Средняя величина и показатели вариации. Общее понятие о вариации

Задача 1. Имеются следующие данные о возрастном составе студентов группы заочного отделения ВУЗа (лет): 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 21; 21; 21; 22; 23; 23; 24; 25; 25; 25; 26; 27; 29.
Для анализа распределения студентов по возрасту требуется:
1) построить интервальный ряд распределения и его график;
2) рассчитать модальный, медианный и средний возраст, установить его типичность с помощью коэффициентов вариации;
3) проверить распределение на нормальность с помощью коэффициентов асимметрии и эксцесса.

Решение. Для построения интервального ряда из дискретного используется формула Стерджесса, с помощью которой определяется оптимальное количество интервалов (n ):
n = 1 +3,322 lg N,
где N – число величин в дискретном ряде.
В нашей задаче n = 1 + 3,322lg 25 = 1 + 3,322*1,398 = 5,64. Так как число интервалов не может быть дробным, то округлим его до ближайшего целого числа, т.е. до 6.
После определения оптимального количества интервалов определяем размах интервала по формуле:
h = H / n,
где H – размах вариации.
H = Хмах –Х min ,
X м a x и Xmin - максимальное и минимальное значения в совокупности.
В нашей задаче h = (29 – 19)/6 = 1,67.
Интервальная группировка данных приведена в первом столбце таблицы 1, которая содержит также алгоритм и промежуточные расчеты.
Таблица 1 . Вспомогательные расчеты для решения задачи

более 27,33

На основе этой группировки строится график распределения возраста студентов:


Рис. График распределения возраста студентов.
Мода – это наиболее часто повторяющееся значение признака. Для интервального ряда с равными интервалами величина моды определяется по формуле (13):
,
где ХMo – нижнее значение модального интервала; f Mo – число наблюдений или объем взвешивающего признака (вес признака) в модальном интервале; f Mo-1 – то же для интервала, предшествующего модальному; f Mo+1 – то же для интервала, следующего за модальным; h – величина интервала изменения признака в группах.
В нашей задаче чаще всего повторяется (12 раз) первый интервал возраста (до 20,67), значит, это и есть модальный интервал. Используя формулу (13), определяем точное значение модального возраста:
Мо = 19 + 1,667*(12-0)/(2*12-4-0) = 20 (лет).
Медиана – это такое значение признака, которое приходится на середину ранжированного ряда. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака больше медианы, другая – меньше медианы. Для интервального ряда с равными интервалами величина медианы определяется так:
,
где XMe – нижняя граница медианного интервала; h – его величина (размах); – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала; f Me – число наблюдений или объем взвешивающего признака в медианном интервале.
В нашей задаче второй интервал возраста (от 20,67 до 22,33) является медианным, так как на него приходится середина ряда распределения возраста.

Определяем точное значение медианного возраста:
Ме = 20,67 + 1,667*(12,5-12)/4 = 20,878 (года).
Средняя величина – это обобщающий показатель совокупности, характеризующий уровень изучаемого явления или процесса. Средние величины могут быть простыми и взвешенными. Простая средняя рассчитывается при наличии двух и более статистических величин, расположенных в произвольном (несгруппированном) порядке, по общей формуле (15). Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием общей формулы (16).
=

= .
При этом обозначено: Xi – значения отдельных статистических величин или середин группировочных интервалов; m - показатель степени, от значения которого зависят виды средних величин.
Таблица 2. Виды степенных средних и их применение


m

Название
средней

Формула расчета средней

Когда применяется

простая

взвешенная

Арифметическая

=

=

Чаще всего, кроме тех случаев, когда должны применяться другие виды средних

Гармоническая

ГМ =

ГМ =

Для осреднения величин с дробной размерностью при наличии дополнительных данных по числителю дробной размерности

Геометрическая

Для осреднения цепных индексов динамики

Квадратическая

=

=

Для осреднения вариации признака (расчет средних отклонений)

Кубическая

=

=

Для расчета индексов нищеты населения

Хронологическая

Для осреднения моментных статистических величин

В нашей задаче, применяя формулу (18) и подставляя вместо середины интервалов возраста ХИ , определяем средний возраст студентов: = 549,163/25 = 21,967 (года). Теперь осталось определить типичность или нетипичность найденной средней величины. Это осуществляется с помощью расчета показателей вариации. Чем ближе они к нулю, тем типичнее найденная средняя величина для изучаемой статистической совокупности. При этом критериальным значением коэффициента вариации служит 1/3.
Коэффициенты вариации рассчитываются как отношение среднего отклонения к средней величине. Поскольку среднее отклонение может определяться линейным и квадратическим способами, то соответствующими могут быть и коэффициенты вариации.
Среднее линейное отклонение определяется по формулам:
–простое; – взвешенное.
Среднее квадратическое отклонение определяется как корень квадратный из дисперсии, то есть по формуле (31):
= .
Дисперсия определяется по формулам:
–простая; –взвешенная.
В нашей задаче, применяя формулу (30), определим ее числитель и внесем в расчетную таблицу. В итоге получим среднее линейное отклонение: Л = 54,937/25 = 2,198 (года). Разделив это значение на средний возраст, получим линейный коэффициент вариации : = 2,198/21,967 = 0,100. По значению этого коэффициента для рассмотренной группы студентов делаем вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,100 < 0,333).
Применяя формулу (33), получим в итоге дисперсию: Д = 164,018/25 = 6,561. Извлечем из этого числа корень и получим в результате среднее квадратическое отклонение: = = 2,561 (года).Разделив это значение на средний возраст, получим квадратический коэффициент вариации : = 2,561/21,967 = 0,117. По значению этого коэффициента для рассмотренной группы студентов можно сделать вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,117 < 0,333).
В качестве показателей асимметрии используются: коэффициент асимметрии – нормированный момент третьего порядка (34) и коэффициент асимметрии Пирсона (35):
, .
Если значение коэффициента асимметрии положительно, то в ряду преобладают варианты, которые больше средней (правосторонняя скошенность), если отрицательно – левосторонняя скошенность. Если коэффициент асимметрии равен 0, то вариационный ряд симметричен.
В нашей задаче ==383,636/25 = 15,345; =2,5613= 16,797; =15,345/16,797 = 0,914 > 0, значит, распределение студентов по росту с правосторонней асимметрией. Это подтверждает и значение коэффициента асимметрии Пирсона: As = (21,967-20)/2,561 = 0,768.

Средняя величина – это обобщающая характеристика варьирующего признака единиц качественно однородной совокупности.

Средние величины используются в планировании, анализе выполнения планов, расчетах экономической эффективности общественного производства и т.д. Сравнивая изменение средних уровней во времени, статистика тем самым характеризует важнейшие закономерности развития явлений.

В статистике применяются различные виды средних величин: средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя хронологическая средняя квадратическая и средняя кубическая.

Наиболее распространенным видом средних величин является средняя арифметическая. Она рассчитывается в двух формах – простой и взвешенной.

Средняя арифметическая простая называется так потому, что в основе ее вычисления лежит простое суммирование. Чтобы определить ее, все показатели варьирующего признака суммируются и делятся на их количество.

Формула средней арифметической простой:

Где х – варианты; n – число вариант.

Формула средней арифметической взвешенной:

, где х – варианты; f – веса.

Эта средняя называется взвешенной потому, что для ее определения значения признака, по которым эта средняя исчисляется, не просто складываются, а предварительно умножаются на частоту (взвешиваются).

Применяется эта средняя в том случае, если показатели в совокупности встречаются несколько раз (т.е. повторяются).

Иногда среднюю арифметическую величину исчисляют по данным интервального вариационного ряда (когда варианты представлены в виде интервалов «от – до»). Для исчисления средней нужно прежде всего получить середину интервала каждой группы, а затем расчет производится по формуле арифметической взвешенной.

Средняя гармоническая взвешенная рассчитывается по формуле:

, где х – варианты; W – объем признака.

Средняя гармоническая применяется в тех случаях, когда отсутствует показатель частоты. Она представляет собой величину обратную средней арифметической из обратных значений признака

Модой называют то значение признака, которое наиболее часто встречается в данной совокупности.

Для интервальных вариационных рядов мода определяется по формуле:

М 0 = х мо + i мо *
, где

х мо - нижняя граница интервала, содержащего моду;

i мо - величина модального интервала;

f мо - частота модального интервала;

f мо-1 - частота интервала, предшествующего модальному;

f мо+1 – частота интервала, следующего за модальным.

Медианой называют значение признака, приходящееся на середину ранжированной совокупности.

М е = х ме + i ме *
, где

х ме - нижняя граница интервала, содержащего медиану;

i ме - величина медианного интервала;

∑f - сумма частот;

S ме-1 - сумма накопленных частот, предшествующих медианному интервалу;

f ме – частота медианного интервала.

Изменение значений признака в пределах изучаемой совокупности называется вариацией .

Для характеристики величины колебания признака в статистике вычисляют следующие показатели вариации:

    размах вариации;

    среднее линейное отклонение;

    средний квадрат отклонения (дисперсия);

    среднее квадратическое отклонение;

    коэффициент вариации.

Абсолютные и относительные показатели вариации, характеризующие изменчивость значений признака, позволяют оценить степень однородности совокупности, типичности и устойчивости средней.

Размах вариации (R) – наиболее простой измеритель вариации и представляет собой разность между наибольшим и наименьшим значениями признака

R = x max – x min , где

x max – наибольшее значение признака;

x min – наименьшее значение признака.

Среднее линейное отклонение (ι) этосредняяарифметическая из абсолютных отклонений индивидуальных значений признака от общей средней.

(простое);
(взвешенное);

Средний квадрат отклонения, или дисперсия представляет собой среднюю арифметическую из квадратов отклонений вариант от общей средней

=
(простая);
=
(взвешенная)

Среднее квадратическое отклонение – квадратный корень из дисперсии

;
;

Размах вариации, среднее линейное и среднее квадратическое отклонение являются абсолютными показателями вариации

Коэффициент вариации является относительным показателем вариации, выражается в %. Он представляет собой отношение среднего квардратического отклонения к средней величине признака:

V=

Чем больше коэффициент вариации, тем менее однородна совокупность и тем менее типична средняя величина, тем менее она характеризует изучаемое явление.

Пример:

По трем предприятиям, вырабатывающим один вид изделий, известны следующие данные за отчетный месяц:

Определите: 1) среднюю выработку одного рабочего; 2) среднюю себестоимость единицы продукции; 3)среднюю численность рабочих на одно предприятие.

    Определим среднюю выработку одного рабочего:

    Определим среднюю себестоимость единицы продукции:

    Определим среднее число рабочих:

Пример:

Имеются данные о распределении 100 ткачих по дневной выработке:

На основании данных вычислите:

    среднюю дневную выработку 1 ткачихи;

    моду и медиану

Дневная выработка, м

Число ткачих

интервала (х)

Накопленные частоты

120 и выше

    Средняя дневная выработка одной ткачихи определяется по формуле средней арифметической взвешенной

    Модальное значение выработки вычислим по формуле

М 0 = х мо + i мо *

3.Значение медианы вычислим по формуле:

М е = х ме + i ме *

Пример:

По обувной фабрике имеются следующие данные:

Определите процент брака в среднем по фабрике за 1 и 2 кварталы

Сделайте вывод.

Средний процент брака за 1 квартал определяется по формуле:

Средний процент брака за 2 квартал определяется по формуле:

Вывод: удельный вес бракованной продукции во втором квартале по сравнению с первым уменьшился на 0,2%.

Пример:

Известны данные о распределении 20 заводов отрасли по стоимости основных средств:

Определите:

1) среднюю стоимость основных средств на один завод по отрасли;

2) размах вариации, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение, коэффициент вариации. Сделайте вывод.

Стоимость

основных

средств (млрд. руб.)

Середина

интервала

I
I*f

(
) 2

(
) 2 *f

    Определим среднюю стоимость основных средств

млрд. руб.

    Вычислим размах вариации

R = x max – x min ,= 14 - 4 = 10 млрд. руб.

Определим среднее линейное отклонение

млрд. руб.

Дисперсию признака вычислим по следующей формуле

=

Среднее квадратическое отклонение

млрд. руб.

Коэффициент вариации

V=

Вывод: средняя стоимость основных средств по отрасли составляет 9,7 млрд. руб. Совокупность однородна, т.к. коэффициент вариации 25,4%, т.е. вариация признака умеренная.

Понятие средней величины большинству людей хорошо известно. Обычно среднюю величину воспринимают как отражение общего в значениях признака у множества единиц. Таковы, например, средний возраст жителя страны, средний размер семьи в районе, средний размер прибыли предприятия.

Действительно, средняя величина - это обобщающая оценка признака у множества объектов, которая отражает его характерное значение. Характерное значение фиксирует типическую величину признака, в котором находит выражение своеобразие данной группы объектов и ее отличие от значений признака у других групп.

Например, средняя заработная плата работников в разных видах деятельности в 2015 г. в России составила, тыс. руб. :

  • сельское хозяйство - 19,5;
  • добыча полезных ископаемых - 63,7;
  • обрабатывающие производства - 31,8;
  • строительство - 29,9.

В разном уровне оплаты, т.е. в разной средней заработной плате работника, проявляются особенности организации труда в разных видах деятельности и в конечном счете - общественное признание того или иного труда.

В приведенном примере даны средние, которые рассчитаны по группам, состоящим из объектов одного вида деятельности и которые в этом смысле могут быть названы однородными. Подобные средние называются групповыми. Они интересны тем, что связаны с конкретными объектами и условиями их существования. Когда производится расчет групповых средних, то при одинаковых, например, условиях труда происходит взаимное погашение влияния случайных причин на заработную плату. В то же время при расчете групповой средней усиливается влияние особых, специфических условий, поскольку они действуют постоянно и в одном направлении. В групповой средней отражаются особенности однородных объектов и погашается случайность. Именно но этим причинам групповые средние находят широкое практическое применение.

Когда речь заходит об общей средней но множеству, включающему несколько однородных групп, то при ее расчете погашается действие не только случайных, но и групповых особенностей. Так, общая средняя заработная плата занятого в экономике страны в 2015 г. составила 34 тыс. руб. В ней не отражаются особенности оплаты труда в разных видах деятельности, а показывается лишь общий уровень оплаты труда занятых в ЭКОНОМИКС.

Сравним среднюю заработную плату работников разных видов деятельности в 2010 и 2015 гг. в экономике РФ (табл. 6.1).

Таблица 6.1

Средняя заработная плата в разных видах деятельности и ее изменения,

Источник: Россия в цифрах. 2016. Табл. 7.7.

В темпах изменения средних по видам деятельности, т.е. в групповых средних, проявляются частные закономерности изменения заработной платы: в интервале от 1,41 до 1,82 раза. Сравнивая изменение общей средней, устанавливаем общую закономерность изменения уровня заработной платы в экономике страны: увеличение в 1,62 раза.

Всесторонний анализ предполагает совместное использование общих и групповых средних: это позволяет характеризовать общие закономерности развития и особенности их проявления в конкретных условиях.

Расчет средней выполняется в два этапа. На первом этапе производится обобщение индивидуальных значений изучаемого признаках, у множества, состоящего из п единиц: {х-}. На втором этапе полученный результат распределяется между множеством этих п единиц: {х,} + п - х.

При обобщении значений признака у п объектов множества {х,} происходит взаимное погашение влияния случайных причин и усиливается действия неслучайных систематических факторов. При распределении обобщенного значения признака между п единицами множества {х; -} п определяется средняя типическая его величина х у одной абстрактной единицы. В результате имеем либо групповую среднюю по группе однородных объектов: {х; }-н п = х, либо общую среднюю для всего изучаемого множества {х,} -г- п = х.

Для расчета средних существуют несколько способов, которые отличаются порядком обобщения и распределения.

Средняя арифметическая обобщает индивидуальные значения x f суммированием, а равномерное распределение - делением суммы дг, на число

единиц, участвующих в расчете:

Частое использование арифметической средней объясняется ее особыми свойствами, которые делают ее расчет более простым, а результат - легко проверяемым.

Сумма отклонений значений признака от арифметической средней равна нулю:

Если значения признака х, изменить на число Л, то арифметическая

средняя изменится на это же число:

Если значения признака х, увеличить в А раз, то арифметическая средняя увеличится в А раз:

Если значения признака Xj уменьшить в А раз, то арифметическая средняя также уменьшится в

Средняя гармоническая используется в тех случаях, когда расчет выполняется по значениям признака, который связан с изучаемым признаком обратной зависимостью, т.е. при условии, что V определяется по значениям признака

Например, показатель выработки продукции на работника:

Показатель трудоемкости единицы продукции:

Показатели выработки и трудоемкости находятся в обратной зависимости: . Поэтому при расчете средней выработки по значениям трудоемкости следует применять гармоническую среднюю

Средняя квадратическая применяется в случаях, когда при обобщении значений признака А/, необходимо избежать нулевого результата, так как квадратов рассчитывают среднюю: , а из полученной

средней извлекают квадратный корень:

Наиболее часто квадратическая средняя применяется при расчете показателей вариации и оценок различий структур множества.

Средняя геометрическая обобщает значения признака путем расчета

их произведения: , а из результата извлекается

корень п -й степени:

Наиболее логически оправдано применение геометрической средней при расчете из цепных темпов роста среднего темпа роста:

Разный порядок расчета средних объясняет разные значения результата. Свойство мажорантности средних величин устанавливает зависимость величины средней от показателя ее степени: чем выше показатель степени средней, тем больше ее значение. Каждая из рассмотренных средних представляет собой разновидность степенной средней (табл. 6.2).

Таблица 6.2

Формы средних величин

Форма средней

Расчетная формула

Показатель степени средней (с)

Квадратическая

Арифметическая

Геометрическая

Гармоническая

В качестве иллюстрации свойства мажорантности выполним по данным о численности населения федеральных округов РФ расчет разных средних (табл. 6.3).

Приведенный пример подтверждает, что с увеличением степени средней: от наименьшей - для гармонической, до наибольшей - для квадратической, величина средней увеличивается. Свойство мажорантности средних можно представить в виде неравенств: V

Из свойства мажорантности следует вывод о том, что выбор способа расчета средней не может быть произвольным. Он должен основываться на смысловом содержании исходных данных и на условиях применения конкретной формы средней.

Известно, что геометрическая средняя используется для обобщения темпов роста, а квадратическая - в тех случаях, когда сумма значений признака равна нулю. Поэтому наиболее востребованными практикой являются арифметическая и гармоническая формы средних.

По особым правилам проводится расчет средних из абсолютных и относительных значений изучаемых характеристик. Рассмотрим особенности расчета средних на примере данных но федеральным округам РФ за 2014 г. (табл. 6.4).

В табл. 6.4 использованы следующие признаки и их обозначения.

Численность занятых в экономике федерального округа, млн человек Р,.

Численность занятых в процентах от численности всего населения федерального округа, % - С,.

Приходится оборота розничной торговли за год в среднем на одного жителя федерального округа, тыс. руб. - Т г

Приходится инвестиций в среднем на одного занятого в экономике федерального округа, тыс. руб. - R r

Таблица 63

Расчет средней численности населения федеральных округов РФ с применением различных средних

Федеральный

Численность

населения

Центральный

Северо-Западный

Северо-Кавказский

Приволжский

Уральский

Федеральный

Численность населения на 01.01.2016

Сибирский

Дальневосточный

Крымский

И 196 529 418,1

Квадратическая средняя (см. формулу (6.1))

Арифметическая средняя (см. формулу (6.2))

Геометрическая средняя (см. формулу (6.3))

Гармоническая средняя (см. формулу (6.4))

Источник: Россия в цифрах. 2016. Табл. 1.3.

Особенность абсолютных значений признака в том, что они непосредственно относятся к единице совокупности и определяют ее абсолютные размеры. Например, для федерального округа как единицы множества абсолютными значениями будут численность населения, численность занятых, стоимость произведенной продукции, стоимость основного капитала, прибыль от реализации продукции и т.п. Приведенные признаки относятся непосредственно к федеральному округу, называются первичными и по их значениям можно определить размеры каждого изучаемого объекта. При обработке абсолютных значений этих признаков точно учитывается размер каждой единицы и поэтому нет никаких ограничений для обобщения их значений путем непосредственного суммирования. Средняя, при расчете которой обрабатываются значения единственного признака, называется простой. Например, простая средняя применяется для расчета средней численности занятых в экономике одного федерального округа (табл. 6.4).

Таблица 6.4

Расчет средних значений экономических показателей по федеральным

округам РФ, 2014 г.

Федеральный округ

Численность занятых в экономике, млн чел.

Численность занятых, % численности всего населения

Приходится оборота розничной торговли за год в среднем на одного жителя, тыс. руб.

Приходится инвестиций в среднем на одного занятого в экономике, тыс. руб.

Центральный

Северо-Запад! i ы й

Се всро - Ка в казс к и й

Приволжский

Уральский

Сибирский

Дальневосточный

Среднее значение

Источник: Россия в цифрах. 2016. Табл. 1.3.

Примечание : знак «х» означает, что данная ячейка не подлежит заполнению.

Расчет выполняется по следующей формуле:

В экономике федерального округа в среднем за 2014 г. было занято 8,5 млн человек.

Средние из относительных значений определяются но более сложной схеме. Особенность относительных значений в том, что они не связаны непосредственно с размерами изучаемых единиц, а без этого учета подсчет точной средней обычно невозможен. В подобных случаях в расчет должны включаться дополнительные значения характеристик, которые отражают абсолютные размеры каждой из изучаемых единиц. В расчете средней помимо изучаемой участвует дополнительная характеристика или вес , поэтому средняя называется взвешенной. При расчете взвешенной средней в качестве веса всегда выступает абсолютная характеристика или первичный признак. Вес позволяет учесть абсолютные размеры каждой единицы и обеспечивает расчет точного значения средней.

В приведенном примере характеристики С, Г, и являются относительными, поэтому прямое суммирование их значений недопустимо. Для определения схемы расчета их средних значений установим порядок расчета их индивидуальных значений.

Расчет процента занятых от численности всего населения выполняется но следующей формуле: В расчетной формуле

неизвестна по условию задачи численность населения. Для определения

ее значения выразим численность населения через численность занятых Р, и известные значения процента занятых от численности всего населения С,:

или

Чтобы определить численность населения в млн человек, необходимо разделить численность занятых в экономике Р, на их долю в численности всего населения С,. Поэтому необходимо значения С, перевести из процентов в доли единицы:

Рассчитаем неизвестное значение численности населения в дополнительной расчетной графе (табл. 6.5, гр. 2).

При известных значениях численности занятых Р, и численности всего

населения расчет процента занятых в буквенной форме имеет вид

Общая средняя С рассчитывается по той же схеме, что и индивидуальные значения характеристики С,-. Разница лишь в том, что при расчете общей средней С используются итоговые значения сравниваемых признаков: численности занятых, млн человек и численности всего населения, млн человек То есть расчет общей средней С но восьми

федеральным округам выполняется по формуле

Расчет средних значений относительных характеристик по экономике РФ в 2014 г.

Таблица 6.5

Федеральный округ

Среднегодовая численность занятых в экономике, млн чел.

Численность

% от численности всего населения

Численность всего населения, млн чел.

Приходится оборота розничной торговли за год в среднем на одного жителя, тыс. ov6.

Оборот розничной торговли за год, млрд руб.

Приходится инвестиций в среднем на одного занятого, тыс. руб.

Инвестиции в экономику за год, млрд руб.

Р г 100%

р г т г т%

Центральный

Северо-Западный

Северо-Кавказский

Приволжский

Уральский

Сибирский

Дальневосточный

Средняя арифметическая

Средняя гармоническая

Составлено и рассчитано по: Россия в цифрах. 2016. Табл. 1.3.

В Экономикс России в 2014 г. доля занятого населения составляла в среднем 47,2% численности всего населения. Расчет выполнен по гармонической средней взвешенной , в которой весом выступил первичный признак P t - численность занятых в экономике.

Аналогичные рассуждения лежат в основе расчета средних значений двух других относительных характеристик: средней стоимости оборота розничной торговли на одного жителя, Т тыс. руб., и средней стоимости инвестиций на одного занятого, R тыс. руб.

Индивидуальные значения стоимости оборота розничной торговли на одного жителя, тыс. руб., рассчитываются как результат сравнения оборота розничной торговли за год, млрд руб., с численностью всего населения, млн человек:

По условию задачи неизвестна стоимость оборота розничной торговли. Поэтому выразим неизвестные значения оборота розничной торговли через известные значения численности всего населения и заданные в условии задачи значения Т г Искомый оборот розничной торговли (товарооборот) есть произведение численности всего населения и величины товарооборота на одного жителя:


Величина оборота розничной торговли измеряется в млрд руб., так как при его расчете численность жителей в млн человек умножаем на товарооборот на одного жителя в тыс. руб.

Определим неизвестные значения оборота розничной торговли за год в гр. 5 табл. 6.5.

Расчет общего среднего значения оборота розничной торговли на одного жителя, тыс. руб., Т , выполним по итоговым значениям суммы оборота

розничной торговли, млрд руб., , и суммарной численности всего

населения, млн чел., . Расчетная формула имеет вид

В 2014 г. на одного жителя в Российской Федерации приходилось в среднем 181,5 тыс. руб. оборота розничной торговли. При расчете использована арифметическая взвешенная средняя, а весом выступают абсолютные значения общей численности населения:

Для расчета стоимости инвестиций на одного занятого необходимо стоимость инвестиций, млрд руб., сравнить с численностью занятых в экономике, млн человек:

По условию неизвестна стоимость инвестиций, поэтому для расчета ее значений следует выразить инвестиции через известные значения численности занятых Pj и через заданные в условии задачи величины инвестиций на одного занятого /?,:

Подсчет неизвестного значения общей суммы инвестиций выполним в гр. 7 табл. 6.5.

Рассчитанные значения общей суммы инвестиций позволяют определять индивидуальные значения инвестиций на одного занятого по формуле

Для РФ в целом среднее значение инвестиций в расчете на одного занятого К рассчитаем как отношение суммы инвестиций за год?/? Р к сумме численности занятых


В 2014 г. инвестиции в расчете на одного занятого составили в среднем 198,8 тыс. руб. При расчете использована средняя арифметическая взвешенная, весом являются абсолютные значения численности занятых.

Завершающим этапом расчета средних является проверка правильности результата. Логическая проверка основана на анализе схемы расчета индивидуальных значений характеристики и на определении смысла признака- веса. Счетный контроль устанавливает, находится ли средняя в интервале от минимального до максимального значения изучаемого признака. Если выполняется условие X mjn то расчет средней выполнен верно. Если данное условие не выполняется, то в расчете допущены ошибки, которые необходимо выявить и исправить.

В нашем примере (см. табл. 6.5) для всех значений рассчитанных средних данное условие выполняется:

простая арифметическая Р = 8,5, 3,3 Р

взвешенная гармоническая С = 47,2 , 36,3 С 53,2;

взвешенная арифметическая Т = 181,5, 134,7 Т

взвешенная арифметическая R = 198,8, 142,9 R 383,3 .

Это означает, что в определении средних значений не допущено расчетных ошибок, а использование взвешенных средних для расчета средних из относительных величин позволило учесть размеры изучаемых единиц - федеральных округов РФ.

Подводя итог, напомним основные правила построения средних величин.

По абсолютным значениям признака допустим расчет простой средней. Как правило, в большинстве случаев применяется арифметическая средняя. Например, расчет Р.

По относительным значениям расчет выполняется но взвешенной средней, в которой весом являются абсолютные значения первичного признака, связанного по смыслу с изучаемым признаком. Например, расчет С, Т и R.

В качестве веса используются значения признака, по отношению к которому рассчитаны относительные значения вторичного признака. Вес может отображаться весьма просто, как, например, при расчете С и R, где в качестве веса использована численность занятых Р г Но он может иметь и сложное отображение, как, например, при расчете Г, у которого весом

была численность всего населения. Каким бы образом ни отображался

признак-вес, он всегда должен представлять собой абсолютную оценку изучаемого объекта.

Выбор формы средней в большинстве случаев ограничен арифметической или гармонической, так как квадратическая и геометрическая применяются лишь в строго определенных случаях.

Арифметическая форма средней применяется в тех случаях, когда в условии поставленной задачи отсутствуют значения признака, который связан с изучаемым признаком прямой зависимостью, т.е. когда в расчетной формуле индивидуальных значений отсутствуют сведения о ее числителе. Примером могут быть расчеты Р, Т и R.

Если в расчетной формуле отсутствуют данные о знаменателе отношения, то используется гармоническая средняя. В этом случае изучаемый признак связан с неизвестным признаком обратной зависимостью, как, например, при расчете С.

Правильно выполненные расчеты позволяют получить точные средние значения, которые отражают характерную величину признака и представляют интерес при решении аналитических и прогнозных задач.

  • См.: Россия в цифрах. 2016. Табл. 7.7.

Вариация -- это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени.

Например, работники фирмы различаются по доходам, затратам времени на работу, росту, весу, любимому занятию в свободное время и т.д.

Вариация возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Таким образом, величина каждого варианта объективна.

Исследование вариации в статистике имеет большое значение, помогает познать сущность изучаемого явления. Особенно актуально оно в период формирования многоукладной экономики. Измерение вариации, выяснение ее причины, выявление влияния отдельных факторов дает важную информацию (например, о продолжительности жизни людей, доходах и расходах населения, финансовом положении предприятия и т.п.) для принятия научно обоснованных управленческих решений.

Средняя величина дает обобщающую характеристику признака изучаемой совокупности, но она не раскрывает строения совокупности, которое весьма существенно для ее познания. Средняя не показывает, как располагаются около нее варианты осредняемого признака, сосредоточены ли они вблизи средней или значительно отклоняются от нее. Средняя величина признака в двух совокупностях может быть одинаковой, но в одном случае все индивидуальные значения отличаются от нее мало, а в другом -- эти отличия велики, т.е. в одном случае вариация признака мала, а в другом -- велика, это имеет весьма важное значение для характеристики надежности средней величины.

Чем больше варианты отдельных единиц совокупности различаются между собой, тем больше они отличаются от своем средней, и наоборот, -- чем меньше варианты отличаются друг от друга, тем меньше они отличаются от средней, которая в тан ком случае будет более реально представлять всю совокупность. Вот почему ограничиваться вычислением одной средней в ряде случаев нельзя. Нужны и другие показатели, характеризующие отклонения отдельных значений от общей средней.

Это можно показать на таком примере. Предположим, что одинаковую работу выполняют две бригады, каждая -- из трех человек. Пусть количество деталей, шт., изготовленных за смену отдельными рабочими, составляло:

в первой бригаде -- 95, 100, 105 (= 100 шт.);

во второй бригаде -- 75, 100, 125 (= 100 шт.).

Средняя выработка на одного рабочего в обеих бригадах одинакова и составляет= = 100 шт., однако колеблемость выработки отдельных рабочих в первой бригаде значительно меньше, чем во второй.

Поэтому возникает необходимость измерять вариацию признака в совокупностях. Для этой цели в статистике применяют ряд обобщающих показателей.

  • Ш К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, коэффициент вариации.
  • Ш Самым элементарным показателем вариации признака является размах вариации R, представляющий собой разность между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки деталей составляет: в первой бригаде -- R1= 10 шт. (т.е. 105 -- 95); во второй бригаде -- R2= 50 шт. (т.е. 125 -- 75), что в 5 раз больше.

Это свидетельствует о том, что при численном равенстве средняя выработка первой бригады более «устойчива». Размах вариации может служить базой расчета возможных резервов роста выработки. Таких резервов больше у второй бригады, поскольку в случае достижения всеми рабочими максимальной для этой бригады выработки деталей, ею может быть изготовлено 375 шт., т.е. (3x125), а в первой - только 315 шт., т.е. (3 х 105).

Однако размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду. При изучении вариации нельзя ограничиваться только определением ее размаха. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и даёт обобщённую характеристику. Простейший показатель такого типа - среднее линейное отклонение

Ш Среднее линейное отклонение d представляет собой среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической (при этом всегда предполагают, что среднюю вычитают из варианта: ().

Среднее линейное отклонение:

Для несгруппированных данных

где n - число членов ряда;

Для сгруппированных данных

где -- сумма частот вариационного ряда.

В формулах (5.18) и (5,19) разности в числителе взяты по модулю, (иначе в числителе всегда будет ноль -- алгебраическая сумма отклонений вариантов от их средней арифметической). Поэтому среднее линейное отклонение как меру вариации признака применяют в статистической практике редко (только в тех случаях, когда суммирование показателей без учета знаков имеет экономический смысл). С его помощью, например, анализируется состав работающих, ритмичность производства, оборот внешней торговли.

Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных):

§ простая дисперсия для несгруппированных данных

§ взвешенная дисперсия для вариационного ряда

Формула (5.21) применяется при наличии у вариантов своих весов (или частот вариационного ряда).

Формулу для расчета дисперсии (5.20) можно преобразовать, учитывая, что


т.е. дисперсия равна разности средней из квадратов вариантов и квадрата их средней.

Техника вычисления дисперсии по формулам (5.20), (5.21) достаточно сложна, а при больших значениях вариантов и частот может быть громоздкой.

Расчет можно упростить, используя свойства дисперсии (доказываемые в математической статистике). Приведем два из них:

первое -- если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, то дисперсия от этого не изменится;

второе -- если все значения признака уменьшить или увеличить в одно и то же число раз (i раз), то дисперсия соответственно уменьшится или увеличится в i2 раз. Используя второе свойство дисперсии, разделив все варианты на величину интервала, получим следующую формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов:

где -- дисперсия, исчисленная по способу моментов;

i - величина интервала;

новые (преобразованные) значения вариантов (А -- условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой);

Момент второго порядка;

Квадрат момента первого порядка.

Расчет дисперсии по формуле (5.23) менее трудоемок.

Дисперсия имеет большое значение в экономическом анализе. В математической статистике важную роль для характеристики качества статистических оценок играет их дисперсия. Ниже, в частности, будет показано разложение дисперсии на соответствующие элементы, позволяющие оценить влияние различных факторов, обуславливающих вариацию признака; использование дисперсии для построения показателей тесноты корреляционной связи при оценке результатов выборочных наблюдений.

  • Ш Среднее квадратическое отклонение равно корню квадратному из дисперсии:
    • § для несгруппированных данных

§ для вариационного ряда

Среднее квадратическое отклонение -- это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется.

Обозначим: 1 -- наличие интересующего нас признака; 0 -- его отсутствие; р -- доля единиц, обладающих данным признаком; q -- доля единиц, не обладающих данным признаком; p + q =1. Исчислим среднее значение альтернативного признака и его дисперсию. Среднее значение альтернативного признака

вариация средний величина квадратический

так как р + q = 1.

Дисперсия альтернативного признака

Подставив в формулу дисперсии q = 1- р, получим

Таким образом, = pq -- дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, на долю единиц, не обладающих данным признаком.

Например, если на 10 000 человек населения района приходится 4500 мужчин и 5500 женщин, то

Дисперсия альтернативного признака = pq = 0,45*0,55 = 0,2475.

Предельное значение дисперсии альтернативного признака равно 0,25. Оно получается при р = 0,5.

Среднее квадратическое отклонение альтернативного признака

Если, например, 2% всех деталей бракованные (р = 0,02), то 98% -- годные (q = 0,98), тогда дисперсия доли брака

0,02- 0,98 = 0,0196.

Среднее квадратическое отклонение доли брака составит:

0,14, т.е. = 14%.

При вычислении средних величин и дисперсии для интервальных рядов распределения истинные значения признака заменяются центральными (серединными) значениями интервалов, которые отличаются от средней арифметической значений, включенных в интервал. Это приводит к появлению систематической погрешности при расчете дисперсии. В.Ф.Шеппард установил, что погрешность в расчете дисперсии, вызванная применением сгруппированных данных, составляет 1/12 квадрата величины интервала (т.е. i2/12) как в сторону занижения, так и в сторону завышения величины дисперсии.

Поправка Шеппарда должна применяться, если распределение близко к нормальному, относится к признаку с непрерывным характером вариации, построено по большому количеству исходных данных (n>500). Однако исходя из того, что в ряде случаев обе погрешности, действуя в противоположных направлениях, нейтрализуются и компенсируют друг друга, можно иногда отказаться от введения поправок.

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее (количественно) совокупность и тем более типичной будет средняя величина.

В статистической практике часто возникает необходимость сравнения вариаций различных признаков. Например, большой интерес представляет сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для подобных сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях.

Для осуществления такого рода сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с различным средним арифметическим используют относительный показатель вариации -- коэффициент вариации.

Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:

Коэффициент вариации используют не только для сравнительной оценки вариации единиц совокупности, но и как характеристику однородности совокупности. Совокупность считается количественно однородной, если коэффициент вариации не превышает 33 %.

Покажем расчет различными способами показателей вариации на примере данных о сменной выработке рабочих бригады, представленных интервальным рядом распределения (табл. 5.7).

Исчислим среднесменную выработку, шт.:

Рассчитаем дисперсию выработки по (5.21):

Найдем среднее квадратическое отклонение, шт.:

Определим коэффициент вариации, %:

Таким образом, данная бригада рабочих достаточно однородна по выработке, поскольку вариация признака составляет лишь 8%.

Теперь выполним расчет дисперсии по формуле (5.22) и по способу моментов по формуле (5.23), для расчета воспользуемся данными табл. 5.7, графы 8-11.

Расчет дисперсии по формуле (5.20):


Расчет дисперсии по способу моментов, см. формулу (5.21):

где А = 50 -- центральный вариант с наибольшей частотой;

i = 20 -- величина интервала данного ряда;

Таблица 5.7

Распределение рабочих по сменной выработке изделия А и расчетные значения для исчисления показателей вариации

Группы рабочих по сменной выработке изделий, шт.

Число рабочих

Середина интервала x

Расчетные значения

Как видим, наименее трудоемким является метод исчисления дисперсии способом моментов.

Вариация – это изменение (колеблемость) значений признака в пределах изучаемой совокупности при переходе от одного объекта (группы объектов), или от одного случая к другому. Абсолютные и относительные показатели вариации, характеризующие колеблемость значений варьирующего признака, позволяют, в частности, измерить степень связи и взаимозависимости между признаками, определить степень однородности совокупности, типичности и устойчивости средней, определить величину погрешности выборочного наблюдения, статистически оценить закон распределения совокупности и т. п.

В этой теме необходимо уяснить сущность (смысл), назначение и способы вычисления каждого показателя вариации, рассматриваемого в курсе теории статистики: размах вариации, среднее линейное отклонение, средний квадрат отклонений (дисперсию), среднее квадратическое отклонение, относительные коэффициенты вариации (коэффициент осцилляции, коэффициент среднего линейного отклонения, коэффициент вариации).

Размах вариации (R ) представляет собой разность между максимальным (х max) и минимальным (х min) значениями признака в совокупности (в ряду распределения):

R = х max - х min. (5.1)

Мерой других показателей вариации является разность не между крайними значениями признака, а средняя разность между каждым значением признака и средней величиной этих признаков. Разность между отдельным значением признака и средней называют отклонением.

Среднее линейное отклонение вычисляется по следующим формулам:

по индивидуальным (несгруппированным) данным

; (5.2)

по вариационным рядам (сгруппированным данным)

. (5.3)

Так как алгебраическая сумма отклонений индивидуальных значений признака от средней (согласно нулевому свойству) всегда равна нулю, то при расчете среднего линейного отклонения используется арифметическая сумма отклонений, взятая по модулю, т.е.
.

Среднее линейное отклонение имеет ту же размерность, что и признак, для которого оно исчисляется.

Дисперсия и среднее квадратическое отклонение. Среднее линейное отклонение относительно редко применяется для оценки вариации признака. Поэтому обычно вычисляются дисперсия ( 2) и среднее квадратическое отклонение (). Эти показатели применяются не только для оценки вариации признака, но и для измерения связи между ними, для оценки величины ошибки выборочного наблюдения и других целей.

Дисперсия признака рассчитывается по формулам:

по первичным данным

; (5.4)

по вариационным рядам

. (5.5)

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии:

по первичным данным

; (5.6)

по вариационным рядам

. (5.7)

Среднее квадратическое отклонение так же, как и среднее линейное отклонение, имеет ту же размерность, что и сам исходный признак.

Дисперсию можно определить и как разность между средним квадратом вариантов и квадратом их средней величины, т. е.
. (5.8)

В этом случае по первичным данным дисперсия равна:

(5.9)

Применительно к сгруппированным данным, расчет дисперсии этим способом в развернутом виде представим в таком виде:

. (5.10)

Для рядов распределения с равными интервалами значение дисперсии можно вычислить, применяя способ условных моментов, т. е.

, (5.11)

где
- первый условный момент; (5.12)

- второй условный момент. (5.13)

Среднее квадратическое отклонение по способу условных моментов определяется по формуле:

(5.14)

Преобразуя выражение расчета дисперсии по способу условных моментов, получим формулу вида:
(5.15)

На основе одних и тех же исходных данных получим одинаковое значение дисперсии.

Относительные показатели вариации вычисляются как отношение ряда абсолютных показателей вариации к их средней арифметической и выражаются в процентах:

коэффициент осцилляции -
; (5.16)

коэффициент относительного линейного отклонения -
; (5.17)

коэффициент вариации -
. (5.18)

Задача 1 . Рассмотрим способы расчета показателей вариации на основе данных табл. 5.1.

Таблица 5.1. Исходные данные для расчета показателей вариации

Затраты времени на производство деталей мин

Количество деталей, шт. (f)

Середина интервала (х)

; к = 2

Приведенный ряд распределения ранжированный, поэтому здесь легко найти минимальное значение признака, оно равно 8 мин. (10 - 2), и максимальное, равное 18 мин. (16 + 2). Значит, размах вариации признака в этом ряду составит 10 мин., т. е.

R = x max – x min = 18 – 8 = 10 мин.

Вычислим среднее линейное отклонение. Прежде всего необходимо вычислить среднюю величину . Все вычисления будем вести в табличной форме (табл. 5.1.), отводя для каждой вычислительной операции графу в таблице.

Поскольку исходные данные представлены рядом распределения, то

мин.

мин.

Покажем способы расчета дисперсии:

а) обычным способом (по определению):

;

б) как разность между средним квадратом и квадратом средней величины:

Для определения величины дисперсии по этой формуле необходимо вычислить средний квадрат вариантов признака по формуле:

;

 2 =178,6 – (13,2) 2 =4,36;

в) по способу условных моментов:

;

;

г) на основе преобразования формулы расчета дисперсии по способу условных моментов имеем:

Дисперсия – число отвлеченное, не имеющее единиц измерения.

Среднее квадратическое отклонение вычислим путем извлечения корня квадратного из дисперсии:

мин.

По способу условных моментов величину среднего квадратического отклонения определим так:

Вычислим относительные показатели вариации:

%;

%;

%.

Основным относительным показателем вариации является коэффициент вариации (V). Он используется для сравнительной оценки меры колеблемости признаков, выраженных в различных единицах измерения.

Наряду с вариацией количественных признаков может наблюдаться и вариация качественных признаков (в частности альтернативной изменчивости качественных признаков). В этом случае каждая единица изучаемой совокупности либо обладает каким-то свойством, либо нет (например, каждый взрослый человек либо работает, либо нет). Наличие признака у единиц совокупности обозначают 1, а отсутствие –0; долю же единиц совокупности, обладающих изучаемым признаком, обозначают p, а не обладающих им – q. Дисперсия альтернативного признака определяется по формуле:

; (5.19)

p + q = 1 (5.20)

Если, например, доля поступивших в университет равна 30%, а не поступивших – 70%, то дисперсия равна 0,21(0,3 · 0,7). максимальное значение произведения pq равно 0,25 (при условии, когда одна половина единиц обладает данным признаком, а другая половина нет: (0,5 · 0,5 = 0,25).

Способ разложения общей дисперсии. Для оценки влияния различных факторов, определяющих колеблемость индивидуальных значений признака, воспользуемся разложением общей дисперсии на составляющие: на так называемую групповую дисперсию и среднюю из внутригрупповых дисперсий:

, (5.21)

где
– общая дисперсия, характеризующая вариацию признака как результат влияния всех факторов, определяющих индивидуальные различия единиц совокупности.

Вариацию признака, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия  2 , которая является мерой колеблемости частных средних по группам
вокруг общей средней и исчисляется по формуле:

, (5.22)

где n j – число единиц совокупности в каждой группе;

j – порядковый номер группы.

Вариацию признака, обусловленную влиянием всех прочих факторов, кроме группировочного (факторного), характеризует в каждой группе внутригрупповая дисперсия:

, (5.23)

где i – порядковый номер x и f в пределах каждой группы.

По совокупности в целом средняя из внутригрупповых дисперсий определяется по формуле:

(5.24)

Отношение межгрупповой дисперсии  2 к общей
даст коэффициент детерминации:

(5.25)

который характеризует долю вариации результативного признака, обусловленную вариацией факторного признака, положенного в основание группировки.

Показатель, полученный как корень квадратный из коэффициента детерминации, называется коэффициентом эмпирического корреляционного отношения, т.е.:

(5.26)

Он характеризует тесноту связи между результативным и факторным (положенным в основу группировки) признаками. Численное значение коэффициента эмпирического корреляционного отношения имеет два знака: . При решении вопроса о том, с каким знаком его следует брать, необходимо иметь ввиду: если вариация факторного и результативного признаков идет синхронно в одном и том же направлении (возрастает или убывает), то корреляционные отношение берется со знаком плюс; если же изменение этих признаков идет в противоположных направлениях, то оно берется со знаком минус.

Для вычисления групповых и межгрупповых дисперсий можно применять любой из описанных выше способов исчисления среднего квадрата отклонений.

Задача 2. Вычислим все названные дисперсии по исходным данным табл. 5.2.

Таблица 5.2. Распределение посевной площади озимой пшеницы по урожайности

Номер участка

Урожайность, ц/га

Посевная площадь, га

Вычислим среднюю урожайность озимой пшеницы по всем участкам (общая средняя):

ц/га.

Общую дисперсию найдем по формуле:

В гр. 6 табл. 5.2. вычислим значения для расчета среднего квадрата вариантов признака:

.

Находим общую дисперсию:

Урожайность зависит от многих факторов (качество почвы, размер внесения органических и минеральных удобрений, качество семян, сроки сева, уход за посевами и др.) Общая дисперсия в данном случае измеряет колеблемость урожайности за счет всех факторов.

Задача 3. Разобьем совокупность участков на две группы: I группа – посевные площади, на которых не вносились органические удобрения; II – площади, на которых они вносились. К первой группе отнесем участки 1-4, а ко второй – 4-8. По данным этих групп рассчитаем остальные из необходимых нам дисперсий, используя уже произведенные в табл. 5.2. вычисления.

Таблица 5.3. Расчетные данные для вычисления межгрупповой и групповых дисперсий

Номер участка

Урожайность, ц/га (х)

Посевная площадь, га (f)

Номер участка

Урожайность, ц/га (х)

Посевная площадь, га (f)

Определяем:

для I группы:

для II группы:

а) групповую среднюю

а) групповую среднюю

ц/га;

ц/га;

б) средний квадрат вариантов признака

;

;

в) групповую дисперсию

в) групповую дисперсию

Определяем среднюю из групповых дисперсий:

.

Находим межгрупповую дисперсию:

Средняя из групповых дисперсий измеряет колеблемость признака за счет всех прочих факторов, кроме положенного в основание группировки (разграничения на группы), а межгрупповая – за счет именно этого фактора. Сумма этих дисперсий должна дать общую дисперсию, а именно:

Отношение межгрупповой дисперсии к общей в нашем примере даст следующее значение коэффициента детерминации:

, или 71,8%,

т. е. вариация урожайности озимой пшеницы на 71,8% зависит от вариации размеров внесения органических удобрений. Остальные же 28,2% вариации урожайности зависит от влияния всех остальных факторов, кроме размеров внесения органических удобрений.

Коэффициент эмпирического корреляционного отношения составит:

.

Это говорит о том, что внесение органических удобрений оказывает весьма существенное влияние на урожайность.