Практические занятия по сетевым моделям. Порядок и правила построения сетевых графиков

Сетевые графики (сетевые) модели являются мощным и гибким организационным инструментом менеджмента. Они позволяют осуществлять календарное планирование работ, оптимизацию использования ресурсов, сокращать продолжительность выполнения работ в зависимости от их стоимости или же увеличивать продолжительность исходя из бюджетных ограничений, организовывать оперативный менеджмент в ходе реализации деятельности. Сетевые графики занимают важнейшее место в современном проектном менеджменте.

Сетевой график представляет собой ориентированный граф (геометрическую фигуру, состоящую из вершин и направленных стрелок), изображающий все необходимые для достижения цели операции в их технологической взаимосвязи.

Основными понятиями сетевой модели являются:

  • работа;
  • событие;
  • путь.

Работа - это трудовой процесс, требующий затрат времени и ресурсов. В модели работа изображается в виде сплошной стрелки (дуги графа), над которой стоит цифра, показывающая ее продолжительность. Работа идентифицируется номерами начального и конечного события. Иногда в более сложных сетевых моделях допускается нанесение (сверху или снизу от стрелки) и других условных изображений, таких как наименование работы, ее стоимость, объем, исполнителя, продолжительности, количества ресурсов. С другой стороны, иногда используются модели без каких-либо числовых показателей и обозначений. Такая сеть называется структурной сетевой моделью , или топологией .


Рис. 4.1.

В понятие "работа" включается "процесс ожидания" , т.е. процесс, не требующий затрат труда, но требующий затрат времени. Обычно ожидание изображают в виде пунктирной стрелки, над которой указывают продолжительность ожидания ( рис. 4.1 а, б).

Понятие работы учитывает "зависимость" между двумя или несколькими событиями, не требующую затрат времени, ресурсов, но показывающую логическую связь работ, например, что начало одной или нескольких работ зависит от результатов другой работы. На графике зависимость (или как часто ее не совсем правильно называют "фиктивная работа") показывается в виде пунктирной стрелки без указания времени.

Зависимость используется в сетевых графиках не только как технологическая или организационная связь, но и как элемент, необходимый для выполнения определенных правил построения сетевых графиков.

Событие - это результат выполнения одной или нескольких работ, позволяющий начинать другую работу. В сетевых моделях событие изображается, как правило, в виде кружка.

События не являются процессами и не имеют длительности, т.е. совершаются мгновенно. Поэтому каждое событие, включаемое в график, должно быть полно, точно и всесторонне определено (с точки зрения логической связи работ), его формулировка должна включать в себя результат всех непосредственно предшествующих ему работ.

Событие, стоящее в начале сетевого графика, в которое не входит ни одной работы, называется исходным событием . Событие, стоящее в конце сетевого графика, из которого не выходит ни одной работы, называется завершающим событием .

События делятся на простые и сложные. Простые события - это те, в которые входит одна работа. Сложные события - это те, в которых соединяются две или более работ.


Рис. 4.2.

Событие может являться частным результатом отдельной работы или же суммарным результатом нескольких работ. Событие может совершиться только тогда, когда закончатся все работы, ему предшествующие. Последующие работы могут начаться только после того, как произойдет это событие. Отсюда двойственный характер событий (кроме исходного и завершающего): для всех непосредственно предшествующих событию работ оно является конечным, а для всех непосредственно следующих за ним - начальным ( рис. 4.2).

Путь - это непрерывная последовательность стрелок, начиная от исходного события сетевой модели и заканчивая завершающим. Длина пути определяется продолжительностью работ, лежащих на этом пути.

При сравнении продолжительности путей выявляется путь, длина которого (суммарная продолжительность работ на этом пути) имеет наибольшую величину по сравнению с длиной любого другого пути. Такой путь называется критическим. Критический путь определяет общую продолжительность работ. Пример выявления критического пути изображен на рис. 4.3 . Изображенный на рисунке сетевой график имеет пять путей.


Рис. 4.3.

При контроле работ, выполняемых по сетевому графику, главное внимание концентрируется на работах критического пути, так как именно от них зависит выполнение всех работ в установленный срок. Совершенно естественно, что для сокращения общей продолжительности работ надо искать возможности ускорения работ, лежащих на критическом пути.

Работы, лежащие на критическом пути, являются потенциально "узкими местами". Поэтому внимание руководителя должно сосредоточиваться именно на этих работах. А так как критический путь имеет самую большую продолжительность по сравнению с другими путями, то эти последние имеют запас времени, что дает возможность оперативно маневрировать ресурсами или снижать стоимость выполнения работ за счет увеличения их продолжительности.

Как показывает практика, чем больше работ включает сетевой график, тем меньше удельный вес работ, лежащих на критическом пути. Например, в модели со 100 работами на критическом пути будут находиться 10-12% от общего количества работ; при 1000 работ - 7-8%; при 5000 работ - 3-4%.

Правила построения сетевых моделей

Единой принятой последовательности составления сетевого графика нет. Поэтому строить графики можно по-разному - от начала и до окончания, а также и наоборот - от конца к началу. Более логичным и правильным следует признать метод построения графиков от исходного события до завершающего, т.е. слева направо, так как при таком построении четко понимается технология выполнения моделируемых работ. Этот метод получил наибольшее признание.

Поэтому в качестве первого правила последовательности отображения работ следует указать, что сетевые графики следует строить от начала к окончанию, т.е. слева направо.

Правило изображения стрелок. Стрелки, изображающие работы, ожидания или зависимости, могут иметь различный наклон и длину, но должны, как правило, идти слева направо. Стрелки в сетевом графике не должны отклоняться влево от оси ординат. И конечно, следует иметь в виду, что стрелки направляются всегда от предшествующих событий к последующим, от событий с меньшими номерами к событиям с большими номерами.

Правило пересечения стрелок. Пересечения стрелок допустимы, но чем меньше пересечений, тем график более продуман и нагляден.

Изложенные три правила можно рассматривать как предварительные. Теперь перейдем к основным правилам построения сетевых графиков.

Правило обозначения работ. В практике зачастую встречаются случаи, когда две и более работ выходят из одного и того же события, выполняются параллельно и заканчиваются одним и тем же событием.

Например, одновременно начинается проектирование двух вариантов конструкции новой машины. После их разработки проводится сопоставление и выбор лучшего варианта.

Но правильное изображение этих работ на сетевом графике не должно выводить две работы из одного события и завершать их одним тем же событием. При таком изображении обе работы получают одно и то же обозначение, а это недопустимо, так как при расчете сети невозможно будет определить параметры этих работ, да и всего сетевого графика ( рис. 4.4 а).

В сетевом графике между двумя смежными событиями может проходить только одна стрелка. Обычно для распараллеливания работ вводят дополнительное событие, что показано на рис. 4.4 б.


Рис. 4.4.

Правило расчленения и запараллеливания работ. Во многих процессах позволяется начинать следующую работу, не ожидая полного окончания предшествующей. В этом случае производится "расчленение" предшествующей работы.


Рис. 4.5.

На графике вводится дополнительное событие в том месте предшествующей работы, где может начаться новая. Пример этого приведен на рис. 4.5 . Предстоящая работа предполагает необходимость корректировать рабочие чертежи (работа "а", продолжительность 30 дней) и изготовить испытательный стенд (работа "б", продолжительность 25 дней). Если эти работы изобразить последовательно, то общая продолжительность составит 55 дней, как это изображено на рис. 4.5 а, между работами. После составления сетевого графика и анализа взаимосвязи предполагается, что работу "б" можно начать после выполнения половины работы "а", т.е. через 15 дней. Закончить работу "б" можно только после полного окончания работы "а". Исходя из этого можно построить новый сетевой график, изображенный на рис. 4.5 б. Из него видно, что общая продолжительность работ теперь составляет 42 дня, т.е. мы получили выигрыш во времени на 13 дней.

Правило запрещения замкнутых контуров (циклов или петель). При построении сети недопустимо строить замкнутые контуры, т.е. пути, в которых некоторые события соединяются сами с собой. Нельзя допустить, чтобы в сети возник случай, когда один и тот же путь ведет к тому же событию, из которого он первоначально вышел. Различные случаи замкнутых контуров изображены на рис. 4.6 а, б.


Рис. 4.6.

Если такое замыкание произошло, то это означает, что имеются ошибки в технологии или в составлении графика.

Правило запрещения "тупиков". В сетевом графике не должно быть тупиков - событий, из которых не выходит ни одной работы, за исключением завершающего события (в многоцелевых графиках завершающих событий несколько, но это особый случай).

Правило запрещения "хвостовых" событий. В сетевом графике не должно быть хвостовых событий, т.е. событий, в которые не входит ни одной работы, если это событие не является начальным.

Правила запрещения "тупиков" и "хвостовых" событий проиллюстрированы на рис. 4.7 .


Рис. 4.7.

Правила изображения дифференцированно-зависимых работ. В практике построения сетевых графиков постоянно встречаются случаи, когда одна группа работ зависит от другой группы, а одна или несколько работ имеют дополнительные зависимости или ограничения. Обычно для решения этой проблемы вводят дополнительные события, как это показано на

Сетевые графики составляются на начальном этапе планирования. Вначале планируемый процесс разбивается на отдельные работы, составляется перечень работ и событий, продумываются их логические связи и последовательность выполнения, работы закрепляются за ответственными исполнителями. С их помощью и с помощью нормативов, если таковые существуют, оценивается продолжительность каждой работы. Затем составляется (сшивается) сетевой график. После упорядочения сетевого графика рассчитываются параметры событий и работ, определяются резервы времени и критический путь. Наконец, проводятся анализ и оптимизация сетевого графика, который при необходимости вычерчивается заново с пересчётом параметров событий и работ.

При построении сетевого графика необходимо соблюдать ряд правил.

В сетевой модели не должно быть «тупиковых» событий, то есть событий, из которых не выходит ни одна работа, за исключением завершающего события. Здесь либо работа не нужна и её необходимо аннулировать, либо не замечена необходимость определённой работы, следующей за событием для свершения какого-либо последующего события. В таких случаях необходимо тщательное изучение взаимосвязей событий и работ для исправления возникшего недоразумения.

В сетевом графике не должно быть «хвостовых» событий (кроме исходного), которым не предшествует хотя бы одна работа. Обнаружив в сети такие события, необходимо определить исполнителей предшествующих им работ и включить эти работы в сеть.

В сети не должно быть замкнутых контуров и петель, то есть путей, соединяющих некоторые события с ними же самими. При возникновении контура (а в сложных сетях, то есть в сетях с высоким показателем сложности, это встречается довольно часто и обнаруживается лишь при помощи ЭВМ) необходимо вернуться к исходным данным и путём пересмотра состава работ добиться его устранения.

Любые два события должны быть непосредственно связаны не более чем одной работой-стрелкой. Нарушение этого условия происходит при изображении параллельно выполняемых работ. Если эти работы так и оставить, то произойдёт путаница из-за того, что две различные работы будут иметь одно и то же обозначение. Однако содержание этих работ, состав привлекаемых исполнителей и количество затрачиваемых на работы ресурсов могут существенно отличаться.

Рисунок 1.2 Примеры введения фиктивных событий

Фиктивные работы и события необходимо вводить в ряде других случаев. Один из них -- отражение зависимости событий, не связанных с реальными работами. Например, работы А и Б (рисунок 1, а) могут выполняться независимо друг от друга, но по условиям производства работа Б не может начаться раньше, чем окончится работа А. Это обстоятельство требует введения фиктивной работы С.

Другой случай -- неполная зависимость работ. Например работа С требует для своего начала завершения работ А и Б, на работа Д связана только с работой Б, а от работы А не зависит. Тогда требуется введение фиктивной работы Ф и фиктивного события 3", как показано на рисунке 1, б.

Кроме того, фиктивные работы могут вводиться для отражения реальных отсрочек и ожидания. В отличие от предыдущих случаев здесь фиктивная работа характеризуется протяжённостью во времени.

Если сеть имеет одну конечную цель, то программа называется одноцелевой. Сетевой график, имеющий несколько завершающих событий, называется многоцелевым и расчет ведется относительно каждой конечной цели. Примером может быть строительство жилого микрорайона, где ввод каждого дома является конечным результатом, и в графике по возведению каждого дома определяется свой критический путь.

Предположим, что при составлении некоторого проекта выделено 12 событий: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 24 связывающие их работы: (0, 1), (0, 2), (0, 3), (1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (2, 7), (3, 6), (3, 7), (3, 10), (4, 8), (5, 8), (5, 7), (6, 10), (7, 6), (7, 8), (7, 9), (7, 10), (8, 9), (9, 11), (10, 9), (10, 11). Составили исходный сетевой график 2.1.

Упорядочение сетевого графика заключается в таком расположении событий и работ, при котором для любой работы предшествующее ей событие расположено левее и имеет меньший номер по сравнению с завершающим эту работу событием. Другими словами, в упорядоченном сетевом графике все работы-стрелки направлены слева направо: от событий с меньшими номерами к событиям с большими номерами.

Разобьём исходный сетевой график на несколько вертикальных слоёв (обводим их пунктирными линиями и обозначаем римскими цифрами).

Поместив в I слое начальное событие 0, мысленно вычеркнем из графика это событие и все выходящие из него работы-стрелки. Тогда без входящих стрелок останется событие 1, образующее II слой. Вычеркнув мысленно событие 1 и все выходящие из него работы, увидим, что без входящих стрелок остаются события 4 и 2, которые образуют III слой. Продолжая этот процесс, получим сетевой график 1.3.

Сетевой график 1.3. Неупорядоченный сетевой график

Сетевой график 1.4 Упорядочение сетевого графика с помощью слоёв


Теперь видим, что первоначальная нумерация событий не совсем правильная: так, событие 6 лежит в VI слое и имеет номер, меньший, чем событие 7 из предыдущего слоя. То же можно сказать о событиях 9 и 10.

Сетевой график 1.5 Упорядоченный сетевой график


Изменим нумерацию событий в соответствии с их расположением на графике и получим упорядоченный сетевой график 1.4. Следует заметить, что нумерация событий, расположенных в одном вертикальном слое, принципиального значения не имеет, так что нумерация одного и того же сетевого графика может быть неоднозначной.

Одно из важнейших понятий сетевого графика -- понятие пути. Путь -- любая последовательность работ, в которой конечное событие каждой работы совпадает с начальным событием следующей за ней работы. Среди различных путей сетевого графика наибольший интерес представляет полный путь -- любой путь, начало которого совпадает с исходным событием сети, а конец -- с завершающим.

Наиболее продолжительный полный путь в сетевом графике называется критическим. Критическими называются также работы и события, находящиеся на этом пути.

На сетевом графике 1.6 критический путь проходит через работы (1;2), (2;5), (5;6), (6;8) и равен 16. Это означает, что все работы будут закончены за 16 единиц времени. Критический путь имеет особое значение в системе СПУ, так как работы этого пути определят общий цикл завершения всего комплекса работ, планируемых при помощи сетевого графика. Зная дату начала работ и продолжительность критического пути, можно установить дату окончания всей программы. Любое увеличение продолжительности работ, находящихся на критическом пути, задержит выполнение программы.

Сетевой график 1.6. Критический путь


На стадии управления и контроля над ходом выполнения программы основное внимание уделяется работам, находящимся на критическом пути или в силу отставания попавшим на критический путь. Для сокращения продолжительности проекта необходимо в первую очередь сокращать продолжительность работ, лежащих на критическом пути.

Элементы сетевой модели

Элементами сетевой модели являются: работы, события, пути.

Работа - это либо любой активный трудовой процесс, требующий затрат времени и ресурсов и приводящий к достижению определенных результатов (событий), либо пассивный процесс («ожидание»), не требующий затрат труда, но занимающий время, либо, наконец, связь между какими-то результатами работ (событиями), называемая фиктивной работой. Обычно действительные работы в сетевом графике обозначаются сплошными стрелками, а фиктивные работы - пунктирными.

Событие - это итог проведенных работ, который дает начало для дальнейших (последующих) работ. Событие не имеет продолжительности во времени. Событие, за которым начинается данная работа, называется начальным для данной работы; оно обозначается символом i. Событие, которое наступает после выполнения данной работы, называется конечным для данной работы; оно обозначается символом j.

В каждой сети имеются два крайних события - исходное и завершающее. Исходным называется событие в сети, не имеющее предшествующих событий и отражающее начало выполнения всего комплекса работ. Оно обозначается символом I. Завершающим называется событие, которое не имеет последующих событий и показывает достижение конечной цели выполнения комплекса работ. Оно обозначается символом К. В одно и то же событие может входить и выходить из него несколько видов работ.

Путь - это любая последовательность работ в сетевом графике, в котором конечное событие каждой работы совпадает с начальным событием следующей за ней работы. Если известна продолжительность каждой работы t ij , то для каждого пути может быть вычислена его общее время выполнения - длина, т. е. общая сумма продолжительности всех работ пути Т Li .

В сетевом графике следует различать несколько видов путей:

v полный путь - путь от исходного события до завершающего;

v полный путь с максимальной продолжительностью называется критическим путем L кр;

v путь, предшествующий данному событию, - путь от исходного события до данного;

v путь, следующий за данным событием, - путь от данного события до завершающего;

v путь между событиями i и j;

v подкритический путь - полный путь, ближайший по длительности к критическому пути;

v ненагруженный путь - полный путь, длительность которого значительно меньше длительности критического пути.

Правила построения сетевой модели

Правило 1. Сеть имеет только одно начальное событие и только одно конечное событие.

Правило 2. Сеть вычерчивается слева направо. Желательно, чтобы каждое событие с большим порядковым номером изображалось правее предыдущего. Для каждой работы (i-j ) должно выполняться iОбщее направление стрелок, изображающих работы, также должно быть расположено слева направо, при этом каждая работа должна выходить из события с меньшим номером и входить в событие с большим номером. Изображение и обозначение работ и событий представлены на рис.1.

Рис.1. Изображение и обозначение работ и событий

Правило 3. Если в процессе выполнения работы начинается другая работа, использующая результат некоторой части первой работы, то первая работа разбивается на две: причем часть первой работы от начала (0) до выдачи промежуточного результата, т. е. начало второй работы и оставшаяся часть первой работы, выделяются как самостоятельные.

Правило 4. Если «n» работ начинаются и кончаются одними и теми же событиями, то для установления взаимно-однозначного соответствия между этими работами и кодами необходимо ввести (n-1) фиктивных работ. Они не имеют продолжительности во времени и вводятся в данном случае лишь для того, чтобы упомянутые работы имели разные коды.

Правило 5. В сети не должно быть событий, в которые не входит ни одной работы, кроме исходного события. Нарушение этого правила и появление в сети, кроме исходного, еще одного события, в которое не входит ни одной работы, означает либо ошибку при построении сетевого графика, либо отсутствие (непланирование) работы, результат которой необходим для начала работы.

Правило 6. В сети не должно быть событий, из которых не выходит ни одной работы, кроме завершающего события. Нарушение этого правила и появление в сети, кроме завершающего, еще одного события, из которого не выходит ни одной работы, означает либо ошибку при построении сетевого графика, либо планирование ненужной работы, результат которой никого не интересует.

Правило 7. События следует нумеровать так, чтобы номер начального события данной работы был меньше номера конечного события этой работы.

Правило 8. В цепи не должно быть замкнутого контура. Построение сети является лишь первым шагом на пути к построению календарного плана. Вторым шагом является расчет сетевой модели, который выполняют на сетевом графике, пользуясь простыми правилами и формулами, или используют математическое представление сетевой модели в виде системы уравнений, целевой функции и граничных условий. Третий шаг - оптимизация модели.

При построении сетевого графика необходимо соблюдать ряд правил.

1. В сетевой модели не должно быть «тупиковых» событий , то есть событий, из которых не выходит ни одна работа, за исключением завершающего события. Здесь либо работа не нужна и её необходимо аннулировать, либо не замечена необходимость определённой работы, следующей за событием для свершения какого-либо последующего события. В таких случаях необходимо тщательное изучение взаимосвязей событий и работ для исправления возникшего недоразумения. (рис. 2)

Рисунок 2 Недопустимость тупиковых событий

2. В сетевом графике не должно быть «хвостовых» событий (кроме исходного), которым не предшествует хотя бы одна работа. Обнаружив в сети такие события, необходимо определить исполнителей предшествующих им работ и включить эти работы в сеть. (рис. 3).


Рисунок 3 Недопустимость хвостовых событий

  • 3. В сети не должно быть замкнутых контуров и петель , то есть путей, соединяющих некоторые события с ними же самими. При возникновении контура (а в сложных сетях, то есть в сетях с высоким показателем сложности, это встречается довольно часто и обнаруживается лишь при помощи ЭВМ) необходимо вернуться к исходным данным и путём пересмотра состава работ добиться его устранения.
  • 4. Любые два события должны быть непосредственно связаны не более чем одной работой-стрелкой. Нарушение этого условия происходит при изображении параллельно выполняемых работ. Если эти работы так и оставить, то произойдёт путаница из-за того, что две различные работы будут иметь одно и то же обозначение. Однако содержание этих работ, состав привлекаемых исполнителей и количество затрачиваемых на работы ресурсов могут существенно отличаться.
  • 5. В сети рекомендуется иметь одно исходное и одно завершающее событие.
  • 6. В сетевом графике не допускаются замкнутые контуры работ. Наличие замкнутых контуров свидетельствует об ошибке в построении или в исходных данных. (рис. 4).

Рисунок 4 Недопустимость замкнутых контуров работ

  • 7. Нумерация (кодирование) событий должна соответствовать последовательности работ по времени, то есть предшествующим событиям присваиваются меньшие номера;
  • 8. Нумерацию событий нужно производить только после полного построения сети и убеждённости, что технологически сеть построена правильно;
  • 9. Первоначальный вариант сетевого графика строится без учёта продолжительности составляющих его работ, обеспечивая только технологическую последовательность (в этом случае длина стрелок значения не имеет).
  • 10. Длина стрелки не зависит от времени выполнения работы;
  • 11. Следует избегать пересечения стрелок;
  • 12. Не должно быть стрелок, направленных справа налево;
  • 13. номер начального события должен быть меньше номера конечного события;
  • 14. Не должно быть циклов (см. рис. 5).

Страница
9

Правило запрещения необеспеченных событий. В сетевой модели не должно быть событий, в которые не входит ни одной работы, конечно, если это событие не является начальным. Например, событие 3 (рис.4) - необеспеченное.

Работа 3-5 не будет выполнена, так как событию 3 не предшествует ни одной работы (не заданы исходные условия для начала этой работы).

Правило изображения „поставки". „Поставка" - это результат, который получен за пределами системы, т.е. не является результатом работы данного коллектива. „Поставка" изображается кружком, внутри которого поставлен крестик. Рядом с кружком указывается номер спецификации, раскрывающей содержание поставки (рис.5). Из модели видно, что „поставка" необходима для выполнения работы 2-3. Номер 3, стоящий у кружка "поставка", - это третья строка в спецификации.

Рисунок 6.

Работе „г" предшествует только работа „в". Но если необходимо, например, показать, что работе „г" непосредственно предшествует не только работа „в", но и „а", то модель должна быть изображена по-другому (рис.7).

Построение сетевых моделей. Для построения сетевого графика необходимо в технологической последовательности установить: какие работы должны быть завершены до начала данной работы, начаты после ее завершения, какие работы необходимо выполнять одновременно с выполнением данной работы.


Рисунок 7.

Например, необходимо выполнить следующие работы „а", „б", „в", „г", „д". Технологическую последовательность выполнения этих работ запишем в таблицу 1.

Таблица 1 – Исходные данные

Начнем построение модели.

Работам "а" и "б" никакие работы не предшествуют. Это показано графически на Рис.9. Работа "в" выполняется после работы "а" (Рис.9). Работа „г" выполняется после работы "б" (рис.10)


Рисунок 10.

Только после точного определения всех взаимосвязей и последовательности работ можно приступить к построению сетевой модели. При кодировании сетевых моделей необходимо учитывать следующее:

· все события имеют самостоятельные номера;

· кодируются события числами натурального ряда;

· номер последующему событию присваивается после присвоения номеров предшествующим ему событиям;

· стрелка (работа) должна быть всегда направлена от события с меньшим номером к событию с большим номером.

Построение сетевых матриц. Принадлежность работы (стрелки) к тому или иному горизонтальному "коридору" определяется ее горизонтальным участком в данном „коридоре". Принадлежность работы (стрелки) к вертикальному „коридору" определяется вертикальными границами „коридора", этапа или операции, т.е. вертикальными линиями, определяющими масштаб времени матрицы.

Из рис.11 видно, что работы 1-2 и 2-4 выполняются директором, работы 1-3 и 3-4 - заместителем директора, работа 1-4 - главным экономистом. Работы 1-2 и 1-3 выполняются на I этапе решения; работы 2-4 и 3-4 - на II, работа 1-4 - в течение I и II этапов.

Продолжительность каждой работы на сетевой матрице определяется расстоянием по сплошной линии между центрами двух событий, заключающих эту работу (стрелку) в проекции на горизонтальную ось времени. На рис.11 работы 1-2 и 1-3 имеют продолжительность, равную четырем единицам времени.

Местонахождение каждого события на сетевой матрице определяется окончанием наиболее удаленной вправо (на сетке времени) входящей в него стрелки.

I этап решения

II этап решения

Директор