Коэффициент вариации больше 33. Показатели вариации

Квадратный корень из дисперсии носит название среднего квадратического отклонения от средней, которое рассчитывается следующим образом:

Элементарное алгебраическое преобразование формулы среднего квадратического отклонения приводит ее к следующему виду:

Эта формула часто оказывается более удобной в практике расчетов.

Среднее квадратическое отклонение так же, как и среднее линейное отклонение, показывает, на сколько в среднем отклоняются конкретные значения признака от среднего их значения. Среднее квадратическое отклонение всегда больше среднего линейного отклонения. Между ними имеется такое соотношение:

Зная это соотношение, можно по известному показатели определить неизвестный, например, но (I рассчитать а и наоборот. Среднее квадратическое отклонение измеряет абсолютный размер колеблемости признака и выражается в тех же единицах измерения, что и значения признака (рублях, тоннах, годах и т.д.). Оно является абсолютной мерой вариации.

Для альтернативных признаков, например наличия или отсутствия высшего образования, страховки, формулы дисперсии и среднего квадратического отклонения такие:

Покажем расчет среднего квадратического отклонения по данным дискретного ряда, характеризующего распределение студентов одного из факультетов вуза по возрасту (табл. 6.2).

Таблица 6.2.

Результаты вспомогательных расчетов даны в графах 2-5 табл. 6.2.

Средний возраст студента, лет, определен по формуле средней арифметической взвешенной (графа 2):

Квадраты отклонения индивидуального возраста студента от среднего содержатся в графах 3-4, а произведения квадратов отклонений на соответствующие частоты - в графе 5.

Дисперсию возраста студентов, лет, найдем по формуле (6.2):

Тогда о = л/3,43 1,85 *ода, т.е. каждое конкретное значение возраста студента отклоняется от среднего значения на 1,85 года.

Коэффициент вариации

По своему абсолютному значению среднее квадратическое отклонение зависит не только от степени вариации признака, но и от абсолютных уровней вариантов и средней. Поэтому сравнивать средние квадратические отклонения вариационных рядов с различными средними уровнями непосредственно нельзя. Чтобы иметь возможность для такого сравнения, нужно найти удельный вес среднего отклонения (линейного или квадратического) в среднем арифметическом показателе, выраженном в процентах, т.е. рассчитать относительные показатели вариации.

Линейный коэффициент вариации вычисляют по формуле

Коэффициент вариации определяют по следующей формуле:

В коэффициентах вариации устраняется не только несопоставимость, связанная с различными единицами измерения изучаемого признака, но и несопоставимость, возникающая вследствие различий в величине средних арифметических. Кроме того, показатели вариации дают характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

По данным табл. 6.2 и полученным выше результатам расчетов определим коэффициент вариации, %, по формуле (6.3):

Если коэффициент вариации превышает 33%, то это свидетельствует о неоднородности изучаемой совокупности. Полученное в пашем случае значение говорит о том, что совокупность студентов по возрасту однородна по своему составу. Таким образом, важная функция обобщающих показателей вариации - оценка надежности средних. Чем меньше с1, а2 и V, тем однороднее полученная совокупность явлений и надежнее полученная средняя. Согласно рассматриваемому математической статистикой "правилу трех сигм" в нормально распределенных или близких к ним рядах отклонения от средней арифметической, не превосходящие ±3ст, встречаются в 997 случаях из 1000. Таким образом, зная х и а, можно получить общее первоначальное представление о вариационном ряде. Если, например, средняя заработная плата работника по фирме составила 25 000 руб., а а равна 100 руб., то с вероятностью, близкой к достоверности, можно утверждать, что заработная плата работников фирмы колеблется в пределах (25 000 ± ± 3 х 100) т.е. от 24 700 до 25 300 руб.

ВВЕДЕНИЕ

Методические указания по выполнению практических и лабораторных работ по статистике содержат требования по их выполнению, порядок расчетов вручную и с использованием MS Excel, ППП Statistica.

Часть II методических указаний характеризует расчет показателей вариации: размаха вариации, квартилей и квартильного отклонения, среднего линейного отклонения, дисперсии и среднего квадратического отклонения, коэффициентов осцилляции, вариации, асимметрии, эксцесса и других.

Расчет показателей вариации наряду с построением интервальных и дискретных вариационных рядов и расчетом средних величин, представленными в части I методических указаний, имеет большое значение для анализа рядов распределения.

РАСЧЕТ ПОКАЗАТЕЛЕЙ ВАРИАЦИИ

Цель работы: получение практических навыков в расчете различных показателей (меры) вариации в зависимости от поставленных исследованием задач.

Порядок выполнения работы:

Определить вид и форму (простая или взвешенная) показателей вариации.

Сформулировать выводы.

Пример расчета показателей вариации

Определение вида и формы показателей вариации.

Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся: размах вариации, квартильное отклонение, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение. Относительными показателями являются коэффициенты осцилляции, вариации, относительное линейное отклонение и т. д.

Размах вариации (R) является наиболее простым измерителем вариации признака и определяется по следующей формуле:

где - наибольшее значение варьирующего признака;

Наименьшее значение варьирующего признака.

Квартильное отклонение (Q) - применяется для характеристики вариации признака в совокупности. Может использоваться вместо размаха вариации во избежание недостатков, связанных с использованием крайних значений.

Квартили - это значения признака в ранжированном ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине; 25% единиц будут заключены между и; 25% единиц будут заключены между и, и остальные 25% превосходят.

где - нижняя граница интервала, в котором находится первая квартиль;

Сумма накопленных частот интервалов, предшествующих интервалу, в котором находится первая квартиль;

Частота интервала, в котором находится первая квартиль.

где Ме - медиана ряда;

условные обозначения те же, что и для величины.

В симметричных или умеренно асимметричных распределениях Q2/3. Так как на квартильное отклонение не влияют отклонения всех значений признака, то его использование следует ограничить случаями, когда определение среднего квадратического отклонения затруднительно или невозможно.

Среднее линейное отклонение () представляет собой среднюю величину из абсолютных отклонений вариантов признака от их средней. Его можно рассчитать по формуле средней арифметической, как невзвешенной, так и взвешенной, в зависимости от отсутствия или наличия частот в ряду распределения.

(6) - невзвешенное среднее линейное отклонение,

(7) - взвешенное среднее линейное отклонение.

Дисперсия () - средний квадрат отклонений индивидуальных значений признака от их средней величины. Дисперсия вычисляется по формулам простой невзвешенной и взвешенной.

(8) - невзвешенная,

(9) - взвешенная.

Среднее квадратическое отклонение () - наиболее распространенный показатель вариации, представляет собой квадратный корень из значения дисперсии.

Размах вариации, квартильное отклонение, среднее линейное и квадратическое отклонения - величины именованные, имеют размерность осредняемого признака.

Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях вычисляются относительные показатели вариации. Базой для сравнения служит средняя арифметическая. Чаще всего относительные показатели выражаются в процентах и характеризуют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности.

Коэффициент осцилляции рассчитывается по формуле:

Относительное линейное отклонение (линейный коэффициент вариации):

(13) или (14)

Коэффициент вариации:

Наиболее часто применяемый в статистике показатель относительной колеблемости - коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и как характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (Ефимова М.Р., Рябцев В.М. Общая теория статистики: Учебник М.: Финансы и статистика, 1991 г., стр. 105).

Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму).

В практике статистического исследования приходится встречаться с самыми различными распределениями. При изучении однородных совокупностей имеем дело, как правило, с одновершинными распределениями. Многовершинность свидетельствует о неоднородности изучаемой совокупности, появление двух и более вершин говорит о необходимости перегруппировки данных с целью выделения более однородных групп. Выяснение общего характера распределения предполагает оценку степени его однородности, а также вычисление показателей асимметрии и эксцесса. Симметричным является распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. В связи с этим простейший показатель асимметрии основан на соотношении показателей центра распределения: чем больше разница между средними, тем больше асимметрия ряда.

Для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель As:

Величина показателя As может быть положительной и отрицательной. Положительная величина показателя указывает на наличие правосторонней асимметрии (правая ветвь относительно максимальной ординаты вытянута больше, чем левая). При правосторонней асимметрии между показателями центра распределения существует соотношение: . Отрицательный знак показателя асимметрии свидетельствует о наличии левосторонней асимметрии (Рисунок 1). Между показателями центра распределения в этом случае имеется такое соотношение: .

Рисунок 1. Распределение: 1 - с правосторонней асимметрией; 2 - с левосторонней асимметрией.

Другой показатель, предложенный шведским математиком Линдбергом, рассчитывают по формуле:

где П - процент тех значений признака, которые превосходят по величине среднюю арифметическую.

Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка (в симметричном распределении его величина равна нулю):

где - центральный момент третьего порядка:

(19) - для несгруппированных данных;

(20) - для сгруппированных данных.

у - среднеквадратическое отклонение.

Применение этого показателя дает возможность не только определить величину асимметрии, но и ответить на вопрос о наличии или отсутствии асимметрии в распределении признака в генеральной совокупности. Оценка степени существенности этого показателя дается с помощью средней квадратической ошибки, которая зависит от объема наблюдений n и рассчитывается по формуле:

Если отношение, асимметрия существенна, и распределение признака в генеральной совокупности не является симметричным. Если отношение, асимметрия несущественна, ее наличие может быть объяснено влиянием различных случайных обстоятельств.

Для симметричных распределений рассчитывается показатель эксцесса (островершинности). Линдбергом предложен следующий показатель для оценки эксцесса:

где П - доля (%) количества вариантов, лежащих в интервале, равном половине среднего квадратического отклонения в ту или другую сторону от средней арифметической.

Наиболее точным является показатель, использующий центральный момент четвертого порядка:

где - центральный момент четвертого момента;

(24) - для несгруппированных данных;

(25) - для сгруппированных данных.

На рисунке 2 представлены два распределения: одно - островершинное (величина эксцесса положительная), второе - плосковершинное (величина эксцесса отрицательная). Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. В нормальном распределении отношение.

Рисунок 2. Распределение: 1,4 - нормальное; 2 - островершинное; 3 - плосковершинное

Средняя квадратическая ошибка эксцесса рассчитывается по формуле:

где n - число наблюдений.

Если, то эксцесс существенен, если, то несущественен.

Оценка существенности показателей асимметрии и эксцесса позволяет сделать вывод о том, можно ли отнести данное эмпирическое исследование к типу кривых нормального распределения.

Рассмотрим методику исчисления показателей вариации.

Таблица 1. Данные об объеме продаж валюты нескольких отделений Центробанка.

Определить средний объем продаж валюты по совокупности отделений, рассчитать абсолютные и относительные показатели вариации.

Рассчитаем размах вариации:

R = = 24,3 - 10,2 = 14,1 млн. руб.

вариация дисперсия осцилляция вариация асимметрия эксцесс

Для определения отклонений значений признака от средней и их квадратов строим вспомогательную таблицу:

Таблица 2. Расчетная таблица

Среднее значение находим по формуле средней арифметической простой:

Среднее линейное отклонение:

Дисперсия:

Коэффициент осцилляции:

Коэффициент вариации:

Для расчета показателей формы распределения строим вспомогательную таблицу:

Таблица 3. Расчетная таблица


Таблица 4. Данные о товарообороте предприятий одной из отраслей промышленности.

Определить средний объем товарооборота, структурные средние, абсолютные и относительные показатели вариации и насколько фактическое распределение согласуется с нормальным (по показателям формы распределения).

Для расчета показателей построим вспомогательную таблицу.

Таблица 5. Расчетная таблица

Размах вариации:

Среднее значение находим по формуле средней арифметической взвешенной:

В интервальных рядах распределения мода определяется по формуле:

В нашем случае мода будет равна:

В интервальном вариационном ряду медиана определяется по формуле:

В нашем случае медиана будет равна:

Квартильное отклонение:

где и - соответственно первая и третья квартили распределения.

Квартили определяются по формулам:

Среднее линейное отклонение:

Дисперсия:

Среднее квадратическое отклонение:

Рассчитаем относительные показатели вариации.

Коэффициент осцилляции:

Относительное линейное отклонение:

Относительный показатель квартильной вариации:

Коэффициент вариации:

Определим показатели формы распределения:

Формулировка выводов.

Сформулируем выводы по рассчитанным показателям вариации примера 2, в котором представлен интервальный ряд распределения предприятий по объему товарооборота, млн. руб.

Размах вариации свидетельствует о том, что разница между максимальным и минимальным значением составляет 40 млн. руб. Средний объем товарооборота - 30 млн. руб. Чаще всего встречающееся значение объема товарооборота в рассматриваемой совокупности предприятий - 31,4 млн. руб., причем 50% (40 предприятий) имеют объем товарооборота менее 30,5 млн. руб., а 50% свыше.

Квартильное отклонение, равное 5, свидетельствует об умеренной асимметрии распределения, так как в симметричных или умеренно асимметричных распределениях (в рассматриваемом примере).

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности. Так, средняя величина колеблемости объема товарооборота предприятий отраслей промышленности составляет: по среднему линейному отклонению - 6,5 млн. руб. (абсолютное отклонение); по среднему квадратическому отклонению - 8,1 млн. руб. Квадрат отклонений индивидуальных значений признака от их средней величины равен 65.

Разница между крайними значениями признака на 33,3% превышает среднее значение (= 133,3%).

Относительное линейное отклонение (= 21,7%) и относительный показатель квартильной вариации (= 16,4%) характеризуют однородность исследуемой совокупности, что подтверждает рассчитанный коэффициент вариации, равный 27% (V =27% меньше 33%).

По рассчитанным показателям асимметрии и эксцесса можно сделать вывод, что распределение плосковершинно (Ex < 0) и наблюдается левосторонняя асимметрия (As < 0). Асимметрия и эксцесс являются несущественными.

РАСЧЕТ ПОКАЗАТЕЛЕЙ ВАРИАЦИИ

ПРАКТИЧЕСКАЯ РАБОТА 3

Цель работы : получение практических навыков в расчете различных показателей (меры) вариации в зависимости от поставленных исследованием задач.

Порядок выполнения работы :

1. Определить вид и форму (простая или взвешенная) показателей вариации.

3. Сформулировать выводы.

1. Определение вида и формы показателей вариации.

Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся: размах вариации, квартильное отклонение, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение. Относительными показателями являются коэффициенты осцилляции, вариации, относительное линейное отклонение, относительный показатель квартильной вариации и т. д.

Размах вариации (R) является наиболее простым измерителем вариации признака и определяется по следующей формуле:

где – наибольшее значение варьирующего признака;

наименьшее значение варьирующего признака.

Квартильное отклонение (Q) – применяется для характеристики вариации признака в совокупности. Может использоваться вместо размаха вариации во избежание недостатков, связанных с использованием крайних значений.

где и – соответственно первая и третья квартили распределения.

Квартили – это значения признака в ранжированном ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине ; 25% единиц будут заключены между и ; 25% единиц будут заключены между и , и остальные 25% превосходят .

Квартили 1 и 3 определяются по формулам:

,

Где – нижняя граница интервала, в котором находится первая квартиль;

– сумма накопленных частот интервалов, предшествующих интервалу, в котором находится первая квартиль;

– частота интервала, в котором находится первая квартиль.

где Ме – медиана ряда;

,

условные обозначения те же, что и для величин .

В симметричных или умеренно асимметричных распределениях Q»2/3s. Так как на квартильное отклонение не влияют отклонения всех значений признака, то его использование следует ограничить случаями, когда определение среднего квадратического отклонения затруднительно или невозможно.

Среднее линейное отклонение () представляет собой среднюю величину из абсолютных отклонений вариантов признака от их средней. Его можно рассчитать по формуле средней арифметической, как невзвешенной, так и взвешенной, в зависимости от отсутствия или наличия частот в ряду распределения.



Невзвешенное среднее линейное отклонение,

- взвешенное среднее линейное отклонение.

Дисперсия () – средний квадрат отклонений индивидуальных значений признака от их средней величины. Дисперсия вычисляется по формулам простой невзвешенной и взвешенной.

- невзвешенная,

- взвешенная.

Среднее квадратическое отклонение (s) – наиболее распространенный показатель вариации, представляет собой квадратный корень из значения дисперсии.

Размах вариации, квартильное отклонение, среднее линейное и квадратическое отклонения – величины именованные, имеют размерность осредняемого признака. Дисперсия единицы измерения не имеет.

Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях вычисляются относительные показатели вариации. Базой для сравнения служит средняя арифметическая. Чаще всего относительные показатели выражаются в процентах и характеризуют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности.

Коэффициент осцилляции (относительный размах вариации) рассчитывается по формуле:

,

Линейный коэффициент вариации (относительное линейное отклонение):

Относительный показатель квартильной вариации :

или

Коэффициент вариации :

,

Наиболее часто применяемый в статистике показатель относительной колеблемости – коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и как характеристику однородности совокупности. Чем больше величина коэффициента вариации, тем больше разброс значений признака вокруг средней, тем больше неоднородность совокупности. Существует шкала определения степени однородности совокупности в зависимости от значений коэффициента вариации (17; С.61).

Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму).

В практике статистического исследования приходится встречаться с самыми различными распределениями. При изучении однородных совокупностей имеем дело, как правило, с одновершинными распределениями. Многовершинность свидетельствует о неоднородности изучаемой совокупности, появление двух и более вершин говорит о необходимости перегруппировки данных с целью выделения более однородных групп. Выяснение общего характера распределения предполагает оценку степени его однородности, а также вычисление показателей асимметрии и эксцесса. Симметричным является распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. В связи с этим простейший показатель асимметрии основан на соотношении показателей центра распределения: чем больше разница между средними , тем больше асимметрия ряда.

Для характеристики асимметричности в центральной части распределения, то есть основной массы единиц или для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель асимметрии К.Пирсона:

Величина показателя As может быть положительной и отрицательной. Положительная величина показателя указывает на наличие правосторонней асимметрии (правая ветвь относительно максимальной ординаты вытянута больше, чем левая). При правосторонней асимметрии между показателями центра распределения существует соотношение: . Отрицательный знак показателя асимметрии свидетельствует о наличии левосторонней асимметрии (рис. 1). Между показателями центра распределения в этом случае имеется соотношение: .



Рис. 1. Распределение:

1 – с левосторонней асимметрией; 2 – с правосторонней асимметрией.

Другой показатель, предложенный шведским математиком Линдбергом, рассчитывают по формуле:

где П – процент тех значений признака, которые превосходят по величине среднюю арифметическую.

Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка (в симметричном распределении его величина равна нулю):

где - центральный момент третьего порядка:

σ – среднеквадратическое отклонение.

Применение этого показателя дает возможность не только определить величину асимметрии, но и ответить на вопрос о наличии или отсутствии асимметрии в распределении признака в генеральной совокупности. Оценка степени существенности этого показателя дается с помощью средней квадратической ошибки, которая зависит от объема наблюдений n и рассчитывается по формуле:

.

Если отношение , асимметрия существенна, и распределение признака в генеральной совокупности не является симметричным. Если отношение , асимметрия несущественна, ее наличие может быть объяснено влиянием различных случайных обстоятельств.

Для симметричных распределений рассчитывается показатель эксцесса (островершинности). Линдбергом предложен следующий показатель для оценки эксцесса:

,

где П – доля (%) количества вариантов, лежащих в интервале, равном половине среднего квадратического отклонения в ту или другую сторону от средней арифметической.

Наиболее точным является показатель, использующий центральный момент четвертого порядка:

где - центральный момент четвертого момента;

- для несгруппированных данных;

- для сгруппированных данных.

На рисунке 2 представлены два распределения: одно – островершинное (величина эксцесса положительная), второе – плосковершинное (величина эксцесса отрицательная). Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. В нормальном распределении отношение .



Рис. 2. Распределение:

1,4 – нормальное; 2 – островершинное; 3 – плосковершинное

Средняя квадратическая ошибка эксцесса рассчитывается по формуле:

,

где n – число наблюдений.

Если , то эксцесс существенен, если , то несущественен.

Оценка существенности показателей асимметрии и эксцесса позволяет сделать вывод о том, можно ли отнести данное эмпирическое исследование к типу кривых нормального распределения.

2. Рассмотрим методику исчисления показателей вариации.

Коэффициент вариации – это один из наиболее применимых в финансовой сфере статистических коэффициентов. Расскажем, как рассчитать коэффициент вариации и чем он может пригодиться финансовому директору.

Что такое коэффициента вариации и зачем он нужен

Коэффициент вариации (Coefficient of variation, или CV) – это мера относительного разброса случайной величины. Он показывает, какую долю составляет средний разброс случайной величины от среднего значения этой величины.

В общем случае коэффициент вариации используют для определения дисперсии значений без привязки к масштабу измеряемой величины и единицам измерения. Коэффициент вариации входит в группу относительных методов статистики, измеряется в процентах и поэтому его можно использовать для сравнения вариации нескольких не связанных между собой процессов и явлений.

Использование коэффициента вариации в финансовом моделировании

Коэффициент вариации является лидером среди вариационных статистических методов, которые используют финансовые и инвестиционные аналитики.

Аналитики используют коэффициент:

  1. Для определения устойчивости прогнозной модели.
  2. Для сравнения нескольких прогнозных моделей (в основном инвестиционных) с разными абсолютными уровнями дохода и риска.
  3. Для проведения XYZ анализа.

Формула расчета коэффициента вариации

Коэффициент вариации рассчитывается по формуле:

где CV – коэфф вариации,

σ – среднеквадратическое отклонение случайной величины,

tср – среднее значение случайной величины.

Формула коэффициента вариации для инвестиционных финансовых моделей:

где NPV – чистый приведенный доход.

Формула коэффициента вариации для инвестиций в ценные бумаги:

где:%год – доходность по ценной бумаге в % годовых.

Коэффициент вариации в Excel

=СТАНДОТКЛОНПА(диапазон значений)/СРЗНАЧ (диапазон значений)

Или с использованием встроенного пакета «Анализ данных».

Анализ коэффициента вариации

Коэффициент вариации более универсален, в отличие от дисперсии и среднеквадратического отклонения, потому что позволяет сопоставлять риск и доходность двух и более активов, которые могут существенно отличаться. Правда, у метода оценки пары доходность/риск с помощью коэффициента вариации есть ограничения. Если ожидаемая доходность стремится к нулю, то значение коэффициента вариации стремится к бесконечности. И даже незначительное изменение ожидаемой доходности проекта (или ценной бумаги) приводит к значительному изменению коэффициента, что необходимо учитывать при обосновании инвестиционных решений.

  • меньше 10%, то степень риска проекта является незначительной,
  • от 10% до 20% – средней,
  • больше 20% – значительной,
  • если значение коэффициента вариации больше 33%, то финансовая модель считается неоднородной, неустойчивой. По ней нельзя принимать объективных инвестиционных решений

Примеры расчета коэффициента вариации в Excel

Пример 1

Первый – открытие сети розничных точек для торговли ювелирными изделиями в Москве и Санкт-Петербурге.

Второй – открытие сети розничных точек по всей России в городах-миллионниках.

Финансовый аналитик предприятия составил финансовые модели обоих проектов в Excel и по модели Монте-Карло сделал по 5000 прогонов для NPV в каждом проекте (см. также, как создать наглядную финансовую модель в Excel ). Далее с помощью пакета анализа «Анализ данных» получил следующие статистические показатели (см. таблицы 1 и 2).

Таблица 1 . Показатели по проекту 1

Средний предполагаемый NPV от Проекта 1 составит 14,05 тысяч долларов, дисперсия (она же среднее квадратическое отклонение) будет равна 1,72 тысяч долларов.

Коэффициент вариации для первого проекта равен:

CV = 1.72/14.05 = 12%

Проект признается среднерисковым.

Средний предполагаемый NPV от Проекта 2 составит 25,23 тысяч долларов, дисперсия будет равна 6,30 тысяч долларов.

Коэффициент вариации для второго проекта составит:

CV = 6,30/25,23 = 24,97%

Проект признается высокорисковым.

Если сравнивать проекты 1 и 2 по коэффициенту вариации, то следует выбрать Проект 1, так как соотношение доход/риск у него лучше.

Пример 2

Компания «Сигма» проводит XYZ анализ товарного ассортимента по показателю изменчивости продаж. Продуктовая линейка компании представлена пятью товарами: А, В, С, D и E.

Имеется помесячная статистика продаж за последний год по каждому товару (см. рисунок). На практике лучше иметь статистику за период более трех лет/

Рисунок . Статистика продаж за последний год по каждому товару

Финансовый аналитик компании рассчитал коэффициент вариации для каждого товара

CVа = СТАНДОТКЛОНПА(B2:В13)/СРЗНАЧ (В2:В13) = 30%

В компании установлены следующие интервалы для групп XYZ:

Z – 31–100%.

Значит, товары B и D относятся к категории X. Спрос на них постоянный, запасы на складах по ним должны быть под пристальным контролем и постоянно пополняться.

Товары A и C относятся к категории Y. Спрос на них отклоняется в пределах 30% от месяца к месяцу. Возможно, имеет место сезонность спроса. Нужно глубже анализировать статистику продаж и выработать оптимальную политику по остаткам на складах для данной группы.

Товар E имеет наиболее волатильный спрос, продажи по нему осуществляются нерегулярно, поэтому возможно имеет смысл перейти на работу с ним по предзаказу.

Выводы

Следует помнить, что коэффициент вариации – это не единственный способ оценки эффективности инвестирования, так как он не учитывает несколько важных факторов:

  1. Объемы первоначального инвестирования.
  2. Возможную асимметричность распределения. При расчете коэффициента вариации предполагается, что разброс значений случайной величины расположен симметрично к среднему (часто по нормальному распределению). Но это не всегда соответствует действительности. Например, для опционов, доходность которых не может быть ниже нуля, имеет место асимметрия распределения, и анализировать коэффициент вариации по ним нужно с оглядкой на другие методы статистического анализа.
  3. Инвестиционную политику субъекта инвестирования.
  4. Другие нечисловые факторы.

Однако метод оценки статистических, в том числе финансовых, данных посредством расчета коэффициента вариации заслуженно признан одним из наиболее эффективных сравнительных методов статистики.