В модель множественной регрессии включено три фактора. Модель множественной линейной регрессии

Простая и логически ясная модель временного ряда имеет следующий вид:

Y t = b + e t

у, = Ь + г„ (11.5)

где b - константа, e - случайная ошибка. Константа b относительно стабильна на каждом временном интервале, но может также медленно изменяться со временем. Один из интуитивно ясных способов выделения значения b из данных состоит в том, чтобы использовать сглаживание скользящим средним, в котором последним наблю­дениям приписываются большие веса, чем предпоследним, предпоследним большие веса, чем пред- предпоследним, и т.д. Простое экспоненциальное сглаживание имен­но так и построено. Здесь более старым наблюдениям приписываются экспоненци­ально убывающие веса, при этом, в отличие от скользящего среднего, учитываются все предшествующие наблюдения ряда, а не только те, которые попали в определен­ное окно. Точная формула простого экспоненциального сглаживания имеет вид:

S t = a y t + (1 - a) S t -1

Когда эта формула применяется рекурсивно, каждое новое сглаженное значение (которое является также прогнозом) вычисляется как взвешенное среднее текущего наблюдения и сглаженного ряда. Очевидно, результат сглаживания зависит от параметра a. Если a равен 1, то предыдущие наблюдения полностью игнорируются. Если aравен 0, то игнорируются текущие наблюдения. Значения a между 0 и 1 дают промежуточные результаты. Эмпирические исследования показали, что простое экспоненциальное сглаживание весьма часто дает достаточно точный прогноз.

На практике обычно рекомендуется брать a меньше 0,30. Однако выбор a больше 0,30 иногда дает более точный прогноз. Это значит, что лучше все же оценивать оптимальное значение a по реальным данным, чем использовать общие рекомендации.

На практике оптимальный параметр сглаживания часто ищется с использованием процедуры поиска на сетке. Возможный диапазон значений параметра разбивается сеткой с определенным шагом. Например, рассматривается сетка значений от a = 0,1 до a = 0,9 с шагом 0,1. Затем выбирается такое значение a, для которого сумма квадратов (или средних квадратов) остатков (наблюдаемые значения минус прогнозы на шаг вперед) является минимальной.

Microsoft Excel располагает функцией Exponential Smoothing (Экспоненциальное сглаживание), которая обычно используется для сглаживания уровней эмпирической временного ряда на основе метода простого экспоненциального сглаживания. Для вызова этой функции необходимо на панели меню выбрать команду Tools Þ Data Analysis. На экране раскроется окно Data Analysis, в котором следует выбрать значение Exponential Smoothing (Экспоненциальное сглаживание). В результате появится диалоговое окно Exponential Smoothing.

В диалоговом окне Exponential Smoothing задаются практически те же параметры, что и в рассмотренном выше диалоговом окне Moving Average.

1. Input Range (Входные данные) - в это поле вводится диапазон ячеек, содержащих значения исследуемого параметра.

2. Labels (Метки) - данный флажок опции устанавливается в том случае, если
первая строка (столбец) во входном диапазоне содержит заголовок. Если заголовок отсутствует, флажок следует сбросить. В этом случае для данных выходного диапазона будут автоматически созданы стандартные названия.

3. Damping factor (Фактор затухания) - в это поле вводится значение выбранного коэффициента экспоненциального сглаживания а. По умолчанию принимаете значение а = 0,3.

4. Output options (Параметры вывода) - в этой группе, помимо указания диапазона ячеек для выходных данных в поле Output Range (Выходной диапазон), можно также потребовать автоматически построить график, для чего необходимо установить флажок опции Chart Output (Вывод графика), и рассчитать стандартные погрешности, для чего нужно установить флажок опции Standart Erroг (Стандартные погрешности).

Задание 2. С помощью программы Microsoft Excel, используя функцию Экспоненциального сглаживания (Exponential Smoothing), на основании данных об объеме выпуска Задания 1 рассчитать сглаженные уровни выпуска и стандартные погрешности. Затем представить фактические и прогнозируемые данные с помощью диаграммы. Подсказка: должна получиться таблица и график, аналогичный выполненному в задание 1, но с другими сглаженными уровнями и стандартными погрешностями.

Метод аналитического выравнивания

где - теоретические значения временного ряда, вычисленные по соответствующе­му аналитическому уравнению на момент времени t.

Определение теоретических (расчетных) значений , производится на основе так называемой адекватной математической модели, которая наилучшим образом отобра­жает основную тенденцию развития временного ряда.

Простейшими моделями (формулами), выражающими тенденцию развития, явля­ются следующие:

Линейная функция, график которой является прямой линией:

Показательная функция:

Y t = a 0 * a 1 t

Степенная функция второго порядка, график которой является параболой:

Y t = a 0 + a 1 * t + a 2 * t 2

Логарифмическая функция:

Y t = a 0 + a 1 * ln t

Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадра­тов отклонений между теоретическим и эмпирическим уровнями:

где - выровненные (расчетные) уровни, а Yt - фактические уровни.

Параметры уравнения a i удовлетворяющие этому условию, могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выровненные уровни.

Выравнивание по прямой используется в тех случаях, когда абсолютные приросты практически постоянны, т.е. когда уровни изменяются в арифметической прогрессии (или близко к ней).

Выравнивание по показательной функции применяется, когда ряд отражает развитие в геометрической профессии, т.е. цепные коэффициенты роста практически постоянны.

Выравнивание по степенной функции (параболе второго порядка) используется, ко­гда ряды динамики изменяются с постоянными цепными темпами прироста.

Выравнивание по логарифмической функции применяется, когда ряд отражает разви­тие с замедлением роста в конце периода, т.е. когда прирост в конечных уровнях вре­менного ряда стремится к нулю.

По вычисленным параметрам выполняется синтез трендовой модели функции, т.е. получение значений a 0 , a 1 , a ,2 и их подстановка в искомое уравнение.

Правильность расчетов аналитических уровней можно проверить по следующему условию: сумма значений эмпирического ряда должна совпадать с суммой вычислен­ных уровней выровненного ряда. При этом может возникнуть небольшая погрешность в расчетах из-за округления вычисляемых величин:

Для оценки точности трендовой модели используется коэффициент детерминации:

где - дисперсия теоретических данных, полученных по трендовой модели, а - дисперсия эмпирических данных.

Трендовая модель адекватна изучаемому процессу и отражает тенденцию его раз­вития при значениях R 2 , близких к 1.

После выбора наиболее адекватной модели можно сделать прогноз на любой из периодов. При составлении прогнозов оперируют не точечной, а интервальной оцен­кой, определяя так называемые доверительные интервалы прогноза. Величина довери­тельного интервала определяется в общем виде следующим образом:

где среднее квадратическое отклонение от тренда; t a - табличное значение t- критерия Стьюдента при уровне значимости a , которое зависит от уровня значимо­стиa (%) и числа степеней свободы к = п - т. Величина - определяется по формуле:

где и – фактические и расчетные значения уровней динамического ряда; п - число уровней ряда; т - количество параметров в уравнении тренда (для уравнения прямой т - 2, для уравнения параболы 2-го порядка т = 3).

После необходимых расчетов определяется интервал, в котором с определенной вероятностью будет находиться прогнозируемая величина.

С помощью Microsoft Excel строить трендовые модели достаточно просто. Сначала эмпирический временной ряд следует представить в виде диаграммы одного из сле­дующих типов: гистограмма, линейчатая диаграмма, график, точечная диаграмма, диаграмма с областями, а затем щелкнуть на диаграмме правой кнопкой мыши на од­ном из маркеров данных. В результате на диаграмме будет выделен сам временной ряд, а на экране раскроется контекстное меню. В этом ме­ню следует выбрать команду Add Trendline (Добавить линию тренда). На экран будет выведено диалоговое окно Add Trendline.

На вкладке Туре (Тип) этого диалогового окна выбирается требуемый тип тренда:

1. линейный (Linear);

2. логарифмический (Logarithmic);

3. полиномиальный, от 2-й до 6-й степени включительно (Polinomial);

4. степенной (Power);

5. экспоненциальный (Exponential);

6. скользящее среднее, с указанием периода сглаживания от 2 до 15 (Moving Average).

На вкладке Options (Параметры) этого диалогового окна задаются дополнительные параметры тренда.

1. Trendline Name (Название сглаженной кривой) - в этой группе выбирается на­звание, которое будет выведено на диаграмму для обозначения функции, исполь­зованной для сглаживания временного ряда. Возможны следующие варианты:

♦ Automatic (Автоматическое) - при установке переключателя в это положе­ние Microsoft Excel автоматически формирует название функции сглажива­ния тренда, основываясь на выбранном типе тренда, например Linear (Линейная функция).

♦ Custom (Другое) - при установке переключателя в данное положение в по­ле справа можно ввести собственное название для функции тренда, длиной до 256 символов.

2. Forecast (Прогноз) - в этой группе можно указать, на сколько периодов вперед (поле Forward) требуется спроектировать линию тренда в будущее и на сколько периодов назад (поле Backward) следует спроектировать линию тренда в про­шлое (эти поля недоступны в режиме скользящего среднего).

3. Set intercept (Пересечение кривой с осью Y в точке) - этот флажок опции и расположенное справа поле ввода позволяют непосредственно указать точку, в которой линия тренда должна пересекать ось Y (эти поля доступны не для всех режимов).

4. Display equation on chart (Показывать уравнение на диаграмме) - при установке этого флажка опции на диаграмму будет выведено уравнение, описывающее сглаживающую линию тренда.

5. Display R-squared value on chart (Поместить на диаграмму величину достоверно­сти аппроксимации R 2) - при установке данного флажка опции на диаграмме будет показано значение коэффициента детерминации.

Вместе с линией тренда на графике временного ряда могут быть также изображены планки погрешностей. Для вставки планок погрешностей необходимо выделить ряд данных, щелкнуть на нем правой кнопкой мыши и выбрать в раскрывшемся контек­стном меню команду Format Data Series. На экране раскроется диалоговое окно Format Data Series (Формат ряда данных), в котором следует перейти на вкладку Y Error Bars (Y-погрешности).

На этой вкладке с помощью переключателя Error amount (Величина погрешности) выбирается тип планок и вариант их расчета в зависимости от вида погрешности.

1. Fixed value (Фиксированное значение) - при установке переключателя в это положение за допустимую величину ошибки принимается заданное в поле счетчика справа постоянное значение;

2. Percentage (Относительное значение) - при установке переключателя в данное положение для каждой точки данных вычисляется допустимое отклонение, исходя из заданного в поле счетчика справа значения процента;

3. Standard deviation(s) (Стандартное отклонение) - при установке переключателя в данное положение для каждой точки данных вычисляется стандартное отклонение, которое затем умножается на заданное в поле счетчика справа число (коэффициент кратности);

4. Standard error (Стандартная погрешность) - при установке переключателя в данное положение принимается стандартная величина ошибки, постоянная для всех элементов данных;

5. Custom (Пользовательская) - при установке переключателя в это положение вводится произвольный массив значений отклонений в положительную и/или отрицательную сторону (можно ввести ссылки на диапазон ячеек).

Планки погрешностей тоже можно форматировать. Для этого их следует выделить щелчком правой кнопки мыши и выбрать в раскрывшемся контекстном меню коман­ду Format Error Bars (Формат планок погрешностей).

Задание 3. С помощью программы Microsoft Excel на основании данных об объеме выпуска Задания 1 необходимо:

Представить временной ряд в виде графика, построенного с помощью мастера диаграмм. Затем добавить линию тренда, подбирая наиболее подходящий вариант уравнения.

Представить полученные результаты в виде таблицы «Подбор уравнения тренда»:

Таблица «Подбор уравнения тренда»

Представить выбранное уравнение графически, вынеся в график данные о наименовании полученной функции и величину достоверности аппроксимации (R 2).

Задание 4. Ответьте на следующие вопросы:

1. При анализе тренда для некоторого набора данных коэффициент детерминации для линейной модели оказался равен 0,95, для логарифмической - 0,8, а для полинома третьей степени - 0,9636. Какая трендовая модель наиболее адекват­на изучаемому процессу:

а) линейная;

б) логарифмическая;

в) полином 3-й степени.

2. По данным, представленным в задании 1, спрогнозируйте объем выпуска про­дукции в 2003 году. Какая общая тенденция поведения исследуемой величины следует из результатов вашего прогноза:

а) наблюдается спад производства;

б) производство остается на прежнем уровне;

в) наблюдается рост производства.

В данном материале были рассмотрены основные характеристики временного ряда, мо­дели декомпозиции временного ряда, а также основные методы сглаживания ряда - метод скользящего среднего, экспоненциального сглаживания и аналитического вы­равнивания. Для решения этих задач Microsoft Excel предлагаются такие инструменты, как Moving Average (Скользящее среднее) и Exponential Smoothing (Экспоненциальное сглаживание), которые позволяют сглаживать уровни эмпирического временного ряда, а также команда Add Trendiine (Добавить линию тренда), которая позволяет строить модели тренда и делать прогноз на основе имеющихся значений временного ряда.

P.S. Чтобы включить «Пакет анализ данных», выберите команду Tools →Data Analysis (Сервис → Анализ данных).

Если Data Analysis отсутствует, то необходимо выполнить следующие действия:

1. Выбрать команду Tools → Add-ins (Надстройки).

2. Выбрать в предложенном списке настроек значение Analysis ToolPak (Пакет анализа), а затем щелкнуть ОК. После этого будет выполнена загрузка и подключение к Excel пакета настройки «Анализ данных». Соответствующая команда появится в меню Tools.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

Парная регрессия используется при моделировании, если влиянием других факторов, воздействующих на объект исследования можно пренебречь.

Например, при построении модели потребления того или иного товара от дохода, исследователь предполагает, что в каждой группе дохода одинаково влияние на потребление таких факторов, как цена товара, размер семьи, ее состав. Однако, уверенности в справедливости данного утверждения нет.

Прямой путь решения такой задачи состоит в отборе единиц совокупности с одинаковыми значениями всех других факторов, кроме дохода. Он приводит к планированию эксперимента – метод, который используется в естественнонаучных исследованиях. Экономист лишен возможности регулировать другие факторы. Поведение отдельных экономических переменных контролировать нельзя, т.е. не удается обеспечить равенство прочих условий для оценки влияния одного исследуемого фактора.

Как поступить в этом случае? Надо выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии.

Такого рода уравнения используется при изучении потребления.

Коэффициенты b j – частные производные у по факторами х i

При условии, что все остальные х i = const

Рассмотрим современную потребительскую функцию (впервые 30е годы предложил Кейнс Дж.М.) как модель вида С = f(y,P,M,Z)

c- потребление. у – доход

P – цена, индекс стоимости.

M – наличные деньги

Z – ликвидные активы

При этом

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функций издержек производства, в макроэкономических вопросах и других вопросах эконометрики.

В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого их них в отдельности, а также совокупное воздействие на моделируемый показатель.

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Она включает в себя два круга вопросов:

1. Отбор факторов;

2. Выбор уравнения регрессии.

Включение в уравнение множественной регрессии того или иного набора факторов связано с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Требования к факторам, включаемым во множественную регрессию:

1. они должны быть количественно измеримы, если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости: районы должны быть проранжированы).

2. факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Включение в модель факторов с высокой интеркорреляцией, когда R у x 1

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются интерпретируемыми.

В уравнение предполагается, что факторы х 1 и х 2 независимы друг от друга, r х1х2 = 0, тогда параметр b 1 измеряет силу влияния фактора х 1 на результат у при неизменном значении фактора х 2 . Если r х1х2 =1, то с изменением фактора х 1 фактор х 2 не может оставаться неизменным. Отсюда b 1 и b 2 нельзя интерпретировать как показатели раздельного влияния х 1 и х 2 и на у.

Пример, рассмотрим регрессию себестоимости единицы продукции у (руб.) от заработной платы работника х (руб.) и производительности труда z (ед. в час).

у = 22600 - 5x - 10z + e

коэффициент b 2 = -10, показывает, что с ростом производительности труда на 1 ед. себестоимость единицы продукции снижается на 10 руб. при постоянном уровне оплаты.

Вместе с тем параметр при х нельзя интерпретировать как снижение себестоимости единицы продукции за счет роста заработной платы. Отрицательное значение коэффициента регрессии при переменной х обусловлено высокой корреляцией между х и z (r х z = 0,95). Поэтому роста заработной платы при неизменности производительности труда (не учитывая инфляции) быть не может.

Включенные во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строиться модель с набором р факторов, то для нее рассчитывается показатель детерминации R 2 , которая фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р факторов. Влияние других неучтенных в модели факторов оценивается как 1-R 2 c соответствующей остаточной дисперсией S 2 .

При дополнительном включении в регрессию р+1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшается.

R 2 p +1 ≥ R 2 p и S 2 p +1 ≤ S 2 p .

Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включенный в анализ фактор x р+1 не улучшает модель и практически является лишним фактором.

Если для регрессии, включающей 5 факторов R 2 = 0,857, и включенный 6 дало R 2 = 0,858, то нецелесообразно включать в модель этот фактор.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической не значимости параметров регрессии по критерию t-Стьюдента.

Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости.

Отбор факторов производиться на основе теоретико-экономического анализа. Однако, он часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов осуществляется в две стадии:

на первой – подбирают факторы, исходя из сущности проблемы.

на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Коэффициенты интеркоррелиции (т.е. корреляция между объясняющими переменными) позволяют исключить из моделей дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если r xixj ≥0,7.

Поскольку одним из условий построения уравнения множественной регрессии является независимость действия факторов, т.е. r х ixj = 0, коллинеарность факторов нарушает это условие. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Рассмотрим матрицу парных коэффициентов корреляции при изучении зависимости у = f(x, z, v)

y x z V
Y
X 0,8
Z 0,7 0,8
V 0,6 0,5 0,2

Очевидно, факторы x и z дублируют друг друга. В анализ целесообразно включит фактор z, а не х, так как корреляция z с у слабее чем корреляция фактора х с у (r у z < r ух), но зато слабее межфакторная корреляция (r zv < r х v)

Поэтому в данном случае в уравнение множественной регрессии включает факторы z и v . По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Но наиболее трудности возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарности факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК. Если рассмотренная регрессия у = a + bx + cx + dv + e, то для расчета параметров, применяется МНК:

S y = S факт +S e

или
=
+

общая сумма = факторная + остаточная

Квадратов отклонений

В свою очередь, при независимости факторов друг от друга, выполнимо равенство:

S = S x +S z + S v

Суммы квадратов отклонения, обусловленных влиянием соответствующих факторов.

Если же факторы интеркоррелированы, то данное равенство нарушается.

Включение в модель мультиколлинеарных факторов нежелательно в силу следующего:

· затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл;

· оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Для оценки мультиколлинеарных факторов будем использовать определитель матрицы парных коэффициентов корреляции между факторами. Если бы факторы не коррелировали между собой, то матрица парных коэффициентов была бы единичной.

y = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + e

Если же между факторами существует полная линейная зависимость, то:

Чем ближе к 0 определитель, тем сильнее межколлинеарность факторов и ненадежны результаты множественной регрессии. Чем ближе к 1, тем меньше мультиколлинеарность факторов.

Оценка значимости мультиколлинеарности факторов может быть проведена методами испытания гипотезы 0 независимости переменных H 0:

Доказано, что величина
имеет приближенное распределение с степенями свободы. Если фактически значение превосходит табличное (критическое) то гипотеза H 0 отклоняется. Это означает, что , недиагональные коэффициенты указывают на коллинеарность факторов. Мультиколлинеарность считается доказанной.

Через коэффициенты множественной детерминации можно найти переменные, ответственные за мультиколлинеарность факторов. Для этого в качестве зависимой переменной рассматривается каждый из факторов. Чем ближе значение R 2 к 1, тем сильнее проявляется мультиколлинеарность. Сравнивая между собой коэффициенты множественной детерминации и т.п.

Можно выделить переменные, ответственные за мультиколлинеарность, следовательно, решить проблему отбора факторов, оставляя в уравнения факторы с минимальной величиной коэффициента множественной детерминации.

Существует ряд походов преодоления сильной межфакторной корреляции. Самый простой путь устранения МК состоит в исключении из модели одного или несколько факторов.

Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

Если y = f(x 1 , x 2 , x 3), то возможно построение следующего совмещенного уравнения:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 12 x 1 x 2 + b 13 x 1 x 3 + b 23 x 2 x 3 + e.

Это уравнение включает взаимодействие первого порядка (взаимодействие двух факторов).

Возможно включение в уравнение взаимодействий и более высокого порядка, если будет доказано их статистически значимость по F-критерию

b 123 x 1 x 2 х 3 – взаимодействие второго порядка.

Если анализ совмещенного уравнения показал значимость только взаимодействия факторов х 1 и х 3 , то уравнение будет имеет вид:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 13 x 1 x 3 + e.

Взаимодействие факторов х 1 и х 3 означает, что на разных уровнях фактора х 3 влияние фактора х 1 на у будет неодинаково, т.е. оно зависит от значения фактора х 3 . На рис. 3.1 взаимодействие факторов представляет непараллельными линями связи с результатом у. И наоборот, параллельные линии влияние фактора х 1 на у при разных уровнях фактора х 3 означают отсутствие взаимодействия факторов х 1 и х 3 .

(х 3 =В 2)
(х 3 =В 1)
(х 3 =В 1)
(х 3 =В 2)
у
у
1
х 1
а
б
у
у
Х 1
Х 1

Рис 3.1. Графическая иллюстрация взаимодействия факторов.

а - х 1 влияет на у, причем это влияние одинаково при х 3 =В 1 , так и при х 3 =В 2 (одинаковый наклон линий регрессии), что означает отсутствие взаимодействия факторов х 1 и х 3 ;

б – с ростом х 1 результативный признак у возрастает при х 3 =В 1 , с ростом х 1 результативный признак у снижается при х 3 =В 2 . Между х 1 и х 3 существует взаимодействие.

Совмещенные уравнения регрессии строятся, например, при исследовании эффекта влияния на урожайность разных видов удобрений (комбинации азота и фосфора).

Решению проблемы устранения мультиколлинеарности факторов может помочь и переход к устранениям приведенной формы. С этой целью в уравнение регрессии производится подстановка рассматриваемого фактора через выражение его из другого уравнения.

Пусть, например, рассматривается двухфакторная регрессия вида a + b 1 x 1 + b 2 x 2 , для которой x 1 и x 2 обнаруживают высокую корреляцию. Если исключить один из факторов, то мы придем к уравнению парной регрессии. Вместе с тем можно оставить факторы в модели, но исследовать данное двухфакторное уравнение регрессии совместно с другим уравнением, в котором фактор (например х 2) рассматривается как зависимая переменная. Предположим, известно, что . Постановляя это уравнение в искомое вместо х 2 , получим:

Если , то разделив обе части равенства на , получаем уравнение вида:

,

которое представляет собой приведенную форму уравнения для определения результативного признака у. Это уравнение может быть представлено в виде:

К нему для оценки параметров может быть применен МНК.

Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Походы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно разным методикам. В зависимости от того, какая методика построение уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.

Наиболее широкое применение получили следующие методы построение уравнения множественной регрессии :

· метод исключения;

· метод включения;

· шаговый регрессионный анализ.

Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты – отсев факторов из полного его отбора (метод исключение), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).

На первый взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут в полной мере решать вопрос о целесообразности включения в модель того или иного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется процедура отсева фактора. При отборе факторов рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6-7 раз меньше объема совокупности, по которой строит регрессии. Если это отношение нарушено, то число степеней свободы остаточной вариаций очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а F-критерий меньше табличного значения.

Классическая линейная модель множественной регрессии (КЛММР):

где y – регрессанд; x i – регрессоры; u – случайная составляющая.

Модель множественной регрессии является обобщением модели парной регрессии на многомерный случай.

Независимые переменные (х) предполагаются не случайными (детерминированными) величинами.

Переменная х 1 = x i 1 = 1 называется вспомогательной переменной для свободного члена и еще в уравнениях она называется параметром сдвиги.

«y» и «u» в (2) являются реализациями случайной величины.

Называется также параметром сдвига.

Для статистической оценки параметров регрессионной модели необходим набор (множество) данных наблюдений независимых и зависимых переменных. Данные могут быть представлены в виде пространственных данных или временных рядов наблюдений. Для каждого из таких наблюдений согласно линейной модели можно записать:

Векторно-матричная запись системы (3).

Введем следующие обозначения:

вектор-столбец независимой переменной (регрессанда)

размерность матрицы (n·1)

Матрица наблюдений независимых переменных (регрессоров):

размер (n×k)

Вектор-столбец параметров:

- матричная запись системы уравнений (3). Она проще и компактнее.

Сформируем предпосылки, которые необходимы при выводе уравнении для оценок параметров модели, изучения их свойств и тестирования качества модели. Эти предпосылки обобщают и дополняют предпосылки классической модели парной линейной регрессии (условия Гаусса – Маркова).

Предпосылка 1. независимые переменныене случайны и измеряются без ошибок. Это означает, что матрица наблюдений Х – детерминированная.

Предпосылка 2. (первое условие Гаусса – Маркова): Математическое ожидание случайной составляющей в каждом наблюдении равно нулю.

Предпосылка 3. (второе условие Гаусса – Маркова): теоретическая дисперсия случайной составляющей одинакова для всех наблюдений.

(Это гомоскедастичность)

Предпосылка 4. (третье условие Гаусса – Маркова): случайные составляющие модели не коррелированны для различных наблюдений. Это означает, что теоретическая ковариация

Предпосылки (3) и (4) удобно записать, используя векторные обозначения:

матрица - симметричная матрица. - единичная матрица размерности n, верхний индекс Т – транспонирование.

Матрица называется теоретической матрицей ковариаций (или ковариационной матрицей).

Предпосылка 5. (четвертое условие Гаусса – Маркова): случайная составляющая и объясняющие переменные не коррелированны (для модели нормальной регрессии это условие означает и независимость). В предположении, что объясняющие переменные не случайные, эта предпосылка в классической регрессионной модели всегда выполняется.

Предпосылка 6 . коэффициенты регрессии – постоянные величины.

Предпосылка 7 . уравнение регрессии идентифицируемо. Это означает, что параметры уравнения в принципе оцениваемы, или решение задачи оценивания параметров существует и единственно.

Предпосылка 8 . регрессоры не коллинеарны. В таком случае матрица наблюдений регрессоров должна быть полного ранга. (ее столбцы должны быть линейно независимы). Данная предпосылка тесно связана с предыдущей, так как при применении для оценивания коэффициентов МНК ее выполнение гарантирует идентифицируемость модели (если количество наблюдений больше количества оцениваемых параметров).

Предпосылка 9. Количество наблюдений больше количества оцениваемых параметров, т.е. n>k.

Все эти 1-9 предпосылки одинаково важны, и только при их выполнении можно применять классическую регрессионную модель на практике.

Предпосылка о нормальности случайной составляющей . При построении доверительных интервалов для коэффициентов модели и прогнозов зависимой переменной, проверки статистических гипотез относительно коэффициентов, разработке процедур для анализа адекватности (качества) модели в целом необходимо предположение о нормальном распределении случайной составляющей. С учетом этой предпосылки модель (1) называется классической многомерной линейной моделью регрессии.

Если предпосылки не выполняются, то необходимо строить так называемые обобщенные модели линейной регрессии. От того, насколько корректно (правильно) и осознанно используются возможности регрессионного анализа, зависит успех эконометрического моделирования, и, в конечном счете, обоснованность принимаемых решений.

Для построения уравнения множественной регрессии чаще используются следующие функции

1. линейная: .

2. степенная: .

3. экспоненциальная: .

4. гипербола:

В виду четкой интерпретации параметров наиболее широко используются линейная и степенная функции. В линейной множественной регрессии параметры при Х называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизменном значении других факторов, закрепленных на среднем уровне.

Пример . Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:

где у – расходы семьи за месяц на продукты питания, тыс.руб.;

х 1 – месячный доход на одного члена семьи, тыс.руб.;

х 2 – размер семьи, человек.

Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс. руб. расходы на питание возрастут в среднем на 350 руб. при томже размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же ее доходах предполагает дополнительный рост расходов на питание на 730 руб. Параметр а - не имеет экономической интерпретации.

При изучении вопросов потребления коэффициенты регрессии рассматривают как характеристики предельной склонности к потреблению. Например, если функции потребления С t имеет вид:

С t = a+b 0 R t + b 1 R t -1 +e,

то потребление в период времени t зависит от дохода того же периода R t и от дохода предшествующего периода R t -1 . Соответственно коэффициент b 0 обычно называют краткосрочной предельной склонностью к потреблению. Общим эффектом возрастания как текущего, так и предыдущего дохода будет рост потребления на b= b 0 + b 1 . Коэффициент b рассматривается здесь как долгосрочная склонность к потреблению. Так как коэффициенты b 0 и b 1 >0, то долгосрочная склонность к потреблению должна превосходить краткосрочную b 0 . Например, за период 1905 – 1951 гг. (за исключением военных лет) М.Фридман построил для США следующую функцию потребления: С t = 53+0,58 R t +0,32 R t -1 с краткосрочной предельной склонностью к потреблению 0,58 и с долгосрочной склонностью к потреблению 0,9.

Функция потребления может рассматриваться также в зависимости от прошлых привычек потребления, т.е. от предыдущего уровня потребления

С t-1: С t = a+b 0 R t +b 1 С t-1 +e,

В этом уравнении параметр b 0 также характеризует краткосрочную предельную склонность к потреблению, т.е. влияние на потребление единичного роста доходов того же периода R t . Долгосрочную предельную склонность к потреблению здесь измеряет выражение b 0 /(1- b 1).

Так, если уравнение регрессии составило:

С t = 23,4+0,46 R t +0,20 С t -1 +e,

то краткосрочная склонность к потреблению равна 0,46, а долгосрочная – 0,575 (0,46/0,8).

В степенной функции
коэффициенты b j являются коэффициентами эластичности. Они показывают, на сколько процентов изменяется в среднем результат с изменением соответствующего фактора на 1% при неизменности действия других факторов. Этот вид уравнения регрессии получил наибольшее распространение в производственных функциях, в исследованиях спроса и потребления.

Предположим, что при исследовании спроса на мясо получено уравнение:

где у – количество спрашиваемого мяса; х 1 – его цена; х 2 – доход.

Следовательно, рост цен на 1% при том же доходе вызывает снижение спроса на мясо в среднем на 2.63%. Увеличение дохода на 1% обуславливает при неизменных ценах рост спроса на 1.11%.

В производственных функциях вида:

где P – количество продукта, изготавливаемого с помощью m производственных факторов (F 1 , F 2 , ……F m).

b – параметр, являющийся эластичностью количества продукции по отношению к количеству соответствующих производственных факторов.

Экономический смысл имеют не только коэффициенты b каждого фактора, но и их сумма, т.е. сумма эластичностей: В = b 1 +b 2 +……+b m . Эта величина фиксирует обобщенную характеристику эластичности производства. Производственная функция имеет вид

где Р – выпуск продукции; F 1 – стоимость основных производственных фондов; F 2­ ­ - отработано человеко-дней; F 3 – затраты на производство.

Эластичность выпуска по отдельным факторам производства составляет в среднем 0,3% с ростом F 1 на 1% при неизменном уровне других факторов; 0,2% - с ростом F 2­ ­ на 1% также при неизменности других факторов производства и 0,5% с ростом F 3 на 1% при неизменном уровне факторов F 1 и F 2 . Для данного уравнения В = b 1 +b 2 +b 3 = 1. Следовательно, в целом с ростом каждого фактора производства на 1% коэффициент эластичности выпуска продукции составляет 1%, т.е. выпуск продукции увеличивается на 1%, что в микроэкономике соответствует постоянной отдаче на масштаб.

При практических расчетах не всегда . Она может быть как больше, так и меньше 1. В этом случае величина В фиксирует приближенную оценку эластичности выпуска с ростом каждого фактора производства на 1% в условиях увеличивающейся (В>1) или уменьшающейся (В<1) отдачи на масштаб.

Так, если
, то с ростом значений каждого фактора производства на 1% выпуск продукции в целом возрастает приблизительно на 1.2%.

При оценке параметров модели по МНК мерой (критерием) количества подгонки эмпирической регрессионной модели к наблюдаемой выборке служит сумма квадратов ошибок (остатков).

Где е = (e1,e2,…..e n) T ;

Для уравнения применили равенство: .

Скалярная функция;

Система нормальных уравнений (1) содержит k линейных уравнений относительно k неизвестных i = 1,2,3……k

= (2)

Перемножив (2) получим развернутую форму записи систем нормальных уравнений

Оценка коэффициентов

Стандартизированные коэффициенты регрессии, их интерпретация. Парные и частные коэффициенты корреляции. Множественный коэффициент корреляции. Множественный коэффициент корреляции и множественный коэффициент детерминации. Оценка надежности показателей корреляции.

Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов (МНК). При его применении строится система нормальных уравнений, решение которой и позволяет получить оценки параметров регрессии.

Так, для уравнения система нормальных уравнений составит:

Ее решение может быть осуществлено методом определителей:

, ,…, ,

где D – главный определитель системы;

Dа, Db 1 , …, Db p – частные определители.

а Dа, Db 1 , …, Db p получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Возможен и иной подход в определении параметров множественной регрессии, когда на основе матрицы парных коэффициентов корреляции строится уравнение регрессии в стандартизованном масштабе:

где - стандартизованные переменные , для которых среднее значение равно нулю , а среднее квадратическое отклонение равно единице: ;

Стандартизованные коэффициенты регрессии.

Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных вида

Решая ее методом определителей, найдем параметры – стандартизованные коэффициенты регрессии (b-коэффициенты).

Стандартизованные коэффициенты регрессии показывают, на сколько сигм изменится в среднем результат, если соответствующий фактор х i изменится на одну сигму при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии b I сравнимы между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.

Пример. Пусть функция издержек производства у (тыс. руб.) характеризуется уравнением вида

где х 1 – основные производственные фонды;

х 2 – численность занятых в производстве.

Анализируя его, мы видим, что при той же занятости дополнительный рост стоимости основных производственных фондов на 1 тыс. руб. влечет за собой увеличение затрат в среднем на 1,2 тыс. руб., а увеличение численности занятых на одного человека способствует при той же технической оснащенности предприятий росту затрат в среднем на 1,1 тыс. руб. Однако это не означает, что фактор х 1 оказывает более сильное влияние на издержки производства по сравнению с фактором х 2 . Такое сравнение возможно, если обратиться к уравнению регрессии в стандартизованном масштабе. Предположим, оно выглядит так:

Это означает, что с ростом фактора х 1 на одну сигму при неизменной численности занятых затрат на продукцию увеличиваются в среднем на 0,5 сигмы. Так как b 1 < b 2 (0,5 < 0,8), то можно заключить, что большее влияние оказывает на производство продукции фактор х 2 , а не х 1 , как кажется из уравнения регрессии в натуральном масштабе.

В парной зависимости стандартизованный коэффициент регрессии есть не что иное, как линейный коэффициент корреляции r xy . Подобно тому, как в парной зависимости коэффициент регрессии и корреляции связаны между собой, так и в множественной регрессии коэффициенты «чистой» регрессии b i связаны со стандартизованными коэффициентами регрессии b i , а именно:

(3.1)

Это позволяет от уравнения регрессии в стандартизованном масштабе

(3.2)

переход к уравнению регрессии в натуральном масштабе переменных.

1. Введение…………………………………………………………………….3

1.1. Линейная модель множественной регрессии……………………...5

1.2. Классический метод наименьших квадратов для модели множественной регрессии…………………………………………..6

2. Обобщенная линейная модель множественной регрессии……………...8

3. Список использованной литературы…………………………………….10

Введение

Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени. Каждый уровень временного ряда формируется под воздействием большой числа факторов, которые условно можно подразделить на три группы:

Факторы, формирующую тенденцию ряда;

Факторы, формирующие циклические колебания ряда;

Случайные факторы.

При различных сочетаниях этих факторов зависимость уров­ней рада от времени может принимать разные формы.

Большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. По всей видимости, эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они форми­руют его возрастающую или убывающую тенденцию.

Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезон­ный характер., поскольку экономическая деятельность ряда от­раслей зависит от времени года (например, цены на сельскохо­зяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес-цикла, в которой находится экономика страны.

Некоторые временные ряды не содержат тенденции и цикли­ческую компоненту, а каждый следующий их уровень образуется как сумма среднего уровня рада и некоторой (положительной или отрицательной) случайной компоненты.

Очевидно, что реальные данные не соответствуют полностью ни одной из описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воз­действием тенденции, сезонных колебаний и случайной компо­ненты.

В большинстве случаев фактический уровень временного ря­да можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой времен­ной ряд представлен как сумма перечисленных компонент, назы­вается аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда.


1.1. Линейная модель множественной регрессии

Парная регрессия может дать хороший результат при моделирова­нии, если влиянием других факторов, воздействующих на объект исследо­вания, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, вводя их в модель, т.е, построить уравнение множественной регрессии.

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов экономет­рики. В настоящее время множественная регрессия - один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии - построить модель с боль­шим числом факторов, определив при этом влияние каждого из них в отдель­ности, а также совокупное их воздействие на моделируемый показатель.

Общий вид линейной модели множественной регрессии:

где n - объём выборки, который по крайней мере в 3 раза превосходит m -количество независимых переменных;

у i - значение результативной пере­менной в наблюдении I;

х i1 ,х i2 , ...,х im -значения независимых перемен­ных в наблюдении i;

β 0 , β 1 , … β m -параметры уравнения регрессии, под­лежащие оценке;

ε - значение случайной ошибки модели множественной регрессии в наблюдении I,

При построении модели множественной линейной регрессии учиты­ваются следующие пять условий:

1. величины х i1 ,х i2 , ...,х im - неслучайные и независимые переменные;

2. математическое ожидание случайной ошибки уравнения регрессии
равно нулю во всех наблюдениях: М (ε) = 0, i= 1,m;

3. дисперсия случайной ошибки уравнения регрессии является постоянной для всех наблюдений: D(ε) = σ 2 = const;

4. случайные ошибки модели регрессии не коррелируют между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): соv(ε i ,ε j .) = 0, i≠j;

5. случайная ошибка модели регрессии - случайная величина, подчиняющаяся нормальному закону распределения с нулевым математическим ожиданием и дисперсией σ 2 .

Матричный вид линейной модели множественной регрессии:

где: - вектор значений результативной переменной размерности n×1

матрица значений независимых переменных размерности n× (m + 1). Первый столбец этой матрицы является единичным, так как в модели регрессии коэффициент β 0 , умножается на единицу;

Вектор значений результативной переменной размерности (m+1)×1

Вектор случайных ошибок размерности n×1

1.2. Классический метод наименьших квадратов для модели множественной регрессии

Неизвестные коэффициенты линейной модели множественной рег­рессии β 0 , β 1 , … β m оцениваются с помощью классического метода наи­меньших квадратов, основная идея которого заключается в определении такого вектора оценки Д, который минимизировал бы сумму квадратов отклонений наблюдаемых значений результативной переменной у от мо­дельных значений (т. е. рассчитанных на основании построенной моде­ли регрессии).

Как известно из курса математического анализа, для того чтобы най­ти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Обозначив b i с соответствующими индексами оценки коэффициентов модели β i , i=0,m, имеет функцию m+1 аргумента.

После элементарных преобразований приходим к системе линейных нормальных уравнений для нахождения оценок параметров линейного уравнения множественной регрессии.

Полученная система нормальных уравнений является квадратной, т. е. количество уравнений равняется количеству неизвестных переменных, поэтому решение системы можно найти с помощью метода Крамера или метода Гаусса,

Решением системы нормальных уравнений в матричной форме будет вектор оценок.

На основе линейного уравнения множественной регрессии могут быть найдены частные уравнения регрессии, т. е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором х i при закреплении остальных факторов на среднем уровне.

При подстановке в эти уравнения средних значений соответствую­щих факторов они принимают вид парных уравнений линейной регрессии.

В отличие от парной регрессии, частные уравнения регрессии харак­теризуют изолированное влияние фактора на результат, ибо другие факто­ры закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:

где b i - коэффициент регрессии для фактора x i ; в уравнении множествен­ной регрессии,

у х1 хm - частное уравнение регрессии.

Наряду с частными коэффициентами эластичности могут быть най­дены средние по совокупности показатели эластичности. которые показывают, на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе из воздействия на результат.

2. Обобщенная линейная модель множественной регрессии

Коренное отличие обобщенной модели от классической состоит только в виде ковариационной квадратной матрицы вектора возмущений: вместо матрицы Σ ε = σ 2 E n для классической модели имеем матрицу Σ ε = Ω для обобщенной. Последняя имеет произвольные значения ковариаций и дисперсий. Например, ковариационные матрицы классической и обобщенной моделей для двух наблюдений (п=2) в общем случае будут иметь вид:

Формально обобщенная линейная модель множественной регрессии (ОЛММР) в матричной форме имеет вид:

Y = Xβ + ε (1)

и описывается системой условий:

1. ε – случайный вектор возмущений с размерностью n; X -неслучайная матрица значений объясняющих переменных (матрица плана) с размерностью nх(р+1); напомним, что 1-й столбец этой матрицы состоит из пединиц;

2. M(ε) = 0 n – математическое ожидание вектора возмущений равно ноль-вектору;

3. Σ ε = M(εε’) = Ω, где Ω – положительно определенная квадратная матрица; заметим, что произведение векторов ε‘ε дает скаляр, а произведение векторов εε’ дает матрицу размерностью nxn;

4. Ранг матрицы X равен р+1, который меньше n; напомним, что р+1 - число объясняющих переменных в модели (вместе с фиктивной переменной), n - число наблюдений за результирующей и объясняющими переменными.

Следствие 1. Оценка параметров модели (1) обычным МНК

b = (X’X) -1 X’Y (2)

является несмещенной и состоятельной, но неэффективной (неоптимальной в смысле теоремы Гаусса-Маркова). Для получения эффективной оценки нужно использовать обобщенный метод наименьших квадратов.

Основной целью множественной регрессии является построение модели с большим числом факторов и определение при этом влияния каждого из факторов в отдельности на результат, а так же определение совокупного воздействия факторов на моделированный показатель.

Спецификация модели множественной регрессии включает в себя отбор фактора и выбор вида математической функции (выбор вида уравнения регрессии). Факторы, включаемые во множественную регрессию должны быть количественно измеримы и не должны быть интеркоррелированы и тем более находиться в точной функциональной связи (т.е. должны в меньшей степени влиять друг на друга, а в большей степени на результативный признак).

Включаемые во множественную регрессию факторы должны объяснять вариацию независимой переменной. Например, если строится модель с набором - факторов, то для нее находится значение показателя детерминации , который фиксирует долю объясненной вариации результативного признака за счет - факторов.

Влияние других неучтенных факторов в модели оценивается как соответствующей остаточной дисперсии .

При включении в модель дополнительного фактора значение показателя детерминации должно возрастать, а значение остаточной дисперсии должно уменьшиться. Если этого не происходит, то дополнительный фактор не улучшает модель и практически является лишним, причем введение такого фактора может привести к статистической не значимости параметров регрессии по - критерию Стьюдента.

Отбор факторов для множественной регрессии осуществляется в две стадии:

1. Подбираются факторы, исходя из сущности проблемы.

2. На основе матрицы показателей корреляции определяют статистики для параметров регрессии.

Коэффициенты корреляции между объясняющими переменными , которые еще называют коэффициентами интеркорреляции, позволяют исключить из модели дублирующие факторы.

Две переменные и называют явно коллинеарными, если коэффициент корреляции .

Если переменные явно коллинеарны, то они находятся в сильной линейной зависимости.



При наличии явно коллинеарных переменных предпочтение отдается не фактору более тесно связанному с результатом, а фактору, который при этом имеет наименьшую тесноту связи с другими факторами.

По величине парных коэффициентов корреляции обнаруживается лишь явная коллениарность факторов.

При использовании множественной регрессии может возникнуть мультиколлениарность фактов, т.е. более чем два фактора связаны между собой линейной зависимостью. В таких случаях менее надежным становится МНК при оценке отдельных факторов, результатом чего становится затруднение интерпретации параметров множественной регрессии как характеристик действия фактора в чистом виде. Параметры линейной регрессии теряют экономический смысл, оценки параметров ненадежны, возникают большие стандартные ошибки, которые при этом могут изменяться с изменением объема наблюдений, т.е. модель становится непригодной для анализа и прогнозирования экономической ситуации. Для оценки мультиколлениарности фактора используют следующие методы:

1. Определение матрицы парных коэффициентов корреляции между факторами, например, если задана линейная модель множественной регрессии , то определитель матрицы парных коэффициентов примет вид:

Если значение данного определителя равно 1

,

то факторы являются неколлинеарными между собой.

Если между факторами существует полная линейная зависимость, то все коэффициенты парной корреляции равны 1, в результате чего

.

2. Метод испытания гипотезы о независимости переменных. В этом случае нулевая гипотеза , доказано, что величина имеет приближенное распределение с числом степеней свободы .

Если , то нулевая гипотеза отклоняется.

Определяя и сравнивая между собой коэффициенты множественной детерминации фактора, используя в качестве зависимой переменной последовательно каждой из факторов можно определить факторы, ответственные за мультиколлениарность, т.е. фактор с наибольшим значением величины .

Существуют следующие способы преодоления сильной межфакторной корреляции:

1) исключение из модели одного или несколько данных;

2) преобразование факторов для уменьшения корреляции;

3) совмещение уравнения регрессии, которые будут отражать не только факторы, но и их взаимодействие;

4) переход уравнения приведенной формы и др.

При построении уравнения множественной регрессии одним из важнейших этапов является отбор факторов, включаемых в модель. Различные подходы к отбору факторов на основе показателей корреляции к различным методам, среди которых наиболее применимы:

1) Метод исключения – производится отсев данных;

2) Метод включения – вводят дополнительный фактор;

3) Шаговый регрессионный анализ – исключают ранее введенный фактор.

При отборе факторов применяют следующее правило: число включаемых факторов обычно в 6-7 раз меньше объема совокупности, по которой строится модель.

Параметр не подлежит экономической интерпретации. В степенной модели нелинейное уравнение множественной регрессии коэффициенты , ,…, являются коэффициентами эластичности, которые показывают насколько, в среднем, изменится результат при изменении соответствующего фактора на 1% при неизменном воздействии остальных факторов.