Производство передача и использование электроэнергии. Производство передача и использование электроэнергии Презентация по физике на тему производство электроэнергии


Использование электроэнергии Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводится на электрическую тягу.






Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.). Современная цивилизация немыслима без широкого использования электроэнергии. Нарушение снабжения электроэнергией большого города при аварии парализует его жизнь.


Передача электроэнергии Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.


Передача энергии связана с заметными потерями. Дело в том, что электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля-Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой где R – сопротивление линии.




Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, в высоковольтной линии передачи Волжская ГЭС – Москва и некоторых других используют напряжение 500 кВ. Между тем генераторы переменного тока строят на напряжения, не превышающие кВ.


Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов. Поэтому на крупных электростанциях ставят повышающие трансформаторы. Для непосредственного использования электроэнергии в двигателях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить. Это достигается с помощью понижающих трансформаторов.





В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию используя ветроэнергетические установки, солн ечные батареи, малые газогенераторы






Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителям. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратит в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света. Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителям. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратит в любые другие формы: механическую, внутреннюю (нагревание тел), энергию света.


Преимущество электрической энергии Можно передавать по проводам Можно передавать по проводам Можно трансформировать Можно трансформировать Легко превращается в другие виды энергии Легко превращается в другие виды энергии Легко получается из других видов энергии Легко получается из других видов энергии


Генератор - Устройство, преобразующее энергию того или иного вида в электрическую энергию. Устройство, преобразующее энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи




Эксплуатация генератора Генерировать энергию можно либо вращая виток в поле постоянного магнита, либо виток поместить в изменяющееся магнитное поле (вращать магнит, оставляя виток неподвижным). Генерировать энергию можно либо вращая виток в поле постоянного магнита, либо виток поместить в изменяющееся магнитное поле (вращать магнит, оставляя виток неподвижным).




Значение генератора в производстве электрической энергии Важнейшие детали генератора изготавливаются очень точно. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично Важнейшие детали генератора изготавливаются очень точно. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично




Как устроен трансформатор? Он состоит из замкнутого стального сердечника, собранного из пластин, на который надеты две катушки с проволочными обмотками. Первичная обмотка подключается к источнику переменного напряжения. К вторичной обмотке присоединяют нагрузку.











АЭС производят 17% мировой выработки. Начало ХХI века эксплуатируется 250 АЭС, работают 440 энергоблоков. Больше всего США, Франции, Японии, ФРГ, России, Канаде. Урановый концентрат (U3O8) сосредоточен в следующих странах: Канаде, Австралии, Намибии, США, России. Атомные электростанции


Сравнение типов электростанции Типы электростанц ий Выбросвредных веществ в атмосфе ры, кг Занимае мая площадьга Потребле ние чистой воды м 3 Сбро с грязн ой воды, м 3 Затрат ы наохрану приро ды % ТЭЦ: уголь 251,5600,530 ТЭЦ: мазут 150,8350,210 ГЭС АЭС--900,550 ВЭС10--1 СЭС-2--- БЭС10-200,210







ПРОИЗВОДСТВО, ИСПОЛЬЗОВАНИЕ И ПЕРЕДАЧА ЭЛЕКТРОЭНЕРГИИ.

Производство электроэнергии.Тип электростанций

КПД электростанций

% от всей вырабатываемой энергии

Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Её можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие виды энергии: механическую, внутреннюю, энергию света и т.д.Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии. Её можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие виды энергии: механическую, внутреннюю, энергию света и т.д.

ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.

Использование электроэнергии.Удвоение потребления электроэнергии происходит за 10 лет

Сферы
хозяйства

Количество используемой электроэнергии,%

Промышленность
Транспорт
Сельское хозяйство
Быт

70
15
10
4

Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Большая часть научных разработок начинается с теоретических расчетов. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Большая часть научных разработок начинается с теоретических расчетов. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.

Но наука не только использует электроэнергию в своей теоретической и экспериментальной областях, научные идеи постоянно возникают в традиционной области физики, связанной с получением и передачей электроэнергии. Ученые, например, пытаются создать электрические генераторы без вращающихся частей. В обычных электродвигателях к ротору приходится подводить постоянный ток, чтобы возникла «магнитная сила».Но наука не только использует электроэнергию в своей теоретической и экспериментальной областях, научные идеи постоянно возникают в традиционной области физики, связанной с получением и передачей электроэнергии. Ученые, например, пытаются создать электрические генераторы без вращающихся частей. В обычных электродвигателях к ротору приходится подводить постоянный ток, чтобы возникла «магнитная сила».
Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность. Крупным потребителем является также транспорт. Всё большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от государственных электростанций для производственных и бытовых нужд.

Производство, передача и использование электрической энергии Вопрос

  • Какими преимуществами обладает переменный ток перед постоянным?
Генератор
  • Генератор - устройства, преобразующие энергию того или иного вида в электрическую энергию.
Виды энергии Генератор переменного тока
  • Генератор состоит из
  • постоянного магнита, создающего магнитное поле, и обмотки, в которой индуцируется переменная ЭДС
  • Преобладающую роль в наше время играют электромеханические индукционные генераторы переменного тока. Там механическая энергия превращается в электрическую.
Трансформаторы
  • ТРАНСФОРМАТОР– аппарат, преобразующий переменный ток, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности.
  • В простейшем случае трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки с проволочными обмотками. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», т. е. приборы, потребляющие электроэнергию, называется вторичной.
Трансформатор
  • Первичная Вторичная
  • обмотка обмотка
  • Подключается
  • к источнику
  • ~ напряжения к «нагрузке»
  • замкнутый стальной сердечник
  • Принцип действия трансформатора основан на явлении электромагнитной индукции.
Характеристика трансформатора
  • Коэффициент трансформации
  • U1/U2 =N1/N2=K
  • K>1трансформатор понижающий
  • K<1трансформатор повышающий
Производство электрической энергии
  • Производится электроэнергия на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов. Существует несколько типов электростанций: тепловые, гидроэлектрические и атомные электростанции.
  • Тепловые электростанции
Использование электроэнергии
  • Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводиться на электрическую тягу. Почти все деревни и села получают электроэнергию от государственных электростанций для производственных и бытовых нужд. Около трети электроэнергии, потребляемой промышленностью, используются для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).
Передача электроэнергии
  • Трансформаторы изменяют напряжение
  • в нескольких точках линии.
Эффективное использование электроэнергии
  • Потребность в электроэнергии постоянно увеличивается. Удовлетворить эту потребность можно двумя способами.
  • Самый естественный и единственный на первый взгляд способ – строительство новых мощных электростанций. Но ТЭС потребляют не возобновляемые природные ресурсы, а также наносят большой ущерб экологическому равновесию на нашей планете.
  • Передовые технологии позволяют удовлетворить потребности в электроэнергии другим способом. Приоритет должен быть отдан увеличению эффективности использования электроэнергии, а не росту мощности электростанций.
Задачи
  • № 966, 967
Ответ
  • 1) напряжение и силу тока можно в очень широких пределах преобразовывать (трансформировать) почти без потерь энергии;
  • 2)переменный ток легко преобразуется в постоянный
  • 3)генератор переменного тока намного проще и дешевле.
Домашнее задание
  • §§38-41 упр 5 (с 123)
  • ПОДУМАЙ:
  • ПОЧЕМУ ГУДИТ ТРАНСФОРМАТОР?
  • Подготовить презентацию «Использование трансформаторов»
  • (для желающих)
Список литературы:
  • Физика. 11 класс: учебник для общеобразовательных учреждений: базовый и профил. уровни /Г.Я. Мякишев, Б.Б. Буховцев. – М:Просвещение, 2014. – 399 с
  • О.И. Громцева. Физика. ЕГЭ. Полный курс. – М.: Издательство «Экзамен», 2015.-367 с
  • Волков В.А. Универсальные поурочные разработки по физике. 11 класс. – М.: ВАКО, 2014. – 464 с
  • Рымкевич А.П., Рымкевич П.А. Сборник задач по физике для 10-11 классов средней школы. – 13 изд. – М.: Просвещение,2014. – 160 с

Типы электростанций Тепловые (ТЭС) - 50 % Тепловые (ТЭС) - 50 % Гидроэлектростанции (ГЭС) % Гидроэлектростанции (ГЭС) % Атомные (АЭС) - 15 % Атомные (АЭС) - 15 % Альтернативные источники Альтернативные источники энергии- 2 – 5 % (солнечная энергия, энергия термоядерного синтеза, приливная энергетика, ветроэнергетика) энергии- 2 – 5 % (солнечная энергия, энергия термоядерного синтеза, приливная энергетика, ветроэнергетика)








Генератор электрического тока Генератор преобразует механическую энергию в электрическую Генератор преобразует механическую энергию в электрическую Действие генератора основано на явлении электромагнитной индукции Действие генератора основано на явлении электромагнитной индукции


Рамка с током – основной элемент генератора Вращающаяся часть называется РОТОРОМ (магнит). Вращающаяся часть называется РОТОРОМ (магнит). Неподвижная часть называется СТАТОРОМ (рамка) Неподвижная часть называется СТАТОРОМ (рамка) При вращении рамки, пронизывающий рамку, магнитный поток изменяется во времени, вследствие чего в рамке возникает индукционный ток


Передача электроэнергии Для передачи электроэнергии потребителям используют линии электропередач (ЛЭП). При передаче электроэнергии на расстояние происходят её потери за счёт нагревания проводов (закон Джоуля - Ленца). Способы уменьшения тепловых потерь: 1) Уменьшение сопротивления проводов, но увеличение их диаметра (тяжелы – трудно подвешивать, и дорогостоящи – медь). 2) Уменьшение силы тока путём повышения напряжения.














Влияние тепловых электростанций на окружающую среду ТЭС – приводят к тепловому загрязнению воздуха продуктами сгорания топлива. ГЭС – приводят к затопления огромных территорий, которые выводятся из землепользования. АЭС - может привести к выбросу радиоактивных веществ.


Основные этапы производства, передачи и потребления электроэнергии 1.Механическую энергию преобразуют в электрическую с помощью генераторов на электростанциях. 1.Механическую энергию преобразуют в электрическую с помощью генераторов на электростанциях. 2. Электрическое напряжение повышают для передачи электроэнергии на большие расстояния. 2. Электрическое напряжение повышают для передачи электроэнергии на большие расстояния. 3. Электроэнергию передают под высоким напряжением по высоковольтным линиям электропередач. 3. Электроэнергию передают под высоким напряжением по высоковольтным линиям электропередач. 4. При распределении электроэнергии потребителям электрическое напряжение понижают. 4. При распределении электроэнергии потребителям электрическое напряжение понижают. 5. При потреблении электроэнергии её преобразуют в другие виды энергии – механическую, световую или внутреннюю. 5. При потреблении электроэнергии её преобразуют в другие виды энергии – механическую, световую или внутреннюю.