Сколько заживает шов после операции на шее. Послеоперационный шов

В нормальных физиологических условиях глубина вдоха может быть ограничена только физическими свойствами легочной ткани и грудной клетки. Сопротивление раздуванию легких, которое возникает при поступлении в них воздуха, обусловлено растяжимостью их соединительной ткани и сопротивлением дыхательных путей потоку воздуха. Мерой эластических свойств легочной ткани является растяжимость легких, которая характеризует степень увеличения объема легких в зависимости от степени уменьшения внутриплеврального давления:

где С - растяжимость (англ. - compliance), dV - изменение легочного объема (мл), а dР - изменение внутриплеврального давления (см водн. ст.). Растяжимость характеризует количественно степень изменения объема легких у человека в зависимости от степени изменения при вдохе внутриплеврального давления. Грудная клетка также обладает эластическими свойствами, поэтому растяжимость тканей легких и тканей грудной клетки обусловливает эластические свойства всего аппарата внешнего дыхания человека.

Рис. 10.6. Кривая растяжимости (комплайенса) легких . Кривые справа показывают изменение дыхательного объема легких и общей емкости легких, возникающие при изменениях внутриплеврального давления без учета влияния тканей грудной клетки. Легкие полностью не спадаются, если внутриплевральное давление становится равным нулю (точка 1). Кривые комплайенса совпадают в точке 2 при большом объеме в легких, когда легочная ткань достигает предела эластического растяжения. Вд - внутриплевральное давление. Слева - схема регистрации изменений внугриплеврального давления и дыхательного объема легких.

На рис. 10.6 показано изменение легочного объема , которое возникает при изменениях внутриплеврального давления. Восходящая и нисходящая линии характеризуют раздувание и спадение легких соответственно. Фрагмент рис. 10.6 слева демонстрирует, каким образом могут быть измерены значения легочного объема и внутриплеврального давления, вынесенные на график. Объем легких не уменьшается до нуля, когда величина внутриплеврального давления становится равной нулю. Раздувание легких с уровня их минимального объема требует усилия для того, чтобы раскрыть спавшиеся стенки альвеол в силу значительного поверхностного натяжения жидкости, покрывающей как их поверхность, так и поверхность дыхательных путей. Поэтому кривые, полученные при раздувании и спадении легких, не совпадают друг с другом, и их нелинейное изменение называется гистерезисом .

Легкие при спокойном дыхании никогда не спадаются полностью, поэтому кривая спадения описывает изменения легочного объема при изменении величины внутриплеврального давления в диапазоне от -2 см. водн. ст. до -10 см водн. ст. В норме легкие человека имеют высокую растяжимость (200 мл/см водн. ст.). Эластичность легочной ткани обусловлена свойствами соединительных волокон легочной ткани. С возрастом эти волокна, как правило, снижают тонус, что сопровождается увеличением растяжимости и уменьшением эластической тяги легких. При повреждении легочной ткани или при избыточном развитии в ней соединительной ткани (фиброз) легкие становятся плохо растяжимыми, величина их растяжимости снижается, что затрудняет выполнение вдоха и требует значительно большего усилия дыхательных мышц, чем в норме.


Легочная растяжимость обусловлена не только эластичностью легочной ткани, но и поверхностным натяжением слоя жидкости, покрывающей альвеолы. По сравнению с эластической тягой легких, влияние на величину легочной растяжимости во время дыхания фактора поверхностного натяжения слоя жидкости, покрывающей альвеолы, имеет более сложную природу.

Тонкий слой жидкости покрывает поверхность альвеол легких . Переходная граница между воздушной средой и жидкостью имеет поверхностное натяжение , которое формируется межмолекулярными силами и которое будет уменьшать площадь покрываемой молекулами поверхности. Однако миллионы альвеол легких, покрытых мономолекулярным слоем жидкости, не спадаются, поскольку эта жидкость содержит субстанции, которые в целом называются сурфактантом (поверхностно активный агент). Поверхностно активные агенты обладают свойством снижать поверхностное натяжение слоя жидкости в альвеолах легких на границе фаз воздух-жидкость, благодаря которому легкие становятся легко растяжимыми.

Рис. 10.7. Приложение закона Лапласа к изменению поверхностного натяжения слоя жидкости, покрывающего поверхность альвеол . Изменение радиуса альвеол изменяет в прямой зависимости величину поверхностного натяжения в альвеолах (Т). Давление (Р) внутри альвеол также варьирует при изменении их радиуса: уменьшается при вдохе и увеличивается при выдохе.

Альвеолярный эпителий состоит из плотно контактирующих между собой альвеолоцитов (пневмоцитов ) I и II типа и покрыт мономолекулярным слоем сурфактанта , состоящего из фосфолипидов, белков и полисахаридов (глицерофосфолипиды 80 %, глицерол 10 %, белки 10 %). Синтез сурфактанта осуществляется альвеолоцитами II типа из компонентов плазмы крови. Основным компонентом сурфактанта является дипальмитоилфосфатидилхолин (более 50 % фосфолипидов сурфактанта), который адсорбируется на границе фаз жидкость-воздух с помощью белков сурфактанта SP-B и SP-C. Эти белки и глицерофосфолипиды уменьшают поверхностное натяжение слоя жидкости в миллионах альвеол и обеспечивают легочной ткани свойство высокой растяжимости. Поверхностное натяжение слоя жидкости, покрывающей альвеолы, изменяется в прямой зависимости от их радиуса (рис. 10.7). В легких сурфактант изменяет степень поверхностного натяжения поверхностного слоя жидкости в альвеолах при изменении их площади. Это обусловлено тем, что во время дыхательных движений количество сурфактанта в альвеолах остается постоянным. Поэтому при растяжении альвеол во время вдоха слой сурфактанта становится тоньше, что вызывает снижение его действия на поверхностное натяжение в альвеолах. При уменьшении объема альвеол во время выдоха молекулы сурфактанта начинают более плотно прилегать друг к другу и, увеличивая поверхностное давление, снижают поверхностное натяжение на границе фаз воздух-жидкость. Это препятствует спадению (коллапсу) альвеол во время экспирации, независимо от ее глубины. Сурфактант легких влияет на поверхностное натяжение слоя жидкости в альвеолах в зависимости не только от ее площади, но и от направления, в котором происходит изменение площади поверхностного слоя жидкости в альвеолах. Этот эффект сурфактанта называется гистерезисом (рис. 10.8).

Физиологический смысл эффекта заключается в следующем. При вдохе по мере увеличения объема легких под влиянием сурфактанта увеличивается натяжение поверхностного слоя жидкости в альвеолах, что препятствует растяжению легочной ткани и ограничивает глубину инспирации. Напротив, при выдохе поверхностное натяжение жидкости в альвеолах под влиянием сурфактанта уменьшается, но не исчезает полностью. Поэтому даже при самом глубоком выдохе в легких не происходит спадения, т. е. коллапса альвеол.

Рис. 10.8. Эффект поверхностного натяжения слоя жидкости на изменение объема легких в зависимости от внутриплеврального давления при раздувании легких солевым раствором и воздухом. Когда объем легких увеличивается за счет их наполнения солевым раствором, то в них отсутствуют поверхностное натяжение и феномен гистерезиса. Относительно интактных легких - площадь петли гистерезиса свидетельствует об увеличении поверхностного натяжения слоя жидкости в альвеолах при вдохе и снижении этой величины при выдохе.

В составе сурфактанта имеются белки типа SP-A и SP-D, благодаря которым сурфактант участвуют в местных иммунных реакциях, опосредуя фагоцитоз , поскольку на мембранах альвеолоцитов II типа и макрофагов имеются рецепторы SP-A. Бактериостатическая активность сурфактанта проявляется в том, что это вещество опсонизирует бактерии, которые затем легче фагоцитируются альвеолярными макрофагами. Кроме того, сурфактант активирует макрофаги и влияет на скорость их миграции в альвеолы из межальвеолярных перегородок. Сурфактант выполняет защитную роль в легких, предотвращая непосредственный контакт альвеолярного эпителия с частицами пыли, агентами инфекционного начала, которые достигают альвеол с вдыхаемым воздухом. Сурфактант способен обволакивать инородные частицы, которые затем транспортируются из респираторной зоны легкого в крупные дыхательные пути и удаляются из них со слизью. Наконец, сурфактант снижает поверхностное натяжение в альвеолах до близких к нулевым величинам и тем самым создает возможность расправления легких при первом вдохе новорожденного.

Растяжимость легких количественно характеризует растяжимость легочной ткани в любой момент изменения их объема в течение фазы вдоха и выдоха. Поэтому растяжимость представляет собой статическую характеристику эластических свойств легочной ткани. Однако во время дыхания возникает сопротивление движению аппарата внешнего дыхания, обусловливающее его динамические характеристики, среди которых наибольшее значение имеет сопротивление потоку воздуха при его движении через дыхательные пути легких.

На движение воздуха из внешней среды через дыхательные пути к альвеолам и в обратном направлении оказывает влияние градиент давления: при этом воздух движется из области высокого давления в область низкого давления. При вдохе давление воздуха в альвеолярном пространстве меньше, чем атмосферное, а при выдохе - наоборот. Сопротивление дыхательных путей потоку воздуха зависит от градиента давления между полостью рта и альвеолярным пространством.

Поток воздуха через дыхательные пути может быть ламинарным , турбулентным и переходным между этими типами. Воздух движется в дыхательных путях, в основном, ламинарным потоком, скорость которого выше в центре этих трубок и меньше вблизи их стенок. При ламинарном потоке воздуха его скорость линейно зависит от градиента давления вдоль дыхательных путей. В местах деления дыхательных путей (бифуркации) ламинарный поток воздуха переходит в турбулентный. При возникновении турбулентного потока в дыхательных путях возникает дыхательный шум, который может выслушиваться в легких с помощью стетоскопа. Сопротивление ламинарному потоку газа в трубе обусловлено ее диаметром. Поэтому, согласно закону Пуа-зейля величина сопротивления дыхательных путей потоку воздуха пропорциональна их диаметру, возведенному в четвертую степень. Поскольку сопротивление дыхательных путей находится в обратной зависимости от их диаметра в четвертой степени, то этот показатель самым существенным образом зависит от изменений диаметра воздухоносных путей, вызванных, например, выделением в них слизи из слизистой оболочки или сужением просвета бронхов. Общий диаметр сечения дыхательных путей возрастает в направлении от трахеи к периферии легкого и становится максимально большим в терминальных дыхательных путях, что вызывает резкое снижение сопротивления потоку воздуха и его скорости в этих отделах легких. Так, линейная скорость потока вдыхаемого воздуха в трахее и главных бронхах равна примерно 100 см/с. На границе воздухопроводящей и переходной зон дыхательных путей линейная скорость воздушного потока составляет около 1 см/с, в дыхательных бронхах она снижается до 0,2 см/с, а в альвеолярных ходах и мешочках - до 0,02 см/с. Столь низкая скорость воздушного потока в альвеолярных ходах и мешочках обусловливает в них незначительное сопротивление движущемуся воздуху и не сопровождается значимыми затратами энергии мышечного сокращения.

Напротив, наибольшее сопротивление дыхательных путей потоку воздуха возникает на уровне сегментарных бронхов в связи с наличием в их слизистой оболочке секреторного эпителия и хорошо развитого гладкомышечного слоя, т. е. факторов, которые в наибольшей степени влияют как на диаметр воздухоносных путей, так и на сопротивление в них потоку воздуха. В преодолении этого сопротивления заключается одна из функций дыхательных мышц.

В легких большинство дыхательных путей представляют собой эластичные трубки, за исключением трахеи и бронхов, стенки которых «укреплены» хрящевой тканью. Бронхиолы имеют высокоэластичные стенки, и диаметр их просвета может изменяться пассивно во время дыхательных движений. В обычных физиологических условиях при вдохе (как спокойном, так и глубоком) растяжение легочной ткани вызывает растяжение стенки мелких дыхательных путей. Согласно закону Пуазейля, незначительное увеличение радиуса дыхательных путей резко снижает в них сопротивление потоку воздуха. Поэтому при вдохе сопротивление дыхательных путей потоку воздуха не оказывает существенного влияния на силу сокращения дыхательных мышц. Напротив, при выдохе, особенно при глубоком и усиленном (форсированном) выдохе, диаметр мелких дыхательных путей уменьшается, что вызывает значительное увеличение сопротивления потоку воздуха в них. Влияние объема легких при выдохе на поток воздуха в дыхательных путях количественно характеризуется зависимостью «поток-объем». В клинической физиологии дыхания оценка этой зависимости является основным критерием типа и степени нарушения функции дыхательных путей.

Рис. 10.9. Давление в дыхательных путях при выдохе . Вертикальными стрелками показаны величины давления, возникающие в дыхательных путях под влиянием комплайенса легких и грудной клетки. Горизонтальными стрелками в области дыхательных путей показано, что давление, оказываемое на стенки дыхательных путей, может увеличивать их просвет при спокойном выдохе (а) либо уменьшать их диаметр при глубоком выдохе (б) в том участке общей площади поперечного сечения мелких дыхательных путей, где сравниваются величины внутриплеврального и альвол и давления в дыхательных путях (эквипотенциальная точка - ЭПТ). Р -давление (см водн. ст.), РА - давление в альвеолах.

Зависимость «поток-объем» следующим образом характеризует влияние большого объема воздуха в легких на экспираторный поток воздуха в дыхательных путях (рис. 10.9). В момент, предшествующий началу выдоха, после глубокой инспирации в дыхательных путях отсутствует поток воздуха, а внутриплевральное давление равно -10 см водн. ст. С началом форсированной экспирации внутриплевральное давление возрастает примерно до +30 см водн. ст. относительно атмосферного давления, вызывая уменьшение радиуса как альвеол, так и мелких дыхательных путей. В этих условиях давление газов внутри альвеол становится выше, чем в плевральной полости, благодаря действию на стенки альвеол эластической тяги легких. В результате поток воздуха выходит из альвеолярного пространства по дыхательным путям во внешнюю среду по градиенту давления, который постепенно уменьшается в дыхательных путях по мере приближения к трахее. Спадению эластичных стенок бронхиол препятствует градиент давления воздуха между дыхательными путями и внутриплевральным давлением. Однако в некоторой точке дыхательных путей (как правило, в области бронхиол) этот градиент давления становится равным нулю (эквипотенциальная точка давления) и стенки дыхательных путей могут частично или полностью спадаться. В этих условиях продвижение воздуха по дыхательным путям может обеспечиваться только за счет увеличения силы сокращения (работы) внутренних межреберных мышц и мышц живота.

Снижение эластической тяги легких , например при эмфиземе легких, вызывает смещение ближе к альвеолярному пространству эквипотенциальной точки давления в дыхательных путях при выдохе, и, таким образом, блокируется выход воздуха непосредственно из альвеол. Дыхательные шумы, которые возникают в легких у больных, обусловлены прохождением воздуха через спавшиеся мелкие дыхательные пути. Увеличение экспираторного усилия у таких пациентов повышает риск спадения мелких дыхательных путей и еще больше затрудняет выдох. При бронхиальной астме у пациентов дыхательные пути уменьшают свой просвет в результате сокращения гладких мышц стенки бронхиол. В этом случае увеличение сопротивления потоку воздуха в мелких дыхательных путях вызывает рост градиента давления вдоль дыхательных путей при вдохе и смещает эквипотенциальную точку ближе к альвеолярному пространству, вызывая коллапс дыхательных путей при выдохе. Усиление сокращения экспираторных мышц в фазу выдоха еще больше затрудняет выдох у пациентов вследствие уменьшения просвета мелких дыхательных путей.

Сокращение дыхательных мышц создает градиент давления по ходу дыхательных путей. При этом преодолевается эластическое сопротивление легких и грудной клетки, а также сопротивление дыхательных путей потоку воздуха. Наряду с этим последние два показателя позволяют измерять работу дыхательных мышц во время дыхательного цикла. Если принять, что величина работы (W) представляет собой произведение силы (F) на путь (х), то получим: W = F х х В дыхательной системе, в которой измеряемыми величинами являются дыхательный объем и внутриплевральное давление, сила сокращения дыхательных мышц приравнивается к развиваемому ими давлению (Р), которое они оказывают на площадь (А). Поэтому, подставляя выражение F = Р х А в формулу работы дыхательных мышц в течение дыхательного цикла, получим: W = Р х А хх. Поскольку величина А, умноженная на путь (х), в дыхательной системе представляет собой аналог дыхательного объема (V), то общая формула работы дыхательных мышц имеет вид: W = Р х V.

Рис. 10.10. Работа дыхательных мышц при спокойном дыхании . Изменения дыхательного объема (вертикальная ось) при вдохе и выдохе сопровождаются изменениями внутри-плеврального давления. При одновременной регистрации этих величин во время дыхательного цикла общая площадь петель дыхательный объем - внутриплевральное давление отражает количественно работу дыхательных мышц. Работа дыхательных мышц при вдохе больше, поскольку она затрачивается на преодоление эластического сопротивления легких. При выдохе работа дыхания минимальная, поскольку совершается за счет энергии эластической тяги легких, т. е. пассивно. Стрелками показаны изменения внутриплев-рального давления в течение фаз дыхательного цикла. Чем больше площадь петли, тем больше работа дыхательных мышц.

Работа дыхательных мышц при спокойном дыхании. При спокойном дыхании объем вдоха достигает максимум 1 л, а инспираторные мышцы совершают минимальную работу (рис. 10.10). Сокращение инспираторных мышц обеспечивает вдох, а выдох осуществляется пассивно за счет эластической тяги легких. В этих условиях сопротивление дыхательных путей при вдохе и выдохе не оказывает лимитирующего влияния на процесс внешнего дыхания. По мере увеличения глубины дыхания дыхательный объем формируется за счет объема функциональной остаточной емкости и резервного объема вдоха, а работа дыхания совершается против существенного нарастания поверхностного натяжения жидкости на поверхности альвеол. Поэтому чем глубже инспирация, тем большую работу совершают инспираторные мышцы. Во время выдоха, когда глубина дыхательных движений осуществляется в пределах объема жизненной емкости легких, объем легких возвращается пассивно к уровню функциональной остаточной емкости за счет эластической тяги легких, а в пределе функциональной остаточной емкости выдох происходит активно в результате сокращения мышц живота, которые при этом совершают работу.

Работа дыхательных мышц при глубоком дыхании. При глубоком дыхании на силу сокращения дыхательных мышц начинает оказывать влияние изменение диаметра дыхательных путей. Глубокий вдох вызывает расширение дыхательных путей и снижение сопротивления в них потоку вдыхаемого воздуха, поэтому работа инспираторных мышц обусловлена только величинами комплайенса легких и тканей грудной клетки. При глубоком выдохе, при котором в вьщыхаемом воздухе оказывается объем воздуха функциональной остаточной емкости, возникает сдавление мелких дыхательных путей высоким градиентом давления между дыхательными путями и внутриплевральным давлением. Существенное увеличение потока газов через дыхательные пути приводит к росту их сопротивления потоку воздуха, которое становится основным фактором, обусловливающим величину работы дыхания. Однако при глубоком дыхании механизмы регуляции диаметра дыхательных путей при участии вегетативной нервной системы способны минимизировать величину работы, которые выполняют дыхательные мышцы. Так, при глубоком дыхании за счет регулирующих влияний вегетативной нервной системы на гладкие мышцы дыхательных путей увеличивается их диаметр. В результате на сокращение дыхательных мышц затрачивается минимальное количество энергии. Например, при астме дыхание у пациентов становится медленным и глубоким, что снижает затраты энергии на преодоление сопротивления дыхательных путей потоку воздуха и уменьшает работу дыхательных мышц.

Проводящие пути

Нос - первые изменения поступающего воздуха происходят в носу, где он очищается, согревается и увлажняется. Этому способствует волосяной фильтр, преддверие и раковины носа. Интенсивное кровоснабжение слизистой оболочки и пещеристых сплетений раковин обеспечивает быстрое согревание или охлаждение воздуха до температуры тела. Испаряющаяся со слизистой оболочки вода увлажняет воздух на 75-80%. Длительное вдыхание воздуха пониженной влажности приводит к высыханию слизистой оболочки, попаданию сухого воздуха в легкие, развитию ателектазов, пневмонии и повышению сопротивления в воздухоносных путях.


Глотка отделяет пищу от воздуха, регулирует давление в области среднего уха.


Гортань обеспечивает голосовую функцию, с помощью надгортанника предотвращая аспирацию, а смыкание голосовых связок является одним из основных компонентов кашля.

Трахея — основной воздуховод, в ней согревается и увлажняется воздух. Клетки слизистой оболочки захватывают инородные вещества, а реснички продвигают слизь вверх по трахее.

Бронхи (долевые и сегментарные) заканчиваются концевыми бронхиолами.


Гортань, трахея и бронхи также участвуют в очищении, согревании и увлажнении воздуха.


Строение стенки проводящих воздухоносных путей (ВП) отличается от структуры дыхательных путей газообменной зоны. Стенка проводящих воздухоносных путей состоит из слизистой оболочки, слоя гладких мышц, подслизистой соединительной и хрящевой оболочек. Эпителиальные клетки воздухоносных путей снабжены ресничками, которые, ритмично колеблясь, продвигают защитный слой слизи в направлении носоглотки. Слизистая оболочка ВП и легочная ткань содержат макрофаги, фагоцитирующие и переваривающие минеральные и бактериальные частицы. В норме слизь из дыхательных путей и альвеол постоянно удаляется. Слизистая оболочка ВП представлена реснитчатым псевдомногослойным эпителием, а также секреторными клетками, выделяющими слизь, иммуноглобулины, комплемент, лизоцим, ингибиторы, интерферон и другие вещества. В ресничках содержится много митохондрий, обеспечивающих энергией их высокую двигательную активность (около 1000 движений в 1 мин.), что позволяет транспортировать мокроту со скоростью до 1 см/мин в бронхах и до 3 см/мин в трахее. За сутки из трахеи и бронхов в норме эвакуируется около 100 мл мокроты, а при патологических состояниях до 100 мл/час.


Реснички функционируют в двойном слое слизи. В нижнем находятся биологически активные вещества, ферменты, иммуноглобулины, концентрация которых в 10 раз больше, чем в крови. Это обуславливает биологическую защитную функцию слизи. Верхний слой ее механически защищает реснички от повреждений. Утолщение или уменьшение верхнего слоя слизи при воспалении или токсическом воздействии неизбежно нарушает дренажную функцию реснитчатого эпителия, раздражает дыхательные пути и рефлекторно вызывает кашель. Чихание и кашель защищают легкие от проникновения минеральных и бактериальных частиц.


Альвеолы


В альвеолах происходит газообмен между кровью легочных капилляров и воздухом. Общее число альвеол равно примерно 300 млн., а суммарная площадь их поверхности - примерно 80 м 2 . Диаметр альвеол составляет 0,2-0,3 мм. Газообмен между альвеолярным воздухом и кровью осуществляется путем диффузии. Кровь легочных капилляров отделена от альвеолярного пространства лишь тонким слоем ткани - так называемой альвеолярно-капиллярной мембраной, образованной альвеолярным эпителием, узким интерстициальным пространством и эндотелием капилляра. Общая толщина этой мембраны не превышает 1 мкм. Вся альвеолярная поверхность легких покрыта тонкой пленкой, называемой сурфактантом.

Сурфактант уменьшает поверхностное натяжение на границе между жидкостью и воздухом в конце выдоха, когда объем легкого минимален, увеличивает эластичность легких и играет роль противоотечного фактора (не пропускает пары воды из альвеолярного воздуха), в результате чего альвеолы остаются сухими. Он снижает поверхностное натяжение при уменьшении объема альвеолы во время выдоха и предупреждает её спадение; уменьшает шунтирование, что улучшает оксигенацию артериальной крови при более низком давлении и минимальном содержании О 2 во вдыхаемой смеси.


Сурфактантный слой состоит из:

1) собственно сурфактанта (микропленки из фосфолипидных или полипротеидных молекулярных комплексов на границе с воздушной средой);

2) гипофазы (глубжележащего гидрофильного слоя из белков, электролитов, связанной воды, фосфолипидов и полисахаридов);

3) клеточного компонента, представленного альвеолоцитами и альвеолярными макрофагами.


Основными химическими составляющими сурфактанта является липиды, белки и углеводы. Фосфолипиды (лецитин, пальмитиновая кислота, гепарин) составляют 80-90% его массы. Сурфактант покрывает непрерывным слоем и бронхиолы, понижает сопротивление при дыхании, поддерживает наполнение

При низком давлении растяжения, уменьшает действие сил, вызывающих накопление жидкости в тканях. Кроме того, сурфактант очищает вдыхаемые газы, отфильтровывает и улавливает вдыхаемые частицы, регулирует обмен воды между кровью и воздушной средой альвеолы, ускоряет диффузию СО 2 , обладает выраженным антиокислительным действием. Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: нарушениям кровообращения, вентиляции и метаболизма, изменению РО 2 во вдыхаемом воздухе, загрязнению его. При дефиците сурфактанта возникают ателектазы и РДС новорожденных. Примерно 90-95% альвеолярного сурфактанта повторно перерабатывается, очищается, накапливается и ресекретируется. Период полувыведения компонентов сурфактанта из просвета альвеол здоровых легких составляет около 20 ч.

Легочные объёмы

Вентиляция легких зависит от глубины дыхания и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма. Есть ряд объемных показателей, характеризующих состояние легких. Нормальные средние значения для взрослого человека следующие:


1. Дыхательный объем (ДО- VT - Tidal Volume) - объем вдыхаемого и выдыхаемого воздуха при спокойном дыхании. Нормальные значения - 7-9мл/кг.


2. Резервный объем вдоха (РОвд - IRV - Inspiratory Reserve Volume) - объем, который может дополнительно поступить после спокойного вдоха, т.е. разница между нормальной и максимальной вентиляцией. Нормальное значение: 2-2,5 л (около 2/3 ЖЕЛ).

3. Резервный объем выдоха (РОвыд - ERV - Expiratory Reserve Volume) - объем, который можно дополнительно выдохнуть после спокойного выдоха, т.е. разница между нормальным и максимальным выдохом. Нормальное значение: 1,0-1,5 л (около 1/3 ЖЕЛ).


4.Остаточный объем (ОО - RV - Residal Volume) - объем, остающийся в легких после максимального выдоха. Около 1,5-2,0 л.


5. Жизненная емкость легких (ЖЕЛ - VT - Vital Capacity) — количество воздуха, которое может быть максимально выдохнуто после максимального вдоха. ЖЕЛ является показателем подвижности легких и грудной клетки. ЖЕЛ зависит от возраста, пола, размеров и положения тела, степени тренированности. Нормальные значения ЖЕЛ - 60-70 мл/кг - 3,5-5,5 л.


6. Резерв вдоха (РВ) -Ёмкость вдоха (Евд - IC - Inspiritory Capacity) - максимальное количество воздуха, которое может поступить в легкие после спокойного выдоха. Равен сумме ДО и РОвд.

7. Общая емкость легких (ОЕЛ - TLC - Total lung capacity) или максимальная емкость легких - количество воздуха, содержащееся в легких на высоте максимального вдоха. Состоит из ЖЕЛ и ОО и рассчитывается как сумма ЖЕЛ и ОО. Нормальное значение около 6,0 л.
Исследование структуры ОЕЛ является решающим в выяснении путей увеличения или снижения ЖЕЛ, что может иметь существенное практическое значение. Увеличение ЖЕЛ может быть расценено положительно только в том случаи, если ОЕЛ не меняется или увеличивается, но меньше, чем ЖЕЛ, что происходит при увеличении ЖЕЛ за счет уменьшения ОО. Если одновременно с увеличением ЖЕЛ происходит еще большее увеличение ОЕЛ, то это нельзя считать положительным фактором. При ЖЕЛ ниже 70% ОЕЛ функция внешнего дыхания глубоко нарушена. Обычно при патологических состояниях ОЕЛ и ЖЕЛ изменяются одинаково, за исключением обструктивной эмфиземы легких, когда ЖЕЛ, как правило, уменьшается, ОО увеличивается, а ОЕЛ может оставаться нормальной или быть выше нормы.


8. Функциональная остаточная емкость (ФОЕ - FRC - Functional residual volume) - количество воздуха, которое остается в легких после спокойного выдоха. Нормальные значения у взрослых - от 3 до 3,5 л. ФОЕ = ОО + РОвыд. По определению ФОЕ - объем газа, который остается в легких при спокойном выдохе и может быть мерой области газообмена. Она образуется в результате баланса между противоположно направленными эластическими силами легких и грудной клетки. Физиологическое значение ФОЕ состоит в частичном обновлении альвеолярного объема воздуха во время вдоха (вентилируемый объем) и указывает на объем альвеолярного воздуха, постоянно находящегося в легких. Со снижением ФОЕ связаны развитие ателектазов, закрытие мелких дыхательных путей, уменьшение податливости легких, увеличение альвеолярно-артериального различия по О 2 в результате перфузии в ателектазированных участках легких, снижение вентиляционно-перфузионного соотношения. Обструктивные вентиляционные нарушения ведут к повышению ФОЕ, рестриктивные нарушения - к снижению ФОЕ.


Анатомическое и функциональное мертвое пространство


Анатомическим мертвым пространством называют объем воздухоносных путей, в котором не происходит газообмен. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150-200 мл (2 мл/кг массы тела).


Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью.


Альвеолярная вентиляция и вентиляция мертвого пространства

Часть минутного объема дыхания, достигающая альвеол, называется альвеолярной вентиляцией, остальная его часть составляет вентиляцию мертвого пространства. Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7л/мин), но дыхание частое и поверхностное (ДО-0,2 л, ЧД-35/мин), то вентилироваться

Будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание и меньше частота.


Растяжимость (податливость) легочной ткани
Растяжимость легких является мерой эластической тяги, а также эластического сопротивления легочной ткани, которое преодолевается в процессе вдоха. Иначе говоря, растяжимость — это мера упругости легочной ткани, т. е. её податливость. Математически растяжимость выражается в виде частного от изменения объема легких и соответствующего изменения внутрилегочного давления.

Растяжимость может быть измерена отдельно для легких и для грудной клетки. С клинической точки зрения (особенно во время ИВЛ) наибольший интерес представляет именно податливость самой легочной ткани, отражающая степень рестриктивной легочной патологии. В современной литературе растяжимость легких принято обозначать термином «комплайнс» (от английского слова «compliance», сокращенно — С).


Податливость легких снижается:

С возрастом (у пациентов старше 50 лет);

В положении лежа (из-за давления органов брюшной полости на диафрагму);

Во время лапароскопических хирургических вмешательств в связи с карбоксиперитонеумом;

При острой рестриктивной патологии (острые полисегментарные пневмонии, РДС, отёк легких, ателектазирование, аспирация и т. д.);

При хронической рестриктивной патологии (хроническая пневмония, фиброз легких, коллагенозы, силикозы и т. д.);

При патологии органов, которые окружают легкие (пневмо- или гидроторакс, высокое стояние купола диафрагмы при парезе кишечника и т.д.).


Чем хуже податливость лёгких, тем большее эластическое сопротивление легочной ткани надо преодолеть, чтобы достигнуть того дыхательного объема, что и при нормальной податливости. Следовательно, в случае ухудшающейся растяжимости лёгких при достижении того же дыхательного объема давление в дыхательных путях существенно возрастает.

Данное положение очень важно для понимания: при объемной ИВЛ, когда принудительный дыхательный объём подается больному с плохой податливостью легких (без высокого сопротивления дыхательных путей), существенный рост пикового давления в дыхательных путях и внутрилегочного давления значительно увеличивает риск баротравмы.


Сопротивление дыхательных путей


Поток дыхательной смеси в легких должен преодолеть не только эластическое сопротивление самой ткани, но и резистивное сопротивление дыхательных путей Raw (аббревиатура от английского слова «resistance»). Поскольку трахеобронхиальное дерево представляет собой систему трубок различной длины и ширины, то сопротивление газотоку в легких можно определить по известным физическим законам. В целом, сопротивление потоку зависит от градиента давлений в начале и в конце трубки, а также от величины самого потока.


Поток газа в легких может быть ламинарным, турбулентным и переходным. Для ламинарного потока характерно послойное поступательное движение газа с

Различной скоростью: скорость потока наиболее высока в центре и постепенно снижается к стенкам. Ламинарный поток газа преобладает при относительно низких скоростях и описывается законом Пуазейля, в соответствии с которым сопротивление газотоку в наибольшей степени зависит от радиуса трубки (бронхов). Уменьшение радиуса в 2 раза приводит к возрастанию сопротивления в 16 раз. В связи с этим понятна важность выбора по возможности наиболее широкой эндотрахеальной (трахеостомической) трубки и поддержания проходимости трахеобронхиального дерева во время ИВЛ.
Сопротивление дыхательных путей газотоку значительно увеличивается при бронхиолоспазме, отеке слизистой оболочки бронхов, скоплении слизи и воспалительного секрета по причине сужения просвета бронхиального дерева. На сопротивление влияют также скорость потока и длина трубки (бронхов). С

Увеличением скорости потока (форсирование вдоха или выдоха) сопротивление дыхательных путей увеличивается.

Основные причины увеличения сопротивления дыхательных путей:

Бронхиолоспазм;

Отек слизистой оболочки бронхов, (обострение бронхиальной астмы, бронхит, подсвязочный ларингит);

Инородное тело, аспирация, новообразования;

Скопление мокроты и воспалительного секрета;

Эмфизема (динамическая компрессия воздухоносных путей).


Турбулентный поток характеризуется хаотичным движением молекул газа вдоль трубки (бронхов). Он преобладает при высоких объемных скоростях потока. В случае турбулентного потока сопротивление дыхательных путей возрастает, так как при этом оно в еще большей степени зависит от скорости потока и радиуса бронхов. Турбулентное движение возникает при высоких потоках, резких изменениях скорости потока, в местах изгибов и разветвлений бронхов, при резком изменении диаметра бронхов. Вот почему турбулентный поток характерен для больных ХОЗЛ, когда даже в стадии ремиссии имеет место повышенное сопротивление дыхательных путей. Это же касается больных бронхиальной астмой.


Сопротивление воздухоносных путей распределено в легких неравномерно. Наибольшее сопротивление создают бронхи среднего калибра (до 5-7-й генерации), так как сопротивление крупных бронхов невелико из-за их большого диаметра, а мелких бронхов — вследствие значительной суммарной площади поперечного сечения.


Сопротивление дыхательных путей зависит также от объема легких. При большом объёме паренхима оказывает большее «растягивающее» действие на дыхательные пути, и их сопротивление уменьшается. Применение ПДКВ (PEEP) способствует увеличению объема легких и, следовательно, снижению сопротивления дыхательных путей.

Сопротивление дыхательных путей в норме составляет:

У взрослых — 3-10 мм вод.ст./л/с;

У детей — 15-20 мм вод.ст./л/с;

У младенцев до 1 года — 20-30 мм вод.ст./л/с;

У новорожденных — 30-50 мм вод.ст./л/с.


На выдохе сопротивление дыхательных путей на 2-4 мм вод.ст./л/с больше, чем на вдохе. Это связано с пассивным характером выдоха, когда состояние стенки воздухоносных путей в большей мере влияет на газоток, чем при активном вдохе. Поэтому для полноценного выдоха требуется в 2-3 раза больше времени, чем для вдоха. В норме соотношение времени вдох/выдох (I:E) составляет для взрослых около 1: 1,5-2. Полноценность выдоха у больного во время ИВЛ можно оценить при помощи мониторинга экспираторной временной константы.


Работа дыхания


Работа дыхания совершается преимущественно инспираторными мышцами во время вдоха; выдох почти всегда пассивен. В то же время в случае, например, острого бронхоспазма или отека слизистой оболочки дыхательных путей выдох также становится активным, что значительно увеличивает общую работу внешней вентиляции.


Во время вдоха работа дыхания, в основном, тратится на преодоление эластического сопротивления легочной ткани и резистивного сопротивления дыхательных путей, при этом около 50 % затраченной энергии накапливается в упругих структурах легких. Во время выдоха эта накопленная потенциальная энергия высвобождается, что позволяет преодолевать экспираторное сопротивление дыхательных путей.

Увеличение сопротивления вдоху или выдоху компенсируется дополнительной работой дыхательных мышц. Работа дыхания возрастает при снижении растяжимости легких (рестриктивная патология), росте сопротивления дыхательных путей (обструктивная патология), тахипноэ (за счет вентиляции мертвого пространства).


На работу дыхательной мускулатуры в норме тратится только 2-3% от всего потребляемого организмом кислорода. Это, так называемая, «стоимость дыхания». При физической работе стоимость дыхания может достигать 10-15%. А при патологии (особенно рестриктивной) на работу дыхательных мышц может расходоваться более 30-40% от всего поглощаемого организмом кислорода. При тяжёлой диффузионной дыхательной недостаточности стоимость дыхания возрастает до 90%. С какого-то момента весь дополнительный кислород, получаемый за счет увеличения вентиляции, идет на покрытие соответствующего прироста работы дыхательных мышц. Вот почему на определенном этапе существенное увеличение работы дыхания является прямым показанием к началу ИВЛ, при которой стоимость дыхания уменьшается практически до 0.


Работа дыхания, которая требуется для преодоления эластического сопротивления (податливости легких), возрастает по мере увеличения дыхательного объема. Работа, необходимая для преодоления резистивного сопротивления дыхательных путей, возрастает при увеличении частоты дыхания. Пациент стремится уменьшить работу дыхания, меняя частоту дыхания и дыхательный объем в зависимости от преобладающей патологии. Для каждой ситуации существуют оптимальные частота дыхания и дыхательный объем, при которых работа дыхания минимальна. Так, для больных со сниженной растяжимостью, с точки зрения минимизации работы дыхания, подходит более частое и поверхностное дыхание (малоподатливые легкие трудно поддаются расправлению). С другой стороны, при увеличенном сопротивлении дыхательных путей оптимально глубокое и медленное дыхание. Это понятно: увеличение дыхательного объема позволяет «растянуть», расширить бронхи, уменьшить их сопротивление газотоку; с этой же целью больные с обструктивной патологией во время выдоха сжимают губы, создавая собственное «ПДКВ» (PEEP). Медленное и редкое дыхание способствует удлинению выдоха, что важно для более полного удаления выдыхаемой газовой смеси в условиях повышенного экспираторного сопротивления дыхательных путей.


Регуляция дыхания

Процесс дыхания регулируется центральной и периферической нервной системой. В ретикулярной формации головного мозга находится дыхательный центр, состоящий из центров вдоха, выдоха и пневмотаксиса.


Центральные хеморецепторы расположены в продолговатом мозге и возбуждаются при повышении концентрации Н+ и РСО 2 в спинномозговой жидкости. В норме рН последней составляет 7,32, РСО 2 - 50 мм.рт.ст., а содержание НСО 3 - 24,5 ммоль/л. Даже небольшое снижение рН и рост РСО 2 увеличивают вентиляцию легких. Эти рецепторы реагируют на гиперкапнию и ацидоз медленнее, чем периферические, так как требуется дополнительное время на измерение величины СО 2 , Н + и НСО 3 из-за преодоления гематоэнцефалического барьера. Сокращения дыхательных мышц контролирует центральный дыхательный механизм, состоящий из группы клеток продолговатого мозга, моста, а также пневмотаксических центров. Они тонизируют дыхательный центр и по импульсации из механорецепторов определяют порог возбуждения, при котором прекращается вдох. Пневмотаксические клетки также переключают вдох на выдох.


Периферические хеморецепторы, расположенные на внутренних оболочках сонного синуса, дуги аорты, левого предсердия, контролируют гуморальные параметры (РО 2 , РСО 2 в артериальной крови и спинномозговой жидкости) и немедленно реагируют на изменения внутренней среды организма, меняя режим самостоятельного дыхания и, таким образом, корригируя рН, РО 2 и РСО 2 в артериальной крови и спинномозговой жидкости. Импульсы из хеморецепторов регулируют объем вентиляции, необходимый для поддержания определенного уровня метаболизма. В оптимизации режима вентиляции, т.е. установлении частоты и глубины дыхания, длительности вдоха и выдоха, силы сокращения дыхательных мышц при данном уровне вентиляции, участвуют и механорецепторы. Вентиляция легких определяется уровнем метаболизма, воздействием продуктов обмена веществ и О2 на хеморецепторы, которые трансформируют их в афферентную импульсацию нервных структур центрального дыхательного механизма. Основная функция артериальных хеморецепторов - немедленная коррекция дыхания в ответ на изменения газового состава крови.


Периферические механорецепторы, локализующиеся в стенках альвеол, межреберных мышцах и диафрагме, реагируют на растяжение структур, в которых они находятся, на информацию о механических явлениях. Главную роль играют механорецепторы легких. Вдыхаемый воздух поступает по ВП к альвеолам и участвует в газообмене на уровне альвеолярно-капиллярной мембраны. По мере растяжения стенок альвеол во время вдоха механорецепторы возбуждаются и посылают афферентный сигнал в дыхательный центр, который тормозит вдох (рефлекс Геринга-Брейера).


При обычном дыхании межреберно-диафрагмальные механорецепторы не возбуждаются и имеют вспомогательное значение.

Система регуляции завершается нейронами, интегрирующими импульсы, которые поступают к ним от хеморецепторов, и посылающими импульсы возбуждения к дыхательным мотонейронам. Клетки бульбарного дыхательного центра посылают как возбуждающие, так и тормозящие импульсы к дыхательным мышцам. Координированное возбуждение респираторных мотонейронов приводит к синхронному сокращению дыхательных мышц.

Дыхательные движения, создающие воздушный поток, происходят благодаря согласованной работе всех дыхательных мышц. Нервные клетки двигательных

Нейронов дыхательных мышц расположены в передних рогах серого вещества спинного мозга (шейные и грудные сегменты).


У человека в регуляции дыхания принимает участие и кора большого мозга в пределах, допускаемых хеморецепторной регуляцией дыхания. Так, например, волевая задержка дыхания ограничена временем, в течение которого РаО 2 в спинномозговой жидкости повышается до уровней, возбуждающих артериальные и медуллярные рецепторы.


Биомеханика дыхания


Вентиляция легких происходит за счет периодических изменений работыдыхательных мышц, объема грудной полости и легких. Основными мышцами вдоха являются диафрагма и наружные межреберные мышцы. Во время их сокращения происходят уплощение купола диафрагмы и приподнятие ребер кверху, в результате объем грудной клетки увеличивается, растет отрицательное внутриплевральное давление (Ppl). Перед началом вдоха (в конце выдоха) Ppl приблизительно составляет минус 3-5 см вод.ст. Альвеолярное давление (Palv) принимается за 0 (т. е. равно атмосферному), оно же отражает давление в дыхательных путях и коррелирует с внутригрудным давлением.


Градиент между альвеолярным и внутриплевральным давлением называется транспульмонарным давлением (Ptp). В конце выдоха оно составляет 3-5 см вод.ст. Во время спонтанного вдоха рост отрицательного Ppl (до минус 6-10 см вод.ст.) вызывает снижение давления в альвеолах и дыхательных путях ниже атмосферного. В альвеолах давление снижается до минус 3-5 см вод.ст. За счёт разницы давлений воздух поступает (засасывается) из внешней среды в легкие. Грудная клетка и диафрагма действуют как поршневой насос, втягивающий воздух в легкие. Такое «присасывающее» действие грудной клетки важно не только для вентиляции, но и для кровообращения. Во время спонтанного вдоха происходят дополнительное «присасывание» крови к сердцу (поддержание преднагрузки) и активизация легочного кровотока из правого желудочка по системе легочной артерии. В конце вдоха, когда движение газа прекращается, альвеолярное давление возвращается к нулю, но внутриплевральное давление остается сниженным до минус 6-10 см вод.ст.

Выдох в норме является процессом пассивным. После расслабления дыхательных мышц силы эластической тяги грудной клетки и легких вызывают удаление (выдавливание) газа из легких и восстановление первоначального объема легких. В случае нарушения проходимости трахеобронхиального дерева (воспалительный секрет, отек слизистой оболочки, бронхоспазм) процесс выдоха затруднен, и в акте дыхания начинают принимать участие также мышцы выдоха (внутренние межреберные мышцы, грудные мышцы, мышцы брюшного пресса и т. д.). При истощении экспираторных мышц процесс выдоха еще более затрудняется, происходит задержка выдыхаемой смеси и динамическое перераздувание легких.


Недыхательные функции легких

Функции легких не ограничиваются диффузией газов. В них содержится 50% всех эндотелиальных клеток организма, которые выстилают капиллярную поверхность мембраны и участвуют в метаболизме и инактивации биологически активных веществ, проходящих через легкие.


1. Легкие контролируют общую гемодинамику путем различного заполнения собственного сосудистого русла и влияния на биологически активные вещества, регулирующие сосудистый тонус (серотонин, гистамин, брадикинин, катехоламины), превращением ангиотензина I в ангиотензин II, участием в метаболизме простагландинов.


2. Легкие регулируют свертывание крови, секретируя простациклин - ингибитор агрегации тромбоцитов, и удаляя из кровотока тромбопластин, фибрин и продукты его деградации. В результате этого оттекающая от легких кровь имеет более высокую фибринолитическую активность.


3. Легкие участвуют в белковом, углеводном и жировом обмене, синтезируя фосфолипиды (фосфатидилхолин и фосфатидилглицерол - основные компоненты сурфактанта).

4. Легкие продуцируют и элиминируют тепло, поддерживая энергетический баланс организма.


5. Легкие очищают кровь от механических примесей. Агрегаты клеток, микротромбы, бактерии, пузырьки воздуха, капли жира задерживаются легкими и подвергаются деструкции и метаболизму.


Типы вентиляции и виды нарушений вентиляции


Разработана физиологически четкая классификация типов вентиляции, в основу которой положены парциальные давления газов в альвеолах. В соответствии с этой классификацией выделяются следующие типы вентиляции:


1.Нормовентиляция - нормальная вентиляция, при которой парциальное давление СО2 в альвеолах поддерживается на уровне около 40 мм.рт.ст.


2.Гипервентиляция - усиленная вентиляция, превышающаяметаболические потребности организма (РаСО2<40 мм.рт.ст.).


3.Гиповентиляция - сниженная вентиляция по сравнению с метаболическими потребностями организма (РаСО2>40 мм.рт.ст.).


4. Повышенная вентиляция - любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя, независимо от парциального давления газов в альвеолах (например, при мышечной работе).

5.Эупноэ - нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.


6.Гиперпноэ - увеличение глубины дыхания независимо от того, повышена ли при этом частота дыхательных движений или нет.


7.Тахипноэ - увеличение частоты дыхания.


8.Брадипноэ - снижение частоты дыхания.


9.Апноэ - остановка дыхания, обусловленная, главным образом, отсутствием физиологической стимуляции дыхательного центра (уменьшение напряжения СО2, в артериальной крови).


10.Диспноэ (одышка) - неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания.


11.Ортопноэ - выраженная одышка, связанная с застоем крови в легочных капиллярах в результате недостаточности левого сердца. В горизонтальном положении это состояние усугубляется, и поэтому лежать таким больным тяжело.


12.Асфиксия - остановка или угнетение дыхания, связанные, главным образом, с параличом дыхательных центров или закрытием дыхательных путей. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).

В целях диагностики целесообразно различать два типа нарушений вентиляции - рестриктивный и обструктивный.


К рестриктивному типу нарушений вентиляции относятся все патологические состояния, при которых снижаются дыхательная экскурсия и способность легких расправляться, т.е. уменьшается их растяжимость. Такие нарушения наблюдаются, например, при поражениях легочной паренхимы (пневмонии, отёк лёгких, фиброз лёгких) или при плевральных спайках.


Обструктивный тип нарушений вентиляции обусловлен сужением воздухоносных путей, т.е. повышением их аэродинамического сопротивления. Подобные состояния встречаются, например, при накоплении в дыхательных путях слизи, набухании их слизистой оболочки или спазме бронхиальных мышц (аллергический бронхиолоспазм, бронхиальная астма, астмоидный бронхит и т.д.). У таких больных сопротивление вдоху и выдоху повышено, и поэтому со временем воздушность легких и ФОЕ у них увеличиваются. Патологическое состояние, характеризующееся чрезмерным уменьшением числа эластических волокон(исчезновением альвеолярных перегородок, объединением капиллярной сети), называется эмфиземой легких.

– Какие параметры вдоха и выдоха измеряет аппарат ИВЛ?

Время (time), объём (volume), поток (flow), давление (pressure).

Время

– Что такое ВРЕМЯ?

Время – это мера длительности и последовательности явлений (на графиках давления, потока и объёма время бежит по горизонтальной оси «Х»). Измеряется в секундах, минутах, часах. (1час=60мин, 1мин=60сек)

С позиций респираторной механики нас интересует длительность вдоха и выдоха, поскольку произведение потокового времени вдоха (Inspiratory flow time) на поток равно объёму вдоха, а произведение потокового времени выдоха (Expiratory flow time) на поток равно объёму выдоха.

Временные интервалы дыхательного цикла (их четыре) Что такое «вдох – inspiration» и «выдох – expiration»?

Вдох это вход воздуха в легкие. Длится до начала выдоха. Выдох – это выход воздуха из легких. Длится до начала вдоха. Иными словами, вдох считается с момента начала поступления воздуха в дыхательные пути и длится до начала выдоха, а выдох – с момента начала изгнания воздуха из дыхательных путей и длится до начала вдоха.

Эксперты делят вдох на две части.

Inspiratory time = Inspiratory flow time + Inspiratory pause.
Inspiratory flow time – временной интервал, когда в легкие поступает воздух.

Что такое «инспираторная пауза» (inspiratory pause или inspiratory hold)? Это временной интервал, когда клапан вдоха уже закрыт, а клапан выдоха еще не открыт. Хотя в это время поступления воздуха в легкие не происходит, инспираторная пауза является частью времени вдоха. Так договорились. Инспираторная пауза возникает, когда заданный объём уже доставлен, а время вдоха ещё не истекло. Для спонтанного дыхания – это задержка дыхания на высоте вдоха. Задержка дыхания на высоте вдоха широко практикуется индийскими йогами и другими специалистами по дыхательной гимнастике.

В некоторых режимах ИВЛ инспираторная пауза отсутствует.

Для аппарата ИВЛ PPV выдох expiratory time – это временной интервал от момента открытия клапана выдоха до начала следующего вдоха. Эксперты делят выдох на две части. Expiratory time = Expiratory flow time + Expiratory pause. Expiratory flow time – временной интервал, когда воздух выходит из легких.

Что такое «экспираторная пауза» (expiratory pause или expiratory hold)? Это временной интервал, когда поток воздуха из легких уже не поступает, а вдох ещё не начался. Если мы имеем дело с «умным» аппаратом ИВЛ, мы обязаны сообщить ему сколько времени, по нашему мнению, может длиться экспираторная пауза. Если время экспираторной паузы истекло, а вдох не начался, «умный» аппарат ИВЛ объявляет тревогу (alarm) и начинает спасать пациента, поскольку считает, что произошло апноэ (apnoe). Включается опция Apnoe ventilation.

В некоторых режимах ИВЛ экспираторная пауза отсутствует.

Total cycle time – время дыхательного цикла складывается из времени вдоха и времени выдоха.

Total cycle time (Ventilatory period) = Inspiratory time + Expiratory time или Total cycle time = Inspiratory flow time + Inspiratory pause + Expiratory flow time + Expiratory pause

Этот фрагмент убедительно демонстрирует трудности перевода:

1. Expiratory pause и Inspiratory pause вообще не переводят, а просто пишут эти термины кириллицей. Мы используем буквальный перевод, – задержка вдоха и выдоха.

2. Для Inspiratory flow time и Expiratory flow time в русском языке нет удобных терминов.

3. Когда мы говорим «вдох» – приходится уточнять: – это Inspiratory time или Inspiratory flow time. Для обозначения Inspiratory flow time и Expiratory flow time мы будем использовать термины потоковое время вдоха и выдоха.

Инспираторная и/или экспираторная паузы могут отсутствовать.


Объём (volume)

– Что такое ОБЪЁМ?

Некоторые наши курсанты отвечают: «Объём – это количество вещества». Для несжимаемых (твердых и жидких) веществ это верно, а для газов не всегда.

Пример: Вам принесли баллон с кислородом, емкостью (объёмом) 3л, – а сколько в нём кислорода? Ну конечно, нужно измерить давление, и тогда, оценив степень сжатия газа и ожидаемый расход, можно сказать, надолго ли его хватит.

Механика – наука точная, поэтому прежде всего, объём – это мера пространства.


И, тем не менее, в условиях спонтанного дыхания и ИВЛ при нормальном атмосферном давлении мы используем единицы объема для оценки количества газа. Сжатием можно пренебречь.* В респираторной механике объёмы измеряют в литрах или миллилитрах.
*Когда дыхание происходит под давлением выше атмосферного (барокамера, глобоководные аквалангисты и т.д.), сжатием газов пренебрегать нельзя, поскольку меняются их физические свойства, в частности растворимость в воде. В результате – кислородное опьянение и кесонная болезнь.

В высокогорных условиях при низком атмосферном давлении здоровый спортсмен-альпинист с нормальным уровнем гемоглобина в крови испытывает гипоксию, несмотря на то, что дышит глубже и чаще (дыхательный и минутный объёмы увеличены).

Для описания объёмов используются три слова

1. Пространство (space).

2. Ёмкость (capacity).

3. Объём (volume).

Объёмы и пространства в респираторной механике.

Минутный объём (MV) – по-английски Minute volume – это сумма дыхательных объёмов за минуту. Если все дыхательные объемы в течение минуты равны, можно просто умножить дыхательный объём на частоту дыханий.

Мертвое пространство (DS) по-английски Dead* space – это суммарный объём воздухоносных путей (зона дыхательной системы, где нет газообмена).

*второе значение слова dead – бездыханный

Объемы, исследуемые при спирометрии

Дыхательный объём (VT ) по-английски Tidal volume – это величина одного обычного вдоха или выдоха.

Резервный объём вдоха – РОвд (IRV) по-английски Inspired reserve volume – это объём максимального вдоха по завершении обычного вдоха.

Ёмкость вдоха – ЕВ (IC) по-английски Inspiratory capacity – это объём максимального вдоха после обычного выдоха.

IC = TLC – FRC или IC = VT + IRV

Общая ёмкость лёгких – ОЕЛ (TLC) по-английски Total lung capacity – это объём воздуха в лёгких по завершении максимального вдоха.

Остаточный объём – ОО (RV) по-английски Residual volume – это объём воздуха в лёгких по завершении максимального выдоха.

Жизненная ёмкость лёгких – ЖЕЛ (VC) по-английски Vital capacity – это объём вдоха после максимального выдоха.

VC = TLC – RV

Функциональная остаточная ёмкость – ФОЕ (FRC) по-английски Functional residual capacity – это объём воздуха в лёгких по завершении обычного выдоха.

FRC = TLC – IC

Резервный объём выдоха – РОвыд (ERV) по-английски Expired reserve volume – это объём максимального выдоха по завершении обычного выдоха.

ERV = FRC – RV

Поток(flow)

– Что такое ПОТОК?

– «Объёмная скорость» – точное определение, удобное для оценки работы насосов и трубопроводов, но для респираторной механики больше подходит:

Поток – это скорость изменения объёма

В респираторной механике поток() измеряют в литрах в минуту.

1. Поток() = 60л/мин, Длительность вдоха(Тi) = 1сек(1/60мин),

Дыхательный объём (VT ) = ?

Решение: х Тi =VT

2. Поток() = 60л/мин, Дыхательный объём(VT ) = 1л,

Длительность вдоха(Тi) = ?

Решение: VT / = Тi

Ответ: 1сек(1/60мин)


Объём – это произведение потока на время вдоха или площадь под кривой потока.


VT = х Тi

Это представление о взаимоотношении потока и объема используется при описании режимов вентиляции.

Давление(pressure)

– Что такое ДАВЛЕНИЕ?

Давление(pressure) – это сила, приложенная к единице площади.

Давление в дыхательных путях измеряют в сантиметрах водного столба (см H 2 O) и в миллибарах (mbar или мбар). 1 миллибар=0,9806379 см водного столба.

(Бар - внесистемная единица измерения давления, равная 105 Н/м 2 (ГОСТ 7664-61) или 106 дин/см 2 (в системе СГС).

Значения давлений в разных зонах дыхательной системы и градиенты (gradient) давления По определению давление – это сила, которая уже нашла себе применение, – она (эта сила) давит на площадь и ничего никуда не перемещает. Грамотный доктор знает, что вздох, ветер, и даже ураган, создается разностью давлений или градиентом (gradient).

Например: в баллоне газ под давлением 100 атмосфер. Ну и что, стоит себе баллон и никого не трогает. Газ в баллоне спокойно себе давит на площадь внутренней поверхности баллона и ни на что не отвлекается. А если открыть? Возникнет градиент (gradient), который и создаёт ветер.

Давления:

Paw – давление в дыхательных путях

Pbs - давление на поверхности тела

Ppl - плевральное давление

Palv- альвеолярное давление

Pes - пищеводное давление

Градиенты:

Ptr-трансреспиратонное давление: Ptr = Paw – Pbs

Ptt-трансторакальное давление: Ptt = Palv – Pbs

Pl-транспульмональное давление: Pl = Palv – Ppl

Pw-трансмуральное давление: Pw = Ppl – Pbs

(Легко запомнить: если использована приставка «транс» – речь идёт о градиенте).

Главной движущей силой, позволяющей сделать вдох, является разность давлений на входе в дыхательные пути (Pawo- pressure airway opening) и давлением в том месте, где дыхательные пути заканчиваются – то есть в альвеолах (Palv). Проблема в том, что в альвеолах технически сложно померить давление. Поэтому для оценки дыхательного усилия на спонтанном дыхании оценивают градиент между пищеводным давлением (Pes), при соблюдении условий измерения оно равно плевральному(Ppl), и давлением на входе в дыхательные пути (Pawo).

При управлении аппаратом ИВЛ наиболее доступным и информативным является градиент между давлением в дыхательных путях (Paw) и давлением на поверхности тела (Pbs- pressure body surface). Этот градиент (Ptr) называется «трансреспиратораное давление», и вот как он создаётся:

Как видите, ни один из методов ИВЛ не соответствует полностью спонтанному дыханию, но если оценивать воздействие на венозный возврат и лимфоотток аппараты ИВЛ NPV типа «Kirassa» кажутся более физиологичными. Аппараты ИВЛ NPV типа «Iron lung», создавая отрицательное давление над всей поверхностью тела, снижают венозный возврат и, соответственно, сердечный выброс.

Без Ньютона здесь не обойтись.

Давление (pressure) – это сила, с которой ткани лёгких и грудной клетки противодействуют вводимому объёму, или, иными словами, сила, с которой аппарат ИВЛ преодолевает сопротивление дыхательных путей, эластическую тягу лёгких и мышечно-связочных структур грудной клетки (по третьему закону Ньютона это одно и то же поскольку «сила действия равна силе противодействия»).

Equation of Motion уравнение сил, или третий закон Ньютона для системы «аппарат ИВЛ – пациент»

В том случае, если аппарат ИВЛ осуществляет вдох синхронно с дыхательной попыткой пациента, давление, создаваемое аппаратом ИВЛ (Pvent), суммируется с мышечным усилием пациента (Pmus) (левая часть уравнения) для преодоления упругости легких и грудной клетки (elastance) и сопротивления (resistance) потоку воздуха в дыхательных путях (правая часть уравнения).

Pmus + Pvent = Pelastic + Presistive

(давление измеряют в миллибарах)

(произведение упругости на объём)

Presistive = R x

(произведение сопротивления на поток) соответственно

Pmus + Pvent = E x V + R x

Pmus(мбар) + Pvent(мбар) = E(мбар/мл) x V(мл) + R (мбар/л/мин) x (л/мин)

Заодно вспомним, размерность E - elastance (упругость) показывает на сколько миллибар возрастает давление в резервуаре на вводимую единицу объёма (мбар/мл); R - resistance сопротивление потоку воздуха проходящему через дыхательные пути (мбар/л/мин).

Ну и для чего нам пригодится это Equation of Motion (уравнение сил)?

Понимание уравнения сил позволяет нам делать три вещи:

Во-первых, любой аппарат ИВЛ PPV может управлять одномоментно только одним из изменяемых параметров входящих в это уравнение. Эти изменяемые параметры – давление объём и поток. Поэтому существуют три способа управления вдохом: pressure control, volume control, или flow control. Реализация варианта вдоха зависит от конструкции аппарата ИВЛ и выбранного режима ИВЛ.

Во-вторых, на основе уравнения сил созданы интеллектуальные программы, благодаря которым аппарат рассчитывает показатели респираторной механики (напр.: compliance (растяжимость), resistance (сопротивление) и time constant (постоянная времени «τ »).

В-третьих, без понимания уравнения сил не понять такие режимы вентиляции как “proportional assist”, “automatic tube compensation”, и “adaptive support”.

Главные расчетные параметры респираторной механики resistance, elastance, compliance

1. Сопротивление дыхательных путей (airway resistance)

Сокращенное обозначение – Raw. Размерность – смH 2 O/Л/сек или мбар/мл/сек Норма для здорового человека – 0,6-2,4 смH 2 O/Л/сек. Физический смысл данного показателя говорит, каким должен быть градиент давлений (нагнетающее давление) в данной системе, чтобы обеспечить поток 1 литр в секунду. Современному аппарату ИВЛ несложно рассчитать резистанс (airway resistance), у него есть датчики давления и потока – разделил давление на поток, и готов результат. Для расчета резистанс аппарат ИВЛ делит разность (градиент) максимального давления вдоха (PIP) и давления плато вдоха (Pplateau) на поток ().
Raw = (PIP–Pplateau)/.
Что и чему сопротивляется?

Респираторная механика рассматривает сопротивление дыхательных путей воздушному потоку. Сопротивление (airway resistance) зависит от длины, диаметра и проходимости дыхательных путей, эндотрахеальной трубки и дыхательного контура аппарата ИВЛ. Сопротивление потоку возрастает, в частности, если происходит накопление и задержка мокроты в дыхательных путях, на стенках эндотрахеальной трубки, скопление конденсата в шлангах дыхательного контура или деформация (перегиб) любой из трубок. Сопротивление дыхательных путей растёт при всех хронических и острых обструктивных заболеваниях лёгких, приводящих к уменьшению диаметра воздухоносных путей. В соответствии с законом Гагена-Пуазеля при уменьшении диаметра трубки вдвое для обеспечения того же потока градиент давлений, создающий этот поток (нагнетающее давление), должен быть увеличен в 16 раз.

Важно иметь в виду, что сопротивление всей системы определяется зоной максимального сопротивления (самым узким местом). Устранение этого препятствия (например, удаление инородного тела из дыхательных путей, устранение стеноза трахеи или интубация при остром отёке гортани) позволяет нормализовать условия вентиляции легких. Термин резистанс широко используется российскими реаниматологами как существительное мужского рода. Смысл термина соответствует мировым стандартам.

Важно помнить, что:

1. Аппарат ИВЛ может измерить резистанс только в условиях принудительной вентиляции у релаксированного пациента.

2. Когда мы говорим о резистанс (Raw или сопротивлении дыхательных путей) мы анализируем обструктивные проблемы преимущественно связанные с состоянием проходимости дыхательных путей.

3. Чем больше поток, тем выше резистанс.

2. Упругость (elastance) и податливость (compliance)

Прежде всего, следует знать, это строго противоположные понятия и elastance =1/сompliance. Смысл понятия «упругость» подразумевает способность физического тела при деформации сохранять прилагаемое усилие, а при восстановлении формы – возвращать это усилие. Наиболее наглядно это свойство проявляется у стальных пружин или резиновых изделий. Специалисты по ИВЛ при настройке и тестировании аппаратов в качестве модели легких используют резиновый мешок. Упругость дыхательной системы обозначается символом E. Размерность упругости мбар/мл, это означает: на сколько миллибар следует поднять давление в системе, чтобы объём увеличился на 1 мл. Данный термин широко используется в работах по физиологии дыхания, а специалисты по ИВЛ пользуются понятием обратным «упругости» – это «растяжимость» (compliance) (иногда говорят «податливость»).

– Почему? – Самое простое объяснение:

– На мониторах аппаратов ИВЛ выводится compliance, вот мы им и пользуемся.

Термин комплайнс (compliance) используется как существительное мужского рода российскими реаниматологами так же часто, как и резистанс (всегда когда монитор аппарата ИВЛ показывает эти параметры).

Размерность комплайнса – мл/мбар показывает, на сколько миллилитров увеличивается объём при повышении давления на 1 миллибар. В реальной клинической ситуации у пациента на ИВЛ измеряют комплайнс респираторной системы – то есть легких и грудной клетки вместе. Для обозначения комплайнс используют символы: Crs (compliance respiratory system) – комплайнс дыхательной системы и Cst (compliance static) – комплайнс статический, это синонимы. Для того, чтобы рассчитать статический комплайнс, аппарат ИВЛ делит дыхательный объём на давление в момент инспираторной паузы (нет потока – нет резистанс).

Cst = V T /(Pplateau –PEEP)

Норма Cst (комплайнса статического) – 60-100мл/мбар

Приводимая ниже схема показывает, как на основе двухкомпонентной модели рассчитывается сопротивление потоку (Raw), статический комплайнс (Cst) и упругость (elastance) дыхательной системы.


Измерения выполняются у релаксированного пациента в условиях ИВЛ, управляемой по объёму с переключением на выдох по времени. Это значит, что после того, как объём доставлен, на высоте вдоха клапаны вдоха и выдоха закрыты. В этот момент измеряется давление плато.

Важно помнить, что:

1. Аппарат ИВЛ может измерить Cst (комплайнс статический) только в условиях принудительной вентиляции у релаксированного пациента во время инспираторной паузы.

2. Когда мы говорим о статическом комплайнсе (Cst, Crs или растяжимости респираторной системы), мы анализируем рестриктивные проблемы преимущественно связанные с состоянием легочной паренхимы.

Философское резюме можно выразить двусмысленным утверждением: Поток создаёт давление.

Обе трактовки соответствуют действительности, то есть: во-первых, поток создаётся градиентом давлений, а во-вторых, когда поток наталкивается на препятствие (сопротивление дыхательных путей), давление увеличивается. Кажущаяся речевая небрежность, когда вместо «градиент давлений» мы говорим «давление», рождается из клинической реальности: все датчики давления расположены со стороны дыхательного контура аппарата ИВЛ. Для того, чтобы измерить давление в трахее и рассчитать градиент, необходимо остановить поток и дождаться выравнивания давления с обоих концов эндотрахеальной трубки. Поэтому в практике обычно мы пользуемся показателями давления в дыхательном контуре аппарата ИВЛ.

По эту сторону эндотрахеальной трубки для обеспечения вдоха объёмом Хмл за время Yсек мы можем повышать давление вдоха (и соответственно градиент) на сколько у нас хватит здравого смысла и клинического опыта, поскольку возможности аппарата ИВЛ огромны.

По ту сторону эндотрахеальной трубки у нас находится пациент, и у него для обеспечения выдоха объёмом Хмл за время Yсек есть только сила упругости легких и грудной клетки и сила его дыхательной мускулатуры (если он не релаксирован). Возможности пациента создавать поток выдоха ограничены. Как мы уже предупреждали, «поток – это скорость изменения объёма», поэтому для обеспечения эффективного выдоха нужно предоставить пациенту время.

Постоянная времени (τ )

Так в отечественных руководствах по физиологии дыхания называется Time constant. Это произведение комплайнс на резистанс. τ = Cst х Raw вот такая формула. Размерность постоянной времени, естественно секунды. Действительно, ведь мы умножаем мл/мбар на мбар/мл/сек. Постоянная времени отражает одновременно эластические свойства дыхательной системы и сопротивление дыхательных путей. У разных людей τ разная. Понять физический смысл данной константы легче, начав с выдоха. Представим себе, завершён вдох, – начат выдох. Под действием эластических сил дыхательной системы воздух выталкивается из лёгких, преодолевая сопротивление дыхательных путей. Сколько времени займёт пассивный выдох? – Постоянную времени умножить на пять (τ х 5). Так устроены легкие человека. Если аппарат ИВЛ обеспечивает вдох, создавая постоянное давление в дыхательных путях, то у релаксированного пациента максимальный для данного давления дыхательный объём будет доставлен за то же время (τ х 5).

Данный график показывает зависимость процентной величины дыхательного объёма от времени при постоянном давлении вдоха или пассивном выдохе.


При выдохе по истечении времени τ пациент успевает выдохнуть 63% дыхательного объёма, за время 2τ – 87%, а за время 3τ – 95% дыхательного объёма. При вдохе с постоянным давлением аналогичная картина.

Практическое значение постоянной времени:

Если время, предоставляемое пациенту для выдоха <5τ , то после каждого вдоха часть дыхательного объёма будет задерживаться в легких пациента.

Максимальный дыхательный объём при вдохе с постоянным давлением поступит за время 5τ .

При математическом анализе графика кривой объёма выдоха расчет постоянной времени позволяет судить о комплайнс и резистанс.

Данный график показывает, как современный аппарат ИВЛ рассчитывает постоянную времени.


Бывает, что статический комплайнс рассчитать невозможно, т. к. для этого должна отсутствовать спонтанная дыхательная активность и необходимо измерить давление плато. Если разделить дыхательный объём на максимальное давление, получим еще один расчётный показатель, отражающий комплайнс и резистанс.

CD = Dynamic Characteristic = Dynamic effective compliance = Dynamic compliance.

CD = VT /(PIP – PEEP)

Больше всего сбивает с толку название – «динамический комплайнс», поскольку измерение происходит при неостановленном потоке и, следовательно, данный показатель включает и комплайнс, и резистанс. Нам больше нравится название «динамическая характеристика». Когда этот показатель снижается, это значит, что либо понизился комплайнс, либо возрос резистанс, либо и то и другое. (Или нарушается проходимость дыхательных путей, или снижается податливость легких.) Однако если одновременно с динамической характеристикой мы оцениваем по кривой выдоха постоянную времени, мы знаем ответ.

Если постоянная времени растёт, это обструктивный процесс, а если уменьшается, значит лёгкие стали менее податливы. (пневмония?, интерстициальный отек?...)


После проведения операции на коже появляются рубцы и швы, которые сохраняются на протяжении длительного времени. Продолжительность их заживления определяется общей сопротивляемостью организма, особенностями кожных покровов и иными факторами. Основная задача в послеоперационном периоде — не допустить развития инфекции, и ускорить процесс регенерации всеми возможными способами.

После проведения хирургического вмешательства на животе и наложения швов процесс их заживления включает несколько этапов

  1. Образование коллагена или соединительной ткани фибробластами. В процессе заживления происходит активизация фибробласт макрофагами. Отмечается миграция фибробласт к месту повреждения, и в последующем они связываются с фибриллярными структурами через фибронектин. Одновременно с этим начинается процесс активного синтеза веществ внеклеточного матрикса, среди которых присутствует и коллаген. Основной задачей коллагена служит устранение дефекта тканей и обеспечение прочности появляющегося рубца.
  2. Эпителизация раны. Такой процесс начинается по мере миграции эпителиальных клеток от краев раны на ее поверхность. После окончания эпителизации образуется своеобразный барьер для микроорганизмов, а для свежих ран характерна низкая резистентность к инфекциям. Через несколько суток после проведения операции при отсутствии каких-либо осложнений рана восстанавливает свою резистентность к инфицированию. В том случае, если этого не происходит, то возможно причиной стало расхождение шва после операции.
  3. Сокращение раневых поверхностей и закрытие раны. Добиться такого результата удается за счет эффекта раневого стяжения, которое в определенной степени вызвано сокращением миофибробластов.

Период заживления после операции во многом определяется особенностями организма человека. В одних ситуациях такой процесс происходит достаточно быстро, а у других пациентов может занять довольно длительное время.

Обработка швов после операции

Перед тем, как ответить на вопрос, сколько заживает шов после операции на животе, необходимо разобраться, что же влияет на этот процесс. Одним из условий успешного результата считается проведение правильной терапии после того, как пациенту будут наложены швы. Кроме этого, на продолжительность послеоперационного периода влияют следующие факторы:

  • стерильность;
  • материалы для обработки швов;
  • регулярность процедуры.

После проведения хирургического вмешательства одним из важных требований считается соблюдение стерильности. Это означает, что проводить обработку швов разрешается лишь хорошо вымытыми руками с использованием дезинфицированных инструментов.

Чем обрабатывают швы после операции на животе, и какие дезинфицирующие средства являются самыми эффективными? На самом деле, выбор того или иного лекарственного средства определяется характером травмы, и для обработки можно использовать:

  • медицинский спирт;
  • перекись водорода;
  • йод;
  • раствор перманганата калия;
  • зеленку;
  • мази и гели с противовоспалительным действием.

В том случае, если необходимо обработать послеоперационные швы в домашних условиях, то для этой цели можно воспользоваться следующими средствами народной медицины:

  • масло чайного дерева в чистом виде;
  • настойка корней живокоста из 20 грамм растительного средства, 200 мл воды и 1 стакан спирта;
  • крем с экстрактом календулы аптечной, в которую можно добавить каплю апельсинового или розмаринового масла.

Перед использованием таких народных средств в домашних условиях рекомендуется предварительно проконсультироваться со специалистом.

Что влияет на заживление?

Продолжительность заживления раны после наложения швов зависит от следующих факторов:

  • возраста пациента — у молодых людей восстановление тканей происходит намного быстрее, чем у пожилых;
  • масса тела — процесс заживления раны может замедляться при излишнем весе человека либо при ожирении;
  • особенности питания — недостаток энергетического и пластического материала может отразиться на качестве и скорости репаративных процессов в ране;
  • обезвоживание — недостаток жидкости в организме может привести к электролитному балансу, который замедляет заживление швов после операции;
  • состояние кровоснабжения — заживление раны происходит значительно быстрее в том случае, если возле нее находится большое количество сосудов;
  • хронические патологии могут замедлять восстановительный процесс и вызывать различные осложнения;
  • состояние иммунитета — при снижении защитных сил организма ухудшается прогноз хирургического вмешательства и возможно нагноение ран.

Поступление в рану необходимого количества кислорода считается одним из основных условий заживления раны, поскольку участвует в синтезе коллагена и помогает уничтожать бактерии фагоцитам. Лекарственные средства противовоспалительного действия могут замедлять процесс заживления в первые несколько суток, но в последующем практически не влияют на этот процесс.

Одной из распространенных причин ухудшения состояния раны после операции и замедления процесса ее заживления считается вторичное инфицирование, которое сопровождается образованием гнойного экссудата.

Правила проведения обработки

Для того чтобы заживление швов проходило как можно скорее без развития осложнений, необходимо придерживаться следующих правил:

  • перед началом процедуры необходимо продезинфицировать руки и инструменты, которые могут понадобиться для ее проведения;
  • следует аккуратно снять наложенную повязку, и в том случае, если она прилипла к коже, то полить ее перекисью;
  • нужно мазать шов антисептическим препаратом с помощью ватной палочки или марлевого тампона;
  • необходимо аккуратно наложить повязку.

Важно помнить о том, что проводить обработку швов следует два раза в день, но при необходимости количество можно увеличить. Кроме этого, необходимо каждый раз внимательно осматривать рану на наличии в ней каких-либо воспалений. Не рекомендуется снимать сухие корки и коросты с раны, поскольку это может привести к появлению шрамов на коже. Следует с аккуратностью принимать душ и не разрешается тереть шов слишком жесткой губкой. В том случае, если швы на животе покраснели либо из них начал выделяться гнойный экссудат, то необходимо как можно скорее показаться врачу.

Принимать решение, когда снимают швы после операции на животе, может только врач. Проводится такая процедура в стерильных условиях с использованием специальных инструментов и обычно на 5-10 день после операции.

Средства для заживления

Для того чтобы ускорить рассасывание и заживление швов после операции, в домашних условиях можно использовать антисептические средства. Специалисты рекомендуют применять их не для обработки влажных ран, а уже тогда, когда начался процесс заживления. Выбор той или иной мази зависит от характера повреждения и его глубины. При неглубоких поверхностных ранах рекомендуется применение простых антисептических средств, а при развитии осложнений необходимо использовать препараты с содержанием гормональных компонентов.

Как убрать шрам после операции на животе, и какие мази считаются наиболее эффективными при обработке швов?

  • Мазь Вишневского ускоряет выведение гноя из раны;
  • Левомеколь оказывает комбинированное действие;
  • Вулнузан содержит натуральные компоненты, и прост в применении;
  • Левосин уничтожает бактерии и купирует воспалительный процесс;
  • Стелланин помогает избавиться от отечности тканей и уничтожить инфекции, а также ускоряет регенерацию кожи;
  • Аргосульфан обладает выраженным бактерицидным действием и помогает добиться обезболивающего эффекта;
  • Актовегин успешно борется с воспалительным процессом в ране;
  • Солкосерил сводит к минимуму риск появления шрамов и рубцов.

Такие лекарственные средства при правильном их использовании помогает ускорить процесс заживления раны после операции и избежать проникновения инфекции. Важно помнить о том, что прежде чем мазать послеоперационный шов на животе, необходимо обязательно проконсультироваться с врачом. Дело в том, что самостоятельное лечение послеоперационных швов может закончиться сильным нагноением раны и дальнейшим ее воспалением. Соблюдение несложных правил является залогом успешного лечения послеоперационных швов и помогает не допустить формирования рубцов.

У некоторых людей, которые столкнулись с хирургическим вмешательством, не заживает шов после операции. Что делать в этой ситуации, знают немногие. Правильный уход за раной зависит от места локализации, размеров, индивидуальных особенностей, но в целом обработка за ранами имеет общие правила и рекомендации.

Чтобы шов и рана быстро заживали, нужно строго придерживаться рекомендаций врачей. При правильном уходе послеоперационные швы должны заживать в такие примерные сроки.

Швы после операции обрабатываются 2 раза в день

Таблица. Нормальные сроки заживление швов после операции относительно локализации на теле

Локализация раны

Сроки заживления (суток)

Лицо, голова

3-4

Передняя поверхность шеи

Задняя поверхность шеи

Боковая поверхность груди и живота

Раны живота по средней линии

Спина

Плечо

Предплечье

Кисть

Бедро

Голень
Стопа

Обработка швов антисептическими растворами

Основные советы для быстрого заживления швов после операции:

  • правильная стерильная обработка послеоперационного шва или раны;
  • использования для обработки шва только тех растворов, которые были назначены врачом;
  • регулярный осмотр и обработка шва несколько раз в день.

Правильная обработка раны позволяет заживить шов после операции намного быстрее. В этом помогают такие антисептические средства, как йод, спирт, перекись водорода, марганцовка, хлоргексидин. Также возможно использование зеленки или ее заменителя - фукорцина.

Важно помнить! Швы после операции обрабатываются 2 раза в день. В некоторых более осложненных случаях, возможно и чаще. Процедуры пропускать нельзя. Перед обработкой тщательно вымыть руки.
После каждой обработки, необходимо менять стерильную повязку. Это делается вплоть до удаления ниток.

Необходимо быть предельно осторожным при удалении повязки, так как она нередко прилипает к ране. После этого тонкой струей перекиси водорода нужно полить шов, затем обработать антисептическим раствором.

Обратите внимание! Нельзя отдирать корочки, наросты, налеты и другие слои, образовавшиеся на шве. Это говорит о том, что процесс срастания тканей проходит в нужном направлении.

Если их удалять, то возможны такие осложнения, как:

  • воспаление;
  • углубление шва, неровностей кожи;
  • разрыв шва;
  • свищ.

Мази для заживления швов после операции

Сразу же после хирургического вмешательства, шов и рану обрабатывают мазями или гелями, которые не позволяют образовываться воспалениям, помогают скорее справиться с повреждениями и начать заживление.


Левомеколь

Незаживающие послеоперационные швы, делающие процесс немного долгим, после изъятия нитей также продолжают лечить мазями до тех пор, пока не начнет образовываться рубец.

Следующие действенные мази прекрасно справляются со своим прямым назначением:

Название

Состав Принцип действия Способ применения

Цена

Левомеколь метилурацил,

хлорамфеникол, вспомогательные вещества

способствует регенерации клеток, обладает противомикробным

и бактерицидным эффектом

Наносится на стерильный бинт или салфетки, накладывается на незаживающий шов после операции 130 руб.
Мазь Вишневского Деготь, аэросил, ксероформ, касторовое масло Антисептическое, противовоспалительное,

Местнораздражающее средство, ускоряющее регенерацию клеток

Нанести на поверхность шва, либо на стерильную повязку 40 руб.
Солкосерил депротеинизированный диализат из крови здоровых молочных телят, цетиловый спирт, холестерол, белый вазелин, вода для инъекций Оказывает регенерирующее, ранозаживляющее действие. Увеличивает выработку коллагена Нанести тонким слоем на поверхность раны, предварительно ее промыв. Возможно использование повязок 250 руб.
Контрактубекс Экстракт лука, гепарин, аллантоин, сорбиновая кислота, метил-4-гидроксибензоат, ксантан, полиэтиленгликоль, очищенная вода Противовоспалительное, регенерирующее, антитромбическое средство Втирать в ткань рубца шва 2-3 раза в сутки 700 руб.

Если не заживает шов после операции, что делать при этом подскажет не только опытный врач, но и инструкции по применения к назначенному врачом препарату.

Использование заживляющих мазей длится до того момента, пока рана и шов полностью не заживут, а рубец станет светлеть.

Пластырь для заживления послеоперационных швов

Современная медицина не стоит на месте и для скорейшего безопасного заживления швов после операций все чаще применяются пластыри на основе медицинского силикона.

Пластыри из такого материала более плотно прижимаются к поверхности кожи и рубцов, что позволяет быстрее рассасываться затвердевшим тканям. Уплотненный силикон прекрасно пропускает воздух, что немаловажно для заживания послеоперационных швов. Это делает его очень полезным в комплексном лечении раны. При этом он не пропускает воду и другую влагу.

Интересный факт! Пластырь из силиконового геля является не хирургическим методом для затягивания послеоперационных швов, что делает одним из самых популярных и доступных средств быстрого заживления кожи.

Он очень легок, удобен, практичен и комфортен.

Принцип действия силиконового пластыря заключается в следующем:

  • вызывает смягчение рубцовой ткани, уменьшая ее плотность, благодаря задерживанию влаги в коже;
  • происходит компрессионное натяжение и разглаживание рубца при помощи липкой основы пластыря;
  • улучшение структуры кожи, повышение ее эластичности, предотвращение рубцевания и затвердевания кожных покровов.

Перед использованием пластыря на основе медицинского силиконового геля, снимают защитную пленку с липкой стороны.

Шов, шрам или рубец необходимо предварительно промыть с мылом, затем плотно наложить пластырь и разгладить его.

Если на этом участке имеются волосы, то их необходимо сбрить для более тесного контакта кожи и пластыря. При первом применении пластырь приклеивают не более, чем на 2 часа.

Народные средства для заживления послеоперационных швов

Помимо медикаментозных препаратов, врачи часто назначают и лечение народными средствами и методами.

В комплексном лечении такие процедуры по уходу за послеоперационными незаживающими швами творят чудеса. За короткое время, если делать все строго по рекомендациям хирургов, раны начинают затягиваться.


Если не заживает шов после операции, нужно обратиться к врачу, чтобы узнать что делать.

Среди используемых народных средств, самыми популярными являются:

  • масло чайного дерева;
  • экстракт календулы считается одним из самых действенных средств, если не заживает шов после операции. Как и что делать — подскажет инструкция крема;
  • ежевичный сироп с эхинацеей также прекрасно справляется с ранами после хирургического вмешательства.

Масло чайного дерева

Настоящее качественное масло чайного дерева обладает мощным бактерицидным, противовоспалительным, противогрибковым, болеутоляющим и ранозаживляющим свойствами.

Его применяют следующими способами:

  • в чистом виде наносят на шов или рану при помощи стерильной салфетки, ватного тампона или палочки;
  • растворяют 3-5 капель на стакан чистой теплой воды, обмакивают марлевую салфетки и прикладывают в виде компресса на поврежденный участок кожи.

Натуральное качественное масло пахнет освежающей пряной древесиной. Если оно обладает другим посторонним запахом, то это подделка.


Настойка календулы

Крем с экстрактом календулы

Натуральный крем на основе экстракта календулы прекрасно заживляет раны и швы после операции, ускоряет регенерацию кожи, дезинфицирует, смягчает кожу (рубцы) и делает ее эластичной.

Крем с экстрактом календулы наносят на поверхность шва, раны или рубца, при отсутствии болевых ощущений, массируют. Его можно использовать постоянно при необходимости.

Ежевичный сироп с эхинацеей

Это средство также является антибактериальным, дезинфицирующим, успокаивающим и ранозаживляющим. Благодаря своему составу из природных натуральных компонентов, сироп не имеет противопоказаний как для детей от 2-х лет, так и для больных сахарным диабетом.

Принимают данное средство внутрь перед едой по 1 столовой ложке в день, либо по 1 чайной ложке 3 раза в день.

Уход за швом в особенных случаях

Существуют такие особенные случаи, когда швы заживают не так, как нужно. За ними нужен тщательный уход. Они не особо отличается от обработки за обычными послеоперационными швами, но все же требуют несколько большего внимания.

Уход за сухим рубцом

Когда послеоперационный шов начинает образовывать сухой рубец, то его ни в коем случае нельзя удалять. Сухая кожица отпадет сама, либо при помощи лекарственных и народных средств. В душе или в ванной необходимо стараться не мочить рубец, чтобы избежать поражения бактериями и воспалениями. Систематически обрабатывать рубец асептическими средствами, мазать кремами или гелями.

Что делать, если шов мокнет

Если шов начинает мокнуть, — значит, в нем образовалось воспаление. Чтобы предотвратить его развития и ускорить процесс выздоровления, а также заживления, необходимо постоянно обрабатывать поверхность шва асептическими, бактерицидными и противовоспалительными средствами.

По мере необходимости мазать шов обезболивающими кремами. После каждой процедуры накладывать стерильную повязку. Когда шов более-менее начнет заживать, можно делать воздушные ванны не более, чем на 5 минут.

Что делать, если шов нагноился

При нагноении швов следует в срочном порядке обратиться к хирургу. Он осмотрит шов, в месте нагноения его разрежет или, если имеются нитки, распустит их. Далее промоет рану, обработает ее противомикробными, противовоспалительными растворами и наложит стерильную повязку, смазанную ранозаживляющим кремом.

После этого за швом нужно тщательно следить и ухаживать , иначе процесс заживления продлится долгое время.

Долго незаживающие послеоперационные швы у многих вызывают волнение за свое здоровье. Не нужно переживать. Достаточно более аккуратно, исправно обрабатывать и ухаживать за швом, делать все по рекомендациям врача. Через непродолжительное время шов заживет и перестанет беспокоить.

Берегите себя и будьте здоровы!


Не пропустите самые популярные статьи рубрики
.