свод. И там вверху эти трубы кажутся соломинками, уложенными в ровные ряды. Надо закинуть голову, чтобы осмотреть свод топки. Невольно рот открывается и в него сыплется сверху зола.

При работе котла все его водяные трубы непрерывно покрываются слоем нагара, слоем золы и сажи. Это ухудшает теплопередачу от раскаленных газов к воде в трубах. Во время ремонта котла все его водяные трубы тщательно очищаются.

Конструкторы паровых котлов подбирают скорость раскаленных газов, летящих сквозь пучки труб, достаточно высокой, чтобы уменьшить осаждение на них твердых частиц. Не то образовались бы наросты, подобные сталактитам и сталагмитам в пещерах.

Кроме того, во время работы котла полагается время от времени обдувать его трубы сильной струей сжатого воздуха или пара.

Объем топки котла более тысячи кубических метров. Страшно подумать, что творится в этом огромном пространстве во время работы котла, когда оно все заполнено бушующим пламенем и вихрями раскаленных газов.

Climate Analytics продолжает настаивать на том, что угольная энергетика в Европе должна быть ликвидирована уже к 2030 году - иначе ЕС не выполнит целей Парижского соглашения по климату. Но какие станции закрывать в первую очередь? Предлагается два подхода - экологический и экономический. «Кислород.ЛАЙФ» присмотрелся к крупнейшим угольным ТЭС в России, которые никто закрывать не собирается.

Закрыть за десять лет


Climate Analytics продолжает настаивать , что для достижения целей Парижского соглашения по климату странам ЕС придется закрыть практически все действующие угольные ТЭС. Энергетический сектор Европы нуждается в тотальной декарбонизации, поскольку значительная часть общего объема выбросов парниковых газов (ПГ) в ЕС формируется в угольной энергетике. Поэтому постепенный отказ от угля в этой отрасли является одним из самых рентабельных методов сокращения эмиссии ПГ, также такие действия обеспечат значительные преимущества с точки зрения качества воздуха, здоровья населения и энергетической безопасности.

Сейчас в ЕС – более 300 электростанций с действующими на них 738 энергоблоками, работающими на угольном топливе. Географически они распределены, естественно, не равномерно. Но в целом каменный уголь и лигнит (бурый уголь) обеспечивают четверть всей генерации электричества в ЕС. Самые зависимые от угля члены Евросоюза – Польша, Германия, Болгария, Чехия и Румыния. На долю Германии и Польши приходится 51% установленных угольных мощностей в ЕС и 54% выбросов ПГ от угольной энергетики во всей объединенной Европе. При этом в семи странах ЕС вообще нет угольных ТЭС.

«Дальнейшее использование угля для производства электроэнергии не совместимо с реализацией задачи резкого снижения выбросов ПГ. Поэтому ЕС необходимо разработать стратегию поэтапного отказа от угля быстрее, чем это происходит в настоящее время», - резюмирует Climate Analytics. В противном случае, совокупные объемы выбросов к 2050 году по всему ЕС вырастут на 85%. Моделирование, проведенное Climate Analytics, показало, что 25% работающих в настоящее время угольных электростанций должны быть закрыты уже к 2020 году. Еще через пять лет закрыть необходимо 72% ТЭС, а полностью избавиться от угольной энергетики к 2030 году.

Главные вопрос – как это делать? По мнению Climate Analytics, «критический вопрос – по каким критериям нужно определять, когда закрывать те или иные ТЭС? С точки зрения земной атмосферы, критерии не имеют значения, так как выбросы ПГ будут сокращаться в нужном темпе. Но с точки зрения политиков, владельцев предприятий и других заинтересованных сторон, выработка таких критериев – решающий момент в принятии решений».

Climate Analytics предлагает две возможные стратегии для полного отказа от использования угля в производстве электроэнергии. Первая – сначала закрывать те ТЭС, которые лидируют по выбросам ПГ. Вторая стратегия – закрывать станции, наименее ценные с точки зрения бизнеса. Для каждой из стратегий нарисована интересная инфографика, показывающая, как будет меняться облик ЕС в годами вслед за закрытием угольных станций. В первом случае под ударом окажутся Польша, Чехия, Болгария и Дания. Во втором – также Польша и Дания.

Единства нет


Climate Analytics также по всем 300 станциям проставил годы закрытия в соответствии с двумя стратегиями. Нетрудно заметить, что эти годы существенно расходятся со сроками работы этих станций в обычном режиме (т.н. BAU - businnes as usual). Например, крупнейшая в Европе станция Белхатов в Польше (мощность более 4,9 ГВт) может работать как минимум до 2055 года; тогда как ее предлагается закрыть уже к 2027 году - одинаковый срок при любом сценарии.

В целом именно пять польских ТЭС, которые могут спокойно дымит до 2060-х годов, Climate Analytics предлагает закрыть на три-четыре десятилетия раньше срока. Польшу, энергетика которой на 80% зависит от угля, такое развитие событий вряд ли устроит (напомним, эта страна даже собирается оспаривать климатические обязательства, навязанные ей ЕС, в суде). Еще пять станций из Топ-20 находятся в Великобритании; восемь - в Германии. Также в первой двадцатке на закрытие - две ТЭС в Италии.

При этом английская Fiddler"s Ferry (мощность 2 ГВт) должна быть закрыта уже в 2017 году, а остальные британские ТЭС, как и заявляло правительство этой страны - к 2025 году. То есть только в этой стране процесс может пройти относительно безболезненно. В Германии все может растянуться до 2030 года, реализация двух стратегий будет различаться в зависимости от специфики земель (там есть угледобывающие регионы). В Чехии и Болгарии угольную генерацию нужно будет свернуть уже к 2020 году - прежде всего, из-за солидных объемов выбросов.

На замену углю должны прийти ВИЭ. Снижение себестоимости генерации солнца и ветра – важный тренд, который необходимо поддерживать и развивать, считают в Climate Analytics. За счет ВИЭ можно провести трансформацию энергетики, в том числе путем создания новых рабочих мест (не только в самой отрасли, но и в производстве оборудования). Которые, в том числе, смогут занять и высвобождаемые из угольной энергетики кадры.

Впрочем, в Climate Analytics признают, что в Европе нет единства в отношении угля. В то время как некоторые страны значительно сократили добычу и заявили о полном отказе от этого вида топлива в ближайшие 10-15 лет (среди них, например, Великобритания, Финляндия и Франция), другие или строят, или планируют строить новые угольные электростанции (Польша и Греция). «Вопросам экологии в Европе уделяют большое внимание, однако быстро отказаться от угольной генерации вряд ли будет возможно. Сначала необходимо ввести в строй замещающие мощности, ведь тепло и свет нужны и населению, и экономике. Это тем более важно, что ранее принимались решения о закрытии ряда атомных электростанций в Европе. Возникнут социальные проблемы, потребуется переобучить часть сотрудников самих станций, будет сокращено значительное количество рабочих мест в самых разных отраслях, что, безусловно, увеличит напряженность в обществе. Скажется закрытие угольных электростанций и на бюджетах, так как не станет значительной группы налогоплательщиков, а операционные показатели тех компаний, кто ранее им поставлял товары и услуги, существенно уменьшатся. Если какое-то решение и возможно, то заключаться оно может в растянутом по времени отказе от угольной генерации, с одновременным продолжением работы по совершенствованию технологий с целью уменьшения выбросов от сжигания угля, улучшения экологической ситуации на угольных электростанциях», - говорит по этому поводу Дмитрий Баранов , ведущий эксперт УК «Финам Менеджмент».


Top-20 угольных ТЭС Европы, которые, по мнению Climate Analytics, нужно будет закрыть

А что у нас?


Доля тепловой генерации в структуре выработки электроэнергии в России составляет более 64%, в структуре установленной мощности станций ЕЭС – более 67%. Однако в ТОП-10 крупнейших ТЭС страны только две станции работают на угле – Рефтинская и Рязанская; в основном же тепловая энергетика в России – газовая. «В России одна из лучших структур топливного баланса в мире. Мы используем всего 15% угля для производства энергии. В среднем по миру этот показатель составляет 30-35%. В Китае – 72%, в США и ФРГ – 40%. Задачу сократить долю не углеродных источников до 30% активно решают и в Европе. В России эта программа, фактически, уже реализована», - заявил глава Минэнерго РФ Александр Новак , выступая в конце февраля на панельной сессии «Зеленая экономика как вектор развития» в рамках Российского Инвестиционного форума-2017 в Сочи.

Доля атомной энергетики в общем объеме энергобаланса страны – 16-17%, гидрогенерации – 18%, на газ приходится порядка 40%. По данным Института энергетических исследований РАН, уголь в производстве электроэнергии давно и активно вытесняется газом и атомом, причем быстрее всего - в европейской части России. Крупнейшие угольные ТЭС расположены, тем не менее, в центре и на Урале. Но если посмотреть на картину в энергетике в разрезе регионов, а не отдельных станций, то картинка будет другая: наиболее «угольные» регионы – в Сибири и на Дальнем Востоке. Структура территориальных энергобалансов зависит от уровня газификации: в европейской части России он высокий, а в Восточной Сибири и далее – низкий. Уголь в качестве топлива, как правило, используется на городских ТЭЦ, где вырабатывается не только электричество, но и тепло. Поэтому генерация в больших городах (вроде Красноярска) полностью основана на угольном топливе. В целом на долю тепловых станций только в ОЭС Сибири в настоящее время приходится 60% выработки электроэнергии - это порядка 25 ГВт «угольных»мощностей.

Что касается ВИЭ, то сейчас на долю таких источников в энергобалансе РФ приходится символические 0,2%. «Планируем выйти на 3% - до 6 тысяч МВт за счет различных механизмов поддержки», - дал прогноз Новак. В компании «Россети» дают более оптимистичные прогнозы : установленная мощность ВИЭ к 2030 году в России может вырасти на 10 ГВт. Тем не менее, глобальной перестройки энергобаланса в нашей стране не предвидится. «По прогнозам, к 2050 году в мире будет насчитываться порядка 10 миллиардов человек. Уже сегодня порядка 2 миллиардов не имеют доступа к источникам энергии. Представьте, какая будет потребность человечества в энергии через 33 года, и как должны развиться ВИЭ, чтобы обеспечить весь спрос», - так доказывает жизнеспособность традиционной энергетики Александр Новак.

«Речь об «отказе от угля» в России точно не идет, тем более что, согласно Энергостратегии до 2035 года, запланировано увеличение доли угля в энергобалансе страны, - напоминает Дмитрий Баранов из УК «Финам Менеджмент». - Наряду с нефтью и газом, уголь является одним из важнейших полезных ископаемых на планете, и Россия, как одна из крупнейших стран в мире по его запасам и добыче, просто обязана уделять должное внимание развитию этой отрасли. Еще в 2014 году на заседании правительства РФ Новак представил программу развития угольной промышленности России до 2030 года. В ней основной упор сделан на создание новых центров угледобычи, в первую очередь, в Сибири и на Дальнем Востоке, совершенствование научно-технического потенциала в отрасли, а также реализацию проектов в углехимии».

Крупнейшие ТЭС России, работающие на угольном топливе


Рефтинская ГРЭС («Энел Россия»)


Является самой крупной угольной ТЭС в России (и второй в топ-10 тепловых станций страны). Расположена в Свердловской области, в 100 км северо-восточнее Екатеринбурга и в 18 км от Асбеста.
Установленная электрическая мощность - 3800 МВт.
Установленная тепловая мощность - 350 Гкал/ч.

Обеспечивает энергоснабжение промышленных районов Свердловской, Тюменской, Пермской и Челябинской областей.
Строительство электростанции началось в 1963 году, в 1970 состоялся пуск первого энергоблока, в 1980 - последнего.

Рязанская ГРЭС (ОГК-2)


Пятая в топ-10 крупнейших тепловых станций России. Работает на угле (первая очередь) и природном газе (вторая очередь). Расположена в Новомичуринске (Рязанская область), к 80 км южнее от Рязани.
Установленная электрическая мощность (вместе с ГРЭС-24) - 3 130 МВт.
Установленная тепловая мощность - 180 Гкал/час.

Строительство началось в 1968 году. Первый энергоблок введен в эксплуатацию 1973 году, последний – 31 декабря 1981 года.

Новочеркасская ГРЭС (ОГК-2)


Расположена в микрорайоне Донской в Новочеркасске (Ростовская область),в 53 км на юго-восток от Ростова-на-Дону. Работает на газе и угле. Единственная ТЭС в России, использующая местные отходы добычи угля и углеобогащения - антрацитовый штыб.
Установленная электрическая мощность - 2229 МВт.
Установленная тепловая мощность - 75 Гкал/час.

Строительство началось в 1956 году. Первый энергоблок введен в эксплуатацию в 1965 году, последний – восьмой – в 1972 году.

Каширская ГРЭС («ИнтерРАО»)


Расположена в Кашире (Московская область).
Работает на угле и природном газе.
Установленная электрическая мощность – 1910 МВт.
Установленная тепловая мощность - 458 Гкал/ч.

Введена в эксплуатацию в 1922 году по плану ГОЭЛРО. В 1960-е годы на станции была проведена масштабная модернизация.
Пылеугольные энергоблоки №1 и №2 планируется вывести из эксплуатацию в 2019 году. К 2020 году такая же судьба ждет еще четыре энергоблока, работающих на газомазутном топливе. В работе останется только самый современный блок №3 мощностью 300 МВт.



Приморская ГРЭС (РАО «ЭС Востока»)


Расположена в Лучегорске (Приморский край).
Самая мощная ТЭС на Дальнем Востоке. Работает на угле Лучегорского угольного разреза. Обеспечивает большую часть энергопотребления Приморья.
Установленная электрическая мощность – 1467 МВт.
Установленная тепловая мощность – 237 Гкал/час.

Первый энергоблок станции был введён в эксплуатацию в 1974 году, последний в 1990-м. ГРЭС расположена практически «на борту» угольного разреза – больше нигде в России электростанция не строилась в столь непосредственной близости от источника топлива.


Троицкая ГРЭС (ОГК-2)

Расположена в Троицке (Челябинская область). Выгодно расположена в промышленном треугольнике Екатеринбург – Челябинск – Магнитогорск.
Установленная электрическая мощность – 1 400 МВт.
Установленная тепловая мощность - 515 Гкал/час.

Пуск первой очереди станции состоялся в 1960 году. Оборудование второй очереди (на 1200 МВт) было выведено из эксплуатации в 1992-2016 годы.
В 2016 году введен в эксплуатацию уникальный пылеугольный энергоблок №10 мощностью 660 МВт.

Гусиноозерская ГРЭС («ИнтерРАО»)


Расположена в Гусиноозерске (Республика Бурятия), обеспечивает электроэнергией потребителей Бурятии и соседних регионов. Основным топливом для станции является бурый уголь Окино-Ключевского разреза и Гусиноозёрского месторождения.
Установленная электрическая мощность – 1160 МВт.
Установленная тепловая мощность - 224,5 Гкал/ч.

Четыре энергоблока первой очереди введены в эксплуатацию с 1976 по 1979 годы. Ввод второй очереди начался в 1988 году запуском энергоблока №5.

До вчерашнего дня в моем представлении все угольные электростанции были примерно одинаковыми и представляли из себя идеальные съемочные площадки фильмов ужасов. С почерневшими от времени конструкциями, котлоагрегатами, турбинами, миллионами различных труб и их хитрых сплетений с щедрым слоем черной угольной пыли. Редкие рабочие, больше похожие на шахтеров, в скудном освещении зеленых газовых ламп ремонтируют какие-то сложные агрегаты, тут и там, шипя, вырываются клубы пара и дыма, на полу разлились густые лужи из жиж темного цвета, повсюду что-то капает. Вот примерно такими я видел угольные станции и считал, что век их уже уходит. Будущее за газом - думал я.

Оказывается вовсе нет. Вчера я посетил новейший угольный энергоблок Черепетской ГРЭС в Тульской области. Оказывается, что современные угольные станции вовсе не чумазые, и дым из их труб идет не густой и не черный.

1. Черепетская ГРЭС – первая в Европе мощная паротурбинная электростанция сверхвысокого давления. Станция расположена в городе Суворов на реке Черепеть. Место для электростанции было выбрано по двум критериям: с одной стороны недалеко от шахт Подмосковного угольного бассейна, с другой - сравнительно недалеко от потребителей электроэнергии, расположенных в пределах Московской, Тульской, Орловской, Брянской и Калужской областей.

Несколько слов о принципе работы ГРЭС (спасибо Википедии):

В котел с помощью насосов подается под большим давлением вода, топливо и атмосферный воздух. В топке котла происходит процесс горения - химическая энергия топлива превращается в тепловую. Вода протекает по трубной системе, расположенной внутри котла.

(Фотография газового котла из репортажа с )

Сгорающее топливо является мощным источником теплоты, передающейся воде, которая нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения, примерно до 540 °C и под высоким давлением 13–24 МПа по одному или нескольким трубопроводам подается в паровую турбину.

Паровая турбина, электрогенератор и возбудитель составляют в целом турбоагрегат. В паровой турбине пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), и потенциальная энергия сжатого и нагретого до высокой температуры пара превращается в кинетическую энергию вращения ротора турбины. Турбина приводит в движение электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток.

2. Согласно проектному решению, строительство третьей очереди осуществлялось в границах действующей Черепетской ГРЭС, что позволило частично использовать производственную инфраструктуру станции для обеспечения работы нового оборудования. Пусковой комплекс включает в себя главный корпус, пристанционный узел, системы топливоподачи и шлакоудаления, техводоснабжения и водоподготовки, очистные сооружения.

3. Забор воды осуществляется непосредственно из Черепетского водохранилища.

4. Вода проходит химическую очистку и глубокое обессоливание, чтобы в паровых котлах и турбинах не появлялись отложения на внутренних поверхностях оборудования.

5. Железнодорожным транспортом на станцию доставляются уголь и мазут.

6. Вагоны с углем разгружаются вагоноопрокидывателями, далее уголь по транспортерам поступает на открытый склад угля, где распределяется и срабатывается кранами-перегружателями на первой и второй очередях, на третьей рапределение идет бульдозерами, а сработка - роторным экскаватором.

7. Так уголь попадает на участки дробильной установки для предварительного измельчения угля и последующего пылеприготовления. В сам котел уголь подается в виде смеси угольной пыли и воздуха.

9. Котельная установка располагается в котельном отделении главного корпуса. Сам котел - это что-то гениальное. Огромный сложный механизм высотой с 10-этажный дом.

13. Гулять по лабиринтам котельной установки можно вечно. Время, отведенное на съемку дважды успело закончиться, но оторваться от этой промышленной красоты было невозможно!

15. Галереи, лифтовые шахты, переходы, лестницы и мосты. Одним словом - космос)

16. Лучи солнца осветили крошечного на фоне всего происходящего Виталика dervishv , и я невольно задумался, что все эти сложные гигантские конструкции придумал и построил человек. Вот такой маленький человек придумал десятиэтажные печи, чтобы в промышленных масштабах вырабатывать электроэнергию из полезного ископаемого.

17. Красота!

19. За стеной от котельной установки располагается машинный зал с турбогенераторами. Еще одно гигантское помещение, более просторное.

20. Вчера был торжественно введен в эксплуатацию энергоблок №9, что явилось завершающим этапом проекта расширения Черепетской ГРЭС. Проект включал строительство двух современных пылеугольных энергоблоков мощностью по 225 МВт каждый.

21. Гарантированная электрическая мощность нового энергоблока - 225 МВт;
Электрический КПД - 37.2 %;
Удельный расход условного топлива на выработку электроэнергии - 330 гут/кВт*ч.

23. В состав основного оборудования входят две паровые конденсационные турбины производства ОАО «Силовые машины» и два котлоагрегата, производителя ОАО «ЭМАльянс». Основное топливо нового энергоблока - Кузнецкий каменный уголь марки ДГ

24. Щит управления.

25. Энергоблоки оснащены первой на российском рынке интегрированной системой сухой пыле-сероочистки дымовых газов с электростатическими фильтрами.

26. Дымовая труба высотой 120 метров.

27. Блочный трансформатор.

28. ОРУ.

29. Ввод нового энергоблока позволит вывести из эксплуатации устаревшее угольное оборудование первой очереди без снижения объема выработки электроэнергии и суммарной установленной мощности станции.

30. Вместе с новым энергоблоком были построены две 87-метровые градирни - часть системы технического водоснабжения, которая обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин.

31. Семь пролетов по 12 метров. Снизу такая высота кажется не такой серьезной.

33. На верхней площадке трубы было одновременно и жарко и прохладно. Фотоаппарат постоянно запотевал.

34. Вид с градирни на третью очередь с двумя новыми энергоблоками. Новые энергомощности станции спроектированы таким образом, чтобы значительно снизить выбросы загрязняющих веществ, сократить пылевыделение при работе на складе угля, уменьшить количество потребляемой воды, а также исключить возможность загрязнения окружающей среды сточными водами.

36. Внутри градирни все оказалось довольно просто и скучно)

38. На фотографии хорошо видны все три очереди станции. Постепенно старые энергоблоки выведут из эксплуатации и разберут. Такие дела.

39. Большое спасибо Капитанову Сергею Михайловичу за интереснейшую экскурсию и терпение!

40. Выражаю благодарность пресс-службе «Интер РАО» за организацию съемки и всем коллегам фотографам за отличную компанию!

  В1879 г., когда Томас Алва Эдисон изобрел лампу накаливания, началась эра электрификации. Для производства больших количеств электроэнергии требовалось дешевое и легкодоступное топливо. Этим требованиям удовлетворял каменный уголь, и первые электростанции (построенные в конце XIX в. самим Эдисоном) работали на угле. По мере того как в стране строилось все больше и больше станций, зависимость от угля возрастала. Начиная с первой мировой войны примерно половина ежегодного производства электроэнергии в США приходилась на тепловые электростанции, работающие на каменном угле. В 1986 г. общая установленная мощность таких электростанций составила 289000 МВт, и они потребляли 75% всего количества (900 млн. т) добываемого в стране угля. Учитывая существующие неопределенности в отношении перспектив развития ядерной энергетики и роста добычи нефти и природного газа, можно предположить, что к концу века тепловые станции на угольном топливе будут производить до 70% всей вырабатываемой в стране электроэнергии.
  Однако, несмотря на то что уголь долгое время был и еще многие годы будет основным источником получения электроэнергии (в США на его долю приходится около 80% запасов всех видов природных топлив), он никогда не был оптимальным топливом для электростанций. Удельное содержание энергии на единицу веса (т. е. теплотворная способность) у угля ниже, чем у нефти или природного газа. Его труднее транспортировать, и, кроме того, сжигание угля вызывает целый ряд нежелательных экологических последствий, в частности выпадение кислотных дождей. С конца 60-х годов привлекательность тепловых станций на угле резко пошла на убыль в связи с ужесточением требований к загрязнению среды газообразными и твердыми выбросами в виде золы и шлаков. Расходы на решение этих экологических проблем наряду с возрастающей стоимостью строительства таких сложных объектов, какими являются тепловые электростанции, сделали менее благоприятными перспективы их развития с чисто экономической точки зрения.
  Однако, если изменить технологическую базу тепловых станций на угольном топливе, их былая привлекательность может возродиться. Некоторые из этих изменений носят эволюционный характер и нацелены главным образом на увеличение мощности существующих установок. Вместе с тем разрабатываются совершенно новые процессы безотходного сжигания угля, т. е. с минимальным ущербом для окружающей среды. Внедрение новых технологических процессов направлено на то, чтобы будущие тепловые электростанции на угольном топливе поддавались эффективному контролю на степень загрязнения ими окружающей среды, обладали гибкостью с точки зрения возможности использования различных видов угля и не требовали больших сроков строительства.

Для того чтобы оценить значение достижений в технологии сжигания угля, рассмотрим кратко работу обычной тепловой электростанции на угольном топливе. Уголь сжигается в топке парового котла, представляющего собой огромную камеру с трубами внутри, в которых вода превращается в пар. Перед подачей в топку уголь измельчается в пыль, за счет чего достигается почти такая же полнота сгорания, как и при сжигании горючих газов. Крупный паровой котел потребляет ежечасно в среднем 500 т пылевидного угля и генерирует 2,9 млн. кг пара, что достаточно для производства 1 млн. квт-ч электрической энергии. За то же время котел выбрасывает в атмосферу около 100000 м3 газов.
  Генерированный пар проходит через пароперегреватель, где его темпе¬ратура и давление увеличиваются, и затем поступает в турбину высокого давления. Механическая энергия вращения турбины преобразуется электрогенератором в электрическую энергию. Для того чтобы получить более высокий кпд преобразования энергии, пар из турбины обычно возвращается в котел для вторичного перегрева и затем приводит в движение одну или две турбины низкого давления и только после этого конденсируется путем охлаждения; конденсат возвращается в цикл котла.
  Оборудование тепловой электростанции включает механизмы топливоподачи, котлы, турбины, генераторы, а также сложные системы охлаждения, очистки дымовых газов и удаления золы. Все эти основные и вспомогательные системы рассчитываются так, чтобы работать с высокой надежностью в течение 40 или более лет при нагрузках, которые могут меняться от 20% установленной мощности станции до максимальной. Капитальные затраты на оборудование типичной тепловой электростанции мощностью 1000 МВт, как правило, превышают 1 млрд. долл.


  Эффективность, с которой тепло, освобожденное при сжигании угля, может быть превращено в электричество, до 1900 г. составляла лишь 5%, но к 1967 г. достигла 40%. Другими словами, за период около 70 лет удельное потребление угля на единицу производимой электрической энергии сократилось в восемь раз. Соответственно происходило и снижение стоимости 1 кВт установленной мощности тепловых электростанций: если в 1920 г. она составляла 350 долл. (в ценах 1967 г.), то в 1967 г. снизилась до 130 долл. Цена отпускаемой электроэнергии также упала за тот же период с 25 центов до 2 центов за 1 кВт-чае.
  Однако начиная с 60-х годов темпы прогресса стали падать. Эта тенденция, по-видимому, объясняется тем, что традиционные тепловые электростанции достигли предела своего совершенства, определяемого законами термодинамики и свойствами материалов, из которых изготавливаются котлы и турбины. С начала 70-х годов эти технические факторы усугубились новыми экономическими и организационными причинами. В частности, резко возросли капитальные затраты, темпы роста спроса на электроэнергию замедлились, ужесточились требования к защите окружающей среды от вредных выбросов и удлинились сроки реализации проектов строительства электростанций. В результате стоимость производства электроэнергии из угля, имевшая многолетнюю тенденцию к снижению, резко возросла. Действительно, 1 кВт электроэнергии, производимой новыми тепловыми электростанциями, стоит теперь больше, чем в 1920 г. (в сопоставимых ценах).

ДЕМОНСТРАЦИОННАЯ СТАНЦИЯ "Cool Water" фирмы Southern California Edison ежедневно перерабатывает 1000 т каменного угля, получая сгорающий без отходов газ.
  Продукты сгорания приводят во вращение газовую турбину электрогенератора. Отработанное тепло выхлопных газов используется для производства водяного пара, который вращает паровую турбину другого электрогенератора.
  На фотографии видны два угольных бункера (в центре). Справа от них газификационная установка, система охлаждения газов и электрогенерирующее оборудование.


  В последние 20 лет на стоимость тепловых электростанций на угольном топливе наибольшее влияние оказывали ужесточившиеся требования к удалению газообразных,
  жидких и твердых отходов. На системы газоочистки и золоудаления современных тепловых электростанций теперь приходится 40% капитальных затрат и 35% эксплуатационных расходов. С технической и экономической точек зрения наиболее значительным элементом системы контроля выбросов является установка для де-сульфуризации дымовых газов, часто называемая системой мокрого (скрубберного) пылеулавливания. Мокрый пылеуловитель (скруббер) задерживает окислы серы, являющиеся основным загрязняющим веществом, образующимся при сгорании угля.
  Идея мокрого пылеулавливания проста, но на практике оказывается трудно осуществимой и дорогостоящей. Щелочное вещество, обычно известь или известняк, смешивается с водой, и раствор распыляется в потоке дымовых газов. Содержащиеся в дымовых газах окислы серы абсорбируются частицами щелочи и выпадают из раствора в виде инертного сульфита или сульфата кальция (гипса). Гипс может быть легко удален или, если он достаточно чист, может найти сбыт как строительный материал. В более сложных и дорогих скрубберных системах гипсовый осадок может превращаться в серную кислоту или элементарную серу - более ценные химические продукты. С 1978 г. установка скрубберов является обязательной на всех строящихся тепловых электростанциях на пылеугольном топливе. В результате этого в энерге¬тической промышленности США сейчас больше скрубберных установок, чем во всем остальном мире.

Стоимость скрубберной системы на новых станциях обычно составляет 150-200 долл. на 1 кВт установленной мощности. Установка скрубберов на действующих станциях, первоначально спроектированных без мокрой газоочистки, обходится на 10-40% дороже, чем на новых станциях. Эксплуатационные расходы на скрубберы довольно высоки независимо от того, установлены они на старых или новых станциях. В скрубберах образуется огромное количество гипсового шлама, который необходимо выдерживать в отстойных прудах или удалять в отвалы, что создает новую экологическую проблему. Например, тепловая электростанция мощностью 1000 МВт, работающая на каменном угле, содержащем 3% серы, производит в год столько шлама, что им можно покрыть площадь в 1 км2 слоем толщиной около 1 м.
  Кроме того, системы мокрой газоочистки потребляют много воды (на станции мощностью 1000 МВт расход воды составляет около 3800 л/мин), а их оборудование и трубопроводы часто подвержены засорению и коррозии. Эти факторы увеличивают эксплуатационные расходы и снижают общую надежность систем. Наконец, в скрубберных системах расходуется от 3 до 8% вырабатываемой станцией энергии на привод насосов и дымососов и на подогрев дымовых газов после газоочистки, что необходимо для предотвращения конденсации и коррозии в дымовых трубах.
  Широкое распространение скрубберов в американской энергетике не было ни простым, ни дешевым. Первые скрубберные установки были значительно менее надежными, чем остальное оборудование станций, поэтому компоненты скрубберных систем проектировались с большим запасом прочности и надежности. Некоторые из трудностей, связанные с установкой и эксплуатацией скрубберов, могут быть объяснены тем фак том, что промышленное применение технологии скрубберной очистки было начато преждевременно. Только теперь, после 25-летнего опыта, надежность скрубберных систем достигла приемлемого уровня.
  Стоимость тепловых станций на угольном топливе возросла не только из-за обязательного наличия систем контроля выбросов, но также и потому, что стоимость строительства сама по себе резко подскочила вверх. Даже с учетом инфляции удельная стоимость установленной мощности тепловых станций на угольном топливе сейчас в три раза выше, чем в 1970 г. За прошедшие 15 лет «эффект масштаба», т. е. выгода от строительства крупных электростанций, был сведен на нет значительным удорожанием строительства. Частично это удорожание отражает высокую стоимость финансирования долгосрочных объектов капитального строительства.
  Какое влияние имеет задержка реализации проекта, можно видеть на примере японских энергетических компаний. Японские фирмы обычно более расторопны, чем их американские коллеги, в решении организационно-технических и финансовых проблем, которые часто задерживают ввод в эксплуатацию крупных строительных объектов. В Японии электростанция может быть построена и пущена в действие за 30-40 месяцев, тогда как в США для станции такой же мощности обычно требуется 50-60 месяцев. При таких больших сроках реализации проектов стоимость новой строящейся станции (и, следовательно, стоимость замороженного капитала) оказывается сравнимой с основным капиталом многих энергетических компаний США.
  Поэтому энергетические компании ищут пути снижения стоимости строительства новых электрогенерирующих установок, в частности применяя модульные установки меньшей мощности, которые можно быстро транспортировать и устанавливать на существующей станции для удовлетворения растущей потребности. Такие установки могут быть пущены в эксплуатацию в более короткие сроки и поэтому окупаются быстрее, даже если коэффициент окупаемости капиталовложений остается постоянным. Установка новых модулей только в тех случаях, когда требуется увеличение мощности системы, может дать чистую экономию до 200 долл. на 1 кВт, несмотря на то что при применении маломощных установок теряются выгоды от «эффекта масштаба».
  В качестве альтернативы строительству новых электрогенерирующих объектов энергетические компании также практиковали реконструкцию действующих старых электростанций для улучшения их рабочих характеристик и продления срока службы. Эта стратегия, естественно, требует меньших капитальных затрат, чем строительство новых станций. Такая тенденция оправдывает себя и потому, что электростанции, построенные около 30 лет назад, еще не устарели морально. В некоторых случаях они работают даже с более высоким кпд, так как не оснащены скрубберами. Старые электростанции приобретают все больший удельный вес в энергетике страны. В 1970 г. только 20 электрогенерирующих объектов в США имели возраст более 30 лет. К концу века 30 лет будет средним воз¬растом тепловых электростанций на угольном топливе.
  Энергетические компании также ищут пути снижения эксплуатационных расходов на станциях. Для предотвращения потерь энергии необходимо обеспечить своевременное предупреждение об ухудшении рабочих характеристик наиболее важных участков объекта. Поэтому непрерывное наблюдение за состоянием узлов и систем становится важной составной частью эксплуатационной службы. Такой непрерывный контроль естественных процессов износа, коррозии и эрозии позволяет операторам станции принять своевременные меры и предупредить аварийный выход из строя энергетических установок. Значимость таких мер может быть правильно оценена, если учесть, например, что вынужденный простой станции на угольном топливе мощностью 1000 МВт может принести энергетической компании убытки в 1 млн. долл. в день, главным образом потому, что невыработанная энергия должна быть компенсирована путем энергоснабжения из более дорогих источников.
  Рост удельных расходов на транспортировку и обработку угля и на шлакоудаление сделал важным фактором и качество угля (определяемое содержанием влаги, серы и других минералов), определяющее рабочие характеристики и экономику тепловых электростанций. Хотя низкосортный уголь может стоить дешевле высокосортного, его расход на производство того же количества электрической энергии значительно больше. Затраты на перевозку большего объема низкосортного угля могут перекрыть выгоду, обусловленную его более низкой ценой. Кроме того, низкосортный уголь дает обычно больше отходов, чем высокосортный, и, следовательно, необходимы большие затраты на шлакоудаление. Наконец, состав низкосортных углей подвержен большим колебаниям, что затрудняет «настройку» топливной системы станции на работу с максимально возможным кпд; в этом случае система должна быть отрегулирована так, чтобы она могла работать на угле наихудшего ожидаемого качества.
  На действующих электростанциях качество угля может быть улучшено или по крайней мере стабилизировано путем удаления перед сжиганием некоторых примесей, например серосодержащих минералов. В очистных установках измельченный «грязный» уголь отделяется от примесей многими способами, использующими различия в удельном весе или других физических характеристиках угля и примесей.
  Несмотря на указанные мероприятия по улучшению рабочих характеристик действующих тепловых электростанций на угольном топливе, в США к концу столетия нужно будет ввести в строй дополнительно 150000 МВт энергетических мощностей, если спрос на электроэнергию будет расти с ожидаемым темпом 2,3% в год. Для сохранения конкурентоспособности угля на постоянно расширяющемся энергетическом рынке энергетическим компаниям придется принять на вооружение новые прогрессивные способы сжигания угля, которые являются более эффективными, чем традиционные, в трех ключевых аспектах: меньшее загрязнение окружающей среды, сокращение сроков строительства электростанций и улучшение их рабочих и эксплуатационных характеристик.


СЖИГАНИЕ УГЛЯ В ПСЕВДООЖИЖЕННОМ СЛОЕ уменьшает потребность во вспомогательных установках по очистке выбросов электростанции.
  Псевдоожиженныи слой смеси угля и известняка создается в топке котла воздушным потоком, в котором твердые частицы перемешиваются и находятся во взвешенном состоянии, т. е. ведут себя так же, как в кипящей жидкости.
  Турбулентное перемешивание обеспечивает полноту сгорания угля; при этом частицы известняка реагируют с окислами серы и улавливают около 90% этих окислов. Поскольку нагревательные грубы котла непосредственно касаются кипящего слоя топлива, генерация пара происходит с большей эффективностью, чем в обычных паровых котлах, работающих на измельченном угле.
  Кроме того, температура горящего угля в кипящем слое ниже, что предотвращает плавление котельного шлака и уменьшает образование окислов азота.


ГАЗИФИКАЦИЯ УГЛЯ может быть осуществлена нагреванием смеси угля и воды в атмосфере кислорода. Продуктом процесса является газ, состоящий в основном из окиси углерода и водорода. После того как газ будет охлажден, очищен от твердых частиц и освобожден от серы, его можно использовать как топливо для газовых турбин, а затем для производства водяного пара для паровой турбины (комбинированный цикл).
  Станция с комбинированным циклом выбрасывает в атмосферу меньше загрязняющих веществ, чем обычная тепловая станция на угле.



  В настоящее время разрабатывается более десятка способов сжигания угля с повышенным кпд и меньшим ущербом для окружающей среды. Наиболее перспективными среди них являются сжигание в псевдоожиженном слое и газификация угля. Сжигание по первому способу производится в топке парового котла, которая устроена так, что измельченный уголь в смеси с частицами известняка поддерживается над решеткой топки во взвешенном («псевдо-ожиженном») состоянии мощным восходящим потоком воздуха.
  Взвешенные частицы ведут себя в сущности так же, как и в кипящей жидкости, т. е. находятся в турбулентном движении, что обеспечивает высокую эффективность процесса горения. Водяные трубы такого котла находятся в непосредственном контакте с «кипящим слоем» горящего топлива, в результате чего большая доля тепла передается теплопроводностью, что значительно более эффективно, чем радиационный и конвективный перенос тепла в обычном паровом котле.
  Котел с топкой, где уголь сжигается в псевдоожиженном слое, имеет большую площадь теплопередающих поверхностей труб, чем обычный котел, работающий на измельченном в пыль угле, что позволяет снизить температуру в топке и тем самым уменьшить образование окислов азота. (Если температура в обычном котле может быть выше 1650 °С, то в котле с сжиганием в псевдоожиженном слое она находится в пределах 780-870 °С.) Более того, известняк, примешанный к углю, связывает 90 или более процентов серы, освободившейся из угля при горении, так как более низкая рабочая температура способствует прохождению реакции между серой и известняком с образованием сульфита или сульфата кальция. Таким образом вредные для окружающей среды вещества, образующиеся при сжигании угля, нейтрализуются на месте образования, т. е. в топке.
  Кроме того, котел с сжиганием в псевдоожиженном слое по своему устройству и принципу работы менее чувствителен к колебаниям качества угля. В топке обычного котла, работающего на пылевидном угле, образуется огромное количество расплавленного шлака, который часто забивает теплопередающие поверхности и тем самым снижает кпд и надежность котла. В котле с сжиганием в псевдоожиженном слое уголь сгорает при температуре ниже точки плавления шлака и поэтому проблема засорения поверхностей нагрева шлаком даже не возникает. Такие котлы могут работать на угле более низкого качества, что в некоторых случаях позволяет существенно снизить эксплуатационные расходы.
  Способ сжигания в псевдоожиженном слое легко реализуется в котлах модульной конструкции с небольшой паропроизводительностью. По некоторым оценкам капиталовложения на тепловую электростанцию с компактными котлами, работающими по принципу псевдоожиженного слоя, могут быть на 10-20% ниже капиталовложений на тепловую станцию традиционного типа такой же мощности. Экономия достигается за счет сокращения времени строительства. Кроме того, мощность такой станции можно легко нарастить при увеличении электрической нагрузки, что важно для тех случаев, когда ее рост в будущем заранее неизвестен. Упрощается и проблема планирования, так как такие компактные установки можно быстро смонтировать, как только возникнет необходимость увеличения выработки электроэнергии.
  Котлы со сжиганием в псевдоожиженном слое могут также включаться в схему существующих электростанций, когда необходимо быстро увеличить генерируемую мощность. Например, энергетическая компания Northern States Power переделала один из пылеугольных котлов на станции в шт. Миннесота в котел с псевдоожиженным слоем. Переделка осуществлялась с целью увеличения мощности электростанции на 40%, снижения требований к качеству топива (котел может работать даже на местных отходах), более тщательной очистки выбросов и удлинения срока службы станции до 40 лет.
  За прошедшие 15 лет масштабы применения технологии, используемой на тепловых электростанциях, оснащенных исключительно котлами со сжиганием в псевдоожиженном слое, расширились от мелких экспериментальных и полупромышленных установок до крупных «демонстрационных» станций. Такая станция с общей мощностью 160 МВт строится совместно компаниями Tennessee Valley Authority, Duke Power и Commonwealth of Kentucky; фирма Colorado-Ute Electric Association, Inc. пустила в эксплуатацию электрогенерирующую установку мощностью 110 МВт с котлами со сжиганием в псевдоожиженном слое. В случае успеха этих двух проектов, а также проекта компании Northern States Power, совместного предприятия частного сектора с общим капиталом около 400 млн. долл., экономический риск, связанный с применением котлов со сжиганием в псевдоожиженном слое в энергетической промышленности будет значительно уменьшен.
  Другим способом, который, правда, уже существовал в более простом виде еще в середине XIX в., является газификация каменного угля с получением «чисто горящего» газа. Такой газ пригоден для освещения и отопления и широко использовался в США до второй мировой войны, пока не был вытеснен природным газом.
  Первоначально газификация угля привлекла внимание энергетических компаний, которые надеялись с помощью этого способа получить сгорающее без отходов топливо и за счет этого избавиться от скрубберной очистки. Теперь стало очевидно, что газификация угля имеет и более важное преимущество: горячие продукты сгорания генераторного газа можно непосредственно использовать для привода газовых турбин. В свою очередь отработанное тепло продуктов сгорания после газовой турбины может быть утилизировано с целью получения пара для привода паровой турбины. Такое совместное использование газовых и паровых турбин, называемое комбинированным циклом, является ныне одним из самых эффективных способов производства электрической энергии.
  Газ, полученный газификацией каменного угля и освобожденный от серы и твердых частиц, является прекрасным топливом для газовых турбин и, как и природный газ, сгорает почти без отходов. Высокий кпд комбинированного цикла компенсирует неизбежные потери, связанные с превращением угля в газ. Более того, станция с комбинированным циклом потребляет значительно меньше воды, так как две трети мощности развивает газовая турбина, которая не нуждается в воде в отличие от паровой турбины.
  Жизнеспособность электрических станций с комбинированным циклом, работающих на принципе газификации угля, была доказана опытом эксплуатации станции "Cool Water" фир¬мы Southern California Edison. Эта станция мощностью около 100 МВт была введена в эксплуатацию в мае 1984 г. Она может работать на разных сортах угля. Выбросы станции по чистоте не отличаются от выбросов соседней станции, работающей на природном газе. Содержание окислов серы в уходящих газах поддерживается на уровне значительно ниже установленной нормы с помощью вспомогательной системы улавливания серы, которая удаляет почти всю серу, содержащуюся в исходном топливе, и производит чистую серу, используемую в промышленных целях. Образование окислов азота предотвращается добавкой к газу воды перед сжиганием, что снижает температуру горения газа. Более того, остающийся в газогенераторе остаток несгоревшего угля подвергается переплавке и превращается в инертный стекловидный материал, который после охлаждения отвечает требованиям, предъявляемым в штате Калифорния к твердым отходам.
  Помимо более высокого кпд и меньшего загрязнения окружающей среды станции с комбинированным циклом имеют еще одно преимущество: они могут сооружаться в несколько очередей, так что установленная мощность наращивается блоками. Такая гибкость строительства уменьшает риск чрезмерных или, наоборот, недостаточных капиталовложений, связанный с неопределенностью роста спроса на электроэнергию. Например, первая очередь установленной мощности может работать на газовых турбинах, а в качестве топлива использовать не уголь, а нефть или природный газ, если текущие цены на эти продукты низки. Затем, по мере роста спроса на электроэнергию, дополнительно вводятся в строй котел-утилизатор и паровая турбина, что увеличит не только мощность, но и кпд станции. Впоследствии, когда спрос на электроэнергию вновь увеличится, на станции можно будет построить установку для газификации угля.
  Роль тепловых электростанций на угольном топливе является ключевой темой, когда речь идет о сохранности природных ресурсов, защите окружающей среды и путях развития экономики. Эти аспекты рассматриваемой проблемы не обязательно являются конфликтующими. Опыт применения новых технологических процессов сжигания угля показывает, что они могут успешно и одновременно решать проблемы и охраны окружающей среды, и снижения стоимости электроэнергии. Этот принцип был учтен в совместном американо-канадском докладе о кислотных дождях, опубликованном в прошлом году. Руководствуясь содержащимися в докладе предложениями, конгресс США в настоящее время рассматривает возможность учреждения генеральной национальной инициативы по демонстрации и применению «чистых» процессов сжигания угля. Эта инициатива, которая объединит частный капитал с федеральными капиталовложениями, нацелена на широкое промышленное применение в 90-е годы новых процессов сжигания угля, включая котлы с сжиганием топлива в кипящем слое и газогенераторы. Однако даже при широком применении новых процессов сжигания угля в ближайшем будущем растущий спрос на электроэнергию не сможет быть удовлетворен без целого комплекса согласованных мероприятий по консервации электроэнергии, регулированию ее потребления и повышению производительности существующих тепловых электростанций, работающих на традиционных принципах. Постоянно стоящие на повестке дня экономические и экологические проблемы, вероятно, приведут к появлению совершенно новых технологических разработок, принципиально отличающихся от тех, что были здесь описаны. В перспективе тепловые электростанции на угольном топливе могут превратиться в комплексные предприятия по переработке природных ресурсов. Такие предприятия будут перерабатывать местные виды топлива и другие природные ресурсы и производить электроэнергию, тепло и различные продукты с учетом потребностей местной экономики. Кроме котлов с сжиганием в кипящем слое и установок для газификации угля такие предприятия будут оснащены электронными системами технической диагностики и автоматизированными системами управления и, кроме того, полезно использовать большинство побочных продуктов сжигания угля.
  Таким образом, возможности улучшения экономических и экологических факторов производства электроэнергии на базе каменного угля очень широкие. Своевременное использование этих возможностей зависит, однако, от того, сможет ли правительство проводить сбалансированную политику в отношении производства энергии и защиты окружающей среды, которая создала бы необходимые стимулы для электроэнергетической промышленности. Необходимо принять меры к тому, чтобы новые процессы сжигания угля развивались и внедрялись рационально, при сотрудничестве с энергетическими компаниями, а не так, как это было с внедрением скрубберной газоочистки. Все это можно обеспечить, если свести к минимуму затраты и риск путем хорошо продуманного проектирования, испытания и усовершенствования небольших опытных экспериментальных установок с последующим широким промышленным внедрением разрабатываемых систем.